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We deal with a class of possible degenerate and singular integro-differential 
equations whose leading operator switches between two different types of 
fractional elliptic phases, according to the zero set of a modulating 
coefficient a=a(.,.). 

The model case is driven by

More in general, we will deal with inhomogeneous equations, for very general 
classes of measurable kernels. 
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1. Nonlocal double phase problems

We deal with nonlocal double phase equations ; that is, a class of, possible singular
and degenerate, integro-differential equations whose leading operator switches between
two different fractional elliptic phases according to the zero set of the modulating

coefficient a = a(·, ·). These equations are indeed driven by the following nonlocal
double phase operator,

L(u):=P. V.

Z

Rn
|u(x)� u(y)|p�2(u(x)� u(y))Ksp(x, y) dy(1.1)

+ P. V.

Z

Rn
a(x, y)|u(x)� u(y)|q�2(u(x)� u(y))Ktq(x, y) dy, x 2 Rn,

where the involved kernels Ksp,Ktq : Rn ⇥Rn ! (0,1) are measurable functions of
differentiability orders s, t 2 (0, 1) and summability exponents p, q 2 (1,1), respec-
tively. Here P. V. stands for the principal value. We immediately refer to Section 2
for the precise assumptions on the involved quantities in the general framework we
are considering. In order to simplify, one can just keep in mind the model case when
the kernels Ksp and Ktq do coincide with the Gagliardo kernels |x � y|�n�sp and
|x � y|�n�tq, respectively; i. e., the case when the corresponding operator L does
reduce to a sum of a pure p-fractional Laplacian (��)sp and an integro-differential
operator whose (t, q)-kernel is perturbated by the modulating coefficient a(·, ·).

Such a case can be plainly seen as the nonlocal analog of the classical double phase
problems, whose chief model is related to by the following energy functional,

(1.2) F(u) :=

Z ⇣
|Du|p + a(x)|Du|q

⌘
dx, 1 < p  q,

naturally defined for Sobolev functions. The functional F originally arose in Ho-
mogenization Theory and it is related to the so-called Lavrentiev phenomenon; see
for instance [37, 38]. From a regularity point of view, even without the presence
of the modulating coefficient a(·), such functional presents very interesting features,
falling in the class of the non-uniformly elliptic ones having (p, q)-growth conditions.
Thus, it cannot be treated via the standard available regularity methods; we refer
the reader to the pioneering work by Marcellini [27–30], where the fundamentals of
the (p, q)-regularity theory have been settled. One of the main points in the impor-
tant (p, q)-theory is the lack of regularity results for more general functionals whose
integrand depends on x possibly in a non-smooth way. In this respect, in view of
the presence of the modulating coefficient, the functional F in (1.2) is conceivably
the prototype of the worst kind of interplay between the coefficient in x and the
(p, q)-growth, since it clearly brings a change of ellipticity/growth occurring on the
set {a = 0}. Let us consider the significant case when q > p: in the points where
a > 0 the functional F reduces to a non-standard (p, q)-growth functional, which
exhibits a q-growth in the gradient. On the contrary, in the points where a = 0 the
functional exhibits a p-growth in the gradient. This is the main feature of this class
of functionals and it is basically the reason why they have been firstly introduced
by Zhikov in the aforementioned papers in order to describe the behavior of strongly
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erator switches between two different types of fractional elliptic phases, according
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the following nonlocal double phase operator,
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|x� y|n+sp

dy+

Z
a(x, y)
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where q � p and a(·, ·) = 0. Our results do also apply for inhomogeneous equations,
for very general classes of measurable kernels. By simply assuming the boundedness
of the modulating coefficient, we are able to prove that the solutions are Hölder
continuous, whereas similar sharp results for the classical local case do require a to
be Hölder continuous. To our knowledge, this is the first (regularity) result for
nonlocal double phase problems.
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Non-uniformly elliptic functionals
HÖLDER REGULARITY FOR NONLOCAL DOUBLE PHASE EQUATIONS 3

The nonlocal double phase operator L can be plainly seen as the nonlocal
analog of the classical double phase functional,

F(u) :=

Z ⇣
|Du|p + a(x)|Du|q

⌘
dx, 1 < p  q,

introduced by Zhicov in 1986; related to Homogenization, modeling of strongly
anisotropic materials, Elasticity, Lavrentiev phenomenon, etc...

From a regularity point of view, even without the presence of the modulating
coefficient a(·), such functional presents very interesting features, falling in
the class of the non-uniformly elliptic ones having (p, q)-growth conditions.
Basically, one can prove that

q

p
< 1 + o(n)

is a sufficient [Marcellini, JDE 1991] and necessary [Giaquinta, Manu. Math.

1987] condition for regularity.
Several fundamental contributions on non-uniformly elliptic operators:
; see for instance [37,38]. From a regularity point of view, even without the

presence of the modulating coefficient a(·), such functional presents very in-
teresting features, falling in the class of the non-uniformly elliptic ones having
(p, q)-growth conditions. Thus, it cannot be treated via the standard avail-
able regularity methods; we refer the reader to the pioneering work by Mar-
cellini [27–30], where the fundamentals of the (p, q)-regularity theory have been
settled.

One of the main points in the important (p, q)-theory is the lack of regularity
results for more general functionals whose integrand depends on x possibly in
a non-smooth way. In this respect,
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recently Fiscella, Fonseca, Maly, Mingione, Pucci, Radulescu, and many others.
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Because of the modulating coefficient, the functional F is the prototype of
a bad kind of interplay between a coefficient in x and the (p, q)-growth, since
it brings a change of ellipticity occurring on the set {a = 0}:

in the points where a > 0, F reduces to a non-standard (p, q)-growth func-
tional, which exhibits a q-growth in the gradient (in the relevant case when
q > p).

in the points where a = 0, F exhibits a p-growth in the gradient.

Indeed, it was introduced by Zhikov in order to describe strongly anisotropic
materials whose hardening properties drastically change with the point: the
regulation of the mixture between two different materials, with p and q hard-
ening, is modulated by the coefficient a(·).

Even basic regularity issues for these double phase problems have remained
unsolved for several decades. The first result in this spirit was recently due
to Colombo and Mingione [ARMA 2015]: Hölder continuity for the weak

solutions by assuming that the modulating coefficient a(·) is Hölder continuous

as well.
This important result is also proven to be sharp both with respect to the Hölder
continuity assumption on the modulating coefficient and with respect to the
result obtained.

Starting from the work of Colombo and Mingione, despite its relatively
short history, double phase problems have already evolved into an elaborate
theory with several connections to other branches; the literature is too wide to
attempt any comprehensive treatment in a single paper. We refer, for instance,
to [2, 3, 7, 12–14,25,34] and the references therein.

Let us come back to the equations we are dealing with. In the present paper,
we consider the nonlocal version of the double phase problems described above.
More in general, we also consider inhomogeneous equations with a given datum
f 2 L1

loc. Our main result reads as follows:

Suppose that the modulating coefficient a(·, ·) is such that 0 5 a  M,(1.2)
then any bounded viscosity solution u to Lu = f is locally Hölder continuous.(1.3)

For the precise assumptions and statement, we refer to forthcoming Section 2,
and in particular to Theorem ?? there.

Now, a few observations are in order:
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such functional presents very interesting features, falling in the class of the non-uniformly elliptic
ones having (p, q)-growth conditions. Thus, it cannot be treated via the standard available reg-
ularity methods. Those (p, q)-functionals have been studied extensively during the last decades,
starting from the pioneering works by Marcellini. Basically, one can prove that
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p
< 1 + o(n)

is a sufficient (Marcellini) and necessary (Giaquinta and Marcellini) condition for regularity.
Several fundamental contributions on non-uniformly elliptic operators:
; see for instance [37, 38]. From a regularity point of view, even without the presence of the
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of the non-uniformly elliptic ones having (p, q)-growth conditions. Thus, it cannot be treated
via the standard available regularity methods; we refer the reader to the pioneering work by
Marcellini [27–30], where the fundamentals of the (p, q)-regularity theory have been settled.

One of the main points in the important (p, q)-theory is the lack of regularity results for more
general functionals whose integrand depends on x possibly in a non-smooth way. In this respect,
in view of the presence of the modulating coefficient, the functional F in (1) is conceivably the
prototype of the worst kind of interplay between the coefficient in x and the (p, q)-growth, since

•

4 CRISTIANA DE FILIPPIS AND GIAMPIERO PALATUCCI

Because of the modulating coefficient, the functional F is the prototype of
a bad kind of interplay between a coefficient in x and the (p, q)-growth, since
it brings a change of ellipticity occurring on the set {a = 0}:

in the points where a > 0, F reduces to a non-standard (p, q)-growth func-
tional, which exhibits a q-growth in the gradient (in the relevant case when
q > p).

in the points where a = 0, F exhibits a p-growth in the gradient.

Indeed, it was introduced by Zhikov in order to describe strongly anisotropic
materials whose hardening properties drastically change with the point: the
regulation of the mixture between two different materials, with p and q hard-
ening, is modulated by the coefficient a(·).

Even basic regularity issues for these double phase problems have remained
unsolved for several decades. The first result in this spirit was recently due
to Colombo and Mingione [ARMA 2015]: Hölder continuity for the weak

solutions by assuming that the modulating coefficient a(·) is Hölder continuous

as well.
This important result is also proven to be sharp both with respect to the Hölder
continuity assumption on the modulating coefficient and with respect to the
result obtained.

Starting from the work of Colombo and Mingione, despite its relatively
short history, double phase problems have already evolved into an elaborate
theory with several connections to other branches; the literature is too wide to
attempt any comprehensive treatment in a single paper. We refer, for instance,
to [2, 3, 7, 12–14,25,34] and the references therein.

Let us come back to the equations we are dealing with. In the present paper,
we consider the nonlocal version of the double phase problems described above.
More in general, we also consider inhomogeneous equations with a given datum
f 2 L1

loc. Our main result reads as follows:

Suppose that the modulating coefficient a(·, ·) is such that 0 5 a  M,(1.2)
then any bounded viscosity solution u to Lu = f is locally Hölder continuous.(1.3)

For the precise assumptions and statement, we refer to forthcoming Section 2,
and in particular to Theorem ?? there.

Now, a few observations are in order:

4 CRISTIANA DE FILIPPIS AND GIAMPIERO PALATUCCI

Because of the modulating coefficient, the functional F is the prototype of
a bad kind of interplay between a coefficient in x and the (p, q)-growth, since
it brings a change of ellipticity occurring on the set {a = 0}:

in the points where a > 0, F reduces to a non-standard (p, q)-growth func-
tional, which exhibits a q-growth in the gradient (in the relevant case when
q > p).

in the points where a = 0, F exhibits a p-growth in the gradient.

Indeed, it was introduced by Zhikov in order to describe strongly anisotropic
materials whose hardening properties drastically change with the point: the
regulation of the mixture between two different materials, with p and q hard-
ening, is modulated by the coefficient a(·).

Even basic regularity issues for these double phase problems have remained
unsolved for several decades. The first result in this spirit was recently due
to Colombo and Mingione [ARMA 2015]: Hölder continuity for the weak

solutions by assuming that the modulating coefficient a(·) is Hölder continuous

as well.
This important result is also proven to be sharp both with respect to the Hölder
continuity assumption on the modulating coefficient and with respect to the
result obtained.

Starting from the work of Colombo and Mingione, despite its relatively
short history, double phase problems have already evolved into an elaborate
theory with several connections to other branches; the literature is too wide to
attempt any comprehensive treatment in a single paper. We refer, for instance,
to [2, 3, 7, 12–14,25,34] and the references therein.

Let us come back to the equations we are dealing with. In the present paper,
we consider the nonlocal version of the double phase problems described above.
More in general, we also consider inhomogeneous equations with a given datum
f 2 L1

loc. Our main result reads as follows:

Suppose that the modulating coefficient a(·, ·) is such that 0 5 a  M,(1.2)
then any bounded viscosity solution u to Lu = f is locally Hölder continuous.(1.3)

For the precise assumptions and statement, we refer to forthcoming Section 2,
and in particular to Theorem ?? there.

Now, a few observations are in order:

•

MIM UW, January 25, 2021



Giampiero Palatucci Hölder regularity for nonlocal double phase equations 

Non-autonomous functionals

5
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1. Nonlocal double phase problems

We deal with nonlocal double phase equations ; that is, a class of, possible singular and degener-
ate, integro-differential equations whose leading operator switches between two different fractional
elliptic phases according to the zero set of the modulating coefficient a = a(·, ·). These equations
are indeed driven by the following nonlocal double phase operator,

L(u):=P. V.

Z

Rn
|u(x)� u(y)|p�2(u(x)� u(y))Ksp(x, y) dy(1.1)

+ P. V.

Z

Rn
a(x, y)|u(x)� u(y)|q�2(u(x)� u(y))Ktq(x, y) dy, x 2 Rn,

where the involved kernels Ksp,Ktq : Rn ⇥ Rn ! (0,1) are measurable functions of differentia-
bility orders s, t 2 (0, 1) and summability exponents p, q 2 (1,1), respectively. Here P. V. stands
for the principal value. We immediately refer to Section 2 for the precise assumptions on the
involved quantities in the general framework we are considering. In order to simplify, one can just
keep in mind the model case when the kernels Ksp and Ktq do coincide with the Gagliardo kernels
|x� y|�n�sp and |x� y|�n�tq, respectively; i. e., the case when the corresponding operator L does
reduce to a sum of a pure p-fractional Laplacian (��)sp and an integro-differential operator whose
(t, q)-kernel is perturbated by the modulating coefficient a(·, ·).

The nonlocal double phase operator L can be plainly seen as the nonlocal analog of the classical
double phase functional, whose chief model is

F(u) :=

Z ⇣
|Du|p + a(x)|Du|q

⌘
dx, 1 < p  q,

naturally defined for Sobolev functions.
The functional F was originally introduced by Zhicov in 1986, and it is related to Homogeniza-

tion, modeling of strongly anisotropic materials, Elasticity, Lavrentiev phenomenon, etc...
From a regularity point of view, even without the presence of the modulating coefficient a(·),

such functional presents very interesting features, falling in the class of the non-uniformly elliptic
ones having (p, q)-growth conditions. Thus, it cannot be treated via the standard available reg-
ularity methods. Those (p, q)-functionals have been studied extensively during the last decades,
starting from the pioneering works by Marcellini. Basically, one can prove that
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is a sufficient (Marcellini) and necessary (Giaquinta and Marcellini) condition for regularity.
Several fundamental contributions on non-uniformly elliptic operators:
; see for instance [37, 38]. From a regularity point of view, even without the presence of the
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[ARMA 2015, and ARMA 2015]: If the modulating coefficient a(·) is Hölder

continuous, the weak solutions to the double phase equations are Hölder con-

tinuous as well,

This result is also proven to be sharp both with respect to the Hölder conti-
nuity assumption on the modulating coefficient and with respect to the result
obtained.

Starting from the work of Colombo and Mingione, despite its relatively
short history, double phase problems have already evolved into an elaborate
theory with several connections to other branches; the literature is too wide to
attempt any comprehensive treatment in a single paper. We refer, for instance,
to [2, 3, 7, 12–14,25,34] and the references therein.

Let us come back to the equations we are dealing with. In the present paper,
we consider the nonlocal version of the double phase problems described above.
More in general, we also consider inhomogeneous equations with a given datum
f 2 L1

loc. Our main result reads as follows:

Suppose that the modulating coefficient a(·, ·) is such that 0 5 a  M,(1.2)
then any bounded viscosity solution u to Lu = f is locally Hölder continuous.(1.3)

For the precise assumptions and statement, we refer to forthcoming Section 2,
and in particular to Theorem ?? there.

Now, a few observations are in order:
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Because of the modulating coefficient, the functional F is the prototype of
a bad kind of interplay between a coefficient in x and the (p, q)-growth, since
it brings a change of ellipticity occurring on the set {a = 0}:

in the points where a > 0, F reduces to a non-standard (p, q)-growth func-
tional, which exhibits a q-growth in the gradient (in the relevant case when
q > p).

in the points where a = 0, F exhibits a p-growth in the gradient.

Indeed, it was introduced by Zhikov in order to describe strongly anisotropic
materials whose hardening properties drastically change with the point: the
regulation of the mixture between two different materials, with p and q hard-
ening, is modulated by the coefficient a(·).

Even basic regularity issues for these double phase problems have remained
unsolved for the last decades.

The first result in this spirit was recently due to Colombo and Mingione
[ARMA 2015, and ARMA 2015]: If the modulating coefficient a(·) is Hölder

continuous, the weak solutions to the double phase equations are Hölder con-

tinuous as well,

This result is also proven to be sharp both with respect to the Hölder conti-
nuity assumption on the modulating coefficient and with respect to the result
obtained.

Starting from the work of Colombo and Mingione, despite its relatively
short history, double phase problems have already evolved into an elaborate
theory with several connections to other branches; the literature is too wide to
attempt any comprehensive treatment in a single paper. We refer, for instance,
to [2, 3, 7, 12–14,25,34] and the references therein.

Let us come back to the equations we are dealing with. In the present paper,
we consider the nonlocal version of the double phase problems described above.
More in general, we also consider inhomogeneous equations with a given datum
f 2 L1

loc. Our main result reads as follows:

Suppose that the modulating coefficient a(·, ·) is such that 0 5 a  M,(1.2)
then any bounded viscosity solution u to Lu = f is locally Hölder continuous.(1.3)

For the precise assumptions and statement, we refer to forthcoming Section 2,
and in particular to Theorem ?? there.

Now, a few observations are in order:

A first (counter-)example by Fonseca-Maly-Mingione [ARMA 2004].
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• local vs nonlocal: in the corresponding local case, regularity results are
achieved provided that the ratio q/p is suitably bounded, i.e.:
by assuming that 1  q/p  1 + ↵/n, where ↵ 2 (0, 1] is the Hölder exponent
of a(·).

The much weaker assumption a 2 L1 in our result may be interpreted as an
ineffectiveness of the Lavrentiev phenomenon in the nonlocal framework, and
a consequent assumption on the differentiability exponents (s, t) and summa-
bility ones (p, q) appears, still in accordance with the local results.

• nonlocal nonlinear nonstandard: The equation we are dealing with
inherits both the difficulties newly arising from the double phase problems and
those naturally arising from the nonlocal character of the involved fractional
integro-differential operators. For this, some very important tools recently
introduced in the nonlocal theory, as for instance the celebrated Caffarelli-
Silvestre s-harmonic extension, and many others, seem not to be adaptable to
our framework.

• To our knowledge, this is the very first regularity result for solu-
tions to nonlocal double phase equations. Even in the very special case
when both the differentiability orders and the summability exponents coin-
cide; that is, when s = t and p = q, no related results involving a modulating
coefficient could be found in the literature. It is worth mentioning the fine
Hölder estimates in a relevant paper by Kassmann, Rang and Schwab [Indi-

ana J. 2014], where the authors deal with a class of elliptic integro-differential
operators with kernels satisfying lower bounds on conic subsets, thus strongly
directionally dependent.
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HÖLDER REGULARITY FOR NONLOCAL DOUBLE PHASE EQUATIONS 9

We consider the following inhomogeneous nonlocal double phase equation,

Lu = f,

where f is bounded and the integro-differential operator L is given by

Lu(x) := P. V.

Z

Rn
|u(x)� u(x+ y)|p�2(u(x)� u(x+ y))Ksp(x, y) dy

+ P. V.

Z

Rn
a(x, y)|u(x)� u(x+ y)|q�2(u(x)� u(x+ y))Ktq(x, y) dy.

For s, t 2 (0, 1) and p, q > 1, the measurable kernels Ksp and Ktq essentially behave like (s, p)
and (t, q)-kernels, respectively. More precisely, there exists a positive constant ⇤ such that
8
<

:
⇤�1|y|�n�sp  Ksp(x, y)  ⇤|y|�n�sp,

Ksp(x, y) = Ksp(x,�y),
and

8
<

:
⇤�1|y|�n�tq  Ktq(x, y)  ⇤|y|�n�tq,

Ktq(x, y) = Ktq(x,�y).

are required such that

(2.1) p >
1

1� s
if p < 2, q >

1

1� t
,

and

(2.2) 1  q

p
 min

⇢
s

t
, 1 + s

�
;

for motivations about the two requirements above we refer to Remarks 1–3 below. Finally,
the modulating coefficient a = a(·, ·) is assumed to be measurable and such that

(2.3) 0  a(x, y)  M for a. e. (x, y) 2 Rn ⇥Rn.

In order to prove that viscosity solutions u could behave as classical solutions (see in par-
ticular forthcoming Proposition 1), we will naturally require that the corresponding nonlocal
double phase energy of u is finite; i. e.,

Z

Rn

Z

Rn

|u(x)� u(x+ y)|p

|y|n+sp
+ a(x, y)

|u(x)� u(x+ y)|q

|y|n+tq
dxdy < 1.(2.4)

Our main result is that bounded viscosity solutions to (2) with f bounded are locally
Hölder continuous, as stated in Theorem ?? below. For the natural definition of viscosity
solutions to nonlocal double phase equations, we refer to forthcoming Section 3.

Theorem 1.
Let p, q > 1 be such that 1  q/p  min

�
s
t , 1 + s

 
, and let f be in L1(B2). Assume that the

modulating coefficient a is measurable such that 0  a(x, y)  M for a. e. (x, y) 2 Rn⇥Rn.
If u is a bounded viscosity solution to

Lu = f in B2,

then u 2 C0,�(B1) for some � = �(n, p, q, s, t,M,⇤, kukL1 , kfkL1) 2 (0, 1).

where data := n, p, q, s, t,M,⇤, kukL1(Rn), kfkL1(B2).
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HÖLDER REGULARITY
FOR NONLOCAL DOUBLE PHASE EQUATIONS

CRISTIANA DE FILIPPIS AND GIAMPIERO PALATUCCI

Abstract. We prove some regularity estimates for viscosity solutions to
a class of possible degenerate and singular integro-differential equations
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Our main result is the following

Theorem [De Filippis-Palatucci, J. Differential Equations 2019]

10 CRISTIANA DE FILIPPIS AND GIAMPIERO PALATUCCI

Theorem 1.
Let p, q > 1 be such that

p >
1

1� s
if p < 2, q >

1

1� t
,

and

1  q/p  min

⇢
s

t
, 1 + s

�
,

and let f be in L1(B2).
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where data := n, p, q, s, t,M,⇤, kukL1(Rn), kfkL1(B2).

Remark 1. As mentioned in the introduction, in the local case, the sharp
C1,�-regularity result by Colombo and Mingione is strictly related to the effect
of the Lavrentiev phenomenon, which can be avoided in the “a priori bounded”
case by assuming 1  q/p  1+↵/p, ↵ being the Hölder exponent of a(·). In
clear accordance, the range of validity of our result in (2.2) is precisely given by
1  q/p  min{s/t, 1+ s}, being informally ↵ = 0 here. Notice also that such
a bound can be improved when considering homogeneous equations; i. e., when
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8
><

>:

q >
1� ↵

1� t
if q � 2,

q >
1

1� t
if q < 2;

see Lemma 6 in the appendix. This is consistent with the more complex struc-
ture of nonlocal double phase equations with respect to that of pure p/p(x)-
fractional equations.

Remark 3. It is worth noticing that the estimates obtained in the present
paper are not uniform with respect to the differentiability exponents s and
t as they approach 1. This is consistent with the result in the local case.
Otherwise, Theorem ?? would have implied a very general Hölder continuity
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HÖLDER REGULARITY FOR NONLOCAL DOUBLE PHASE EQUATIONS 5

• local vs nonlocal: in the local case, regularity results for bounded weak
solutions are achieved provided that 1  q/p  1 + ↵, with a 2 C0,↵.
In the nonlocal case, assuming only a(·) 2 L1, we have 1  q/p  min

�
s
t , 1 + s

 
.

• nonlocal nonlinear nonstandard: The nonlocal equation inherits both
the difficulties newly arising from the double phase problems and those natu-
rally arising from the fractional integro-differential operators.

• To our knowledge, this is the very first regularity result for solutions
to nonlocal double phase equations. Even in the very special case when
s = t and p = q, no related results involving a modulating coefficient could
be found in the literature. It is worth mentioning the fine Hölder estimates
in a relevant paper by Kassmann, Rang and Schwab [Indiana J. 2014], for
elliptic integro-differential operators with kernels satisfying lower bounds on
conic subsets, thus strongly directionally dependent.
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In addition, if we assume that a(·) 2 C0,↵, we have 1  q/p  1 + c(↵, s, t),
with c � ↵.
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Definition 1.
Let ⌦ ⇢ Rn

be an open subset and L be the nonlocal double phase functional.

An upper semicontinuous function u 2 L1
loc(⌦) is a subsolution of L(·) = C in

⌦, and we write

“u is such that L(u)  C in ⌦ in the viscosity sense„

if the following statement holds: whenever x0 2 ⌦ and ' 2 C2(B%(x0)) for

some % > 0 are so that

'(x0) = u(x0), '(x) � u(x) for all x 2 B%(x0) b ⌦,

then we have L'%(x0)  C, where

'% :=

(
' in B%(x0)

u in Rn \B%(x0).

A viscosity supersolution is defined in an analogous fashion, and a viscosity

solution is a function which is both a subsolution and a supersolution.

As customary, in the definition above, we denoted by B⇢ = B⇢(x0) the ball
of radius ⇢ centered in x0. We will keep this notation throughout the rest of
the paper. In the proposition below, we show that as soon as we can touch a
viscosity subsolution to (4.2) with a C2-function, then it behaves as a classical
subsolution. The proof will extend to the double phase problems a by-now
classical approach, as firstly seen in [9] for fully nonlinear integro-differential
operators.

By extending to the double phase problems a by-now classical approach,
as firstly seen in Caffarelli-Silvestre [CPAM 2009] for fully nonlinear integro-
differential operators, one can show the following

Proposition 1.
Suppose that Lu  C in B1 in the viscosity sense. If ' 2 C2(B%(x0)) is such

that

'(x0) = u(x0), '(x) � u(x) in B%(x0) b B1,

for some 0 < % < 1, then Lu is defined in the pointwise sense at x0 and

Lu(x0)  C.

Proof. For 0 < %0  %, set

'%0 :=

(
' in B%0(x0)

u in Rn \B%0(x0).

Since u is a viscosity subsolution in the sense of Definition 1, then

L'%0(x0)  C.(3.1)

The proof will now follows that of the analogous result for the p-Laplace equa-
tion in [26], which extends to the nonlinear case the original proof by Caffarelli
and Silvestre in [9, Lemma 3.3]. Clearly, we have to take into account the
competition between the nonlocal kernels modulated by the coefficient a(·, ·),

Nonlocal viscosity solutions

10

A viscosity supersolution is defined in an analogous fashion,  
and a viscosity solution is a function which is both a subsolution and a 
supersolution.
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Proof of the Hölder continuity result

HÖLDER REGULARITY FOR NONLOCAL DOUBLE PHASE EQUATIONS 5

Basically we extend the the approach of Silvestre in Indiana J. (2006), where he shows the Hölder
continuity of fractional harmonic functions, via a purely analytical proof which goes bak to De
Giorgi.
Not for free, because of the nonstandard (p, q)-growth, and the zero set of a(·, ·).

Skecth of the proof (be aware: lots of cheating)
For � > 0, let L̃ = L̃� be a suitable scaling of our functional, and let ' be any radial map which

is C2-regular, vanishes outside B1, and it is non-increasing along rays from the origin.
Step 1 (controlling the energy of smooth maps).

8" > 0 9 2 (0, 1/2] such that L̃' . "�/q�1,
which can be check by computations and usual fractional estimates

Step 2 (refining).

If u is such that |B1 \ {u(x) < 0}| > 0 and

8
<

:
L̃u  � in B1

u  1 in B1,
then u  1�  in B1/2,

which can be proven by working on the function u+ ' thanks to Step 1.
Step 3 (iterating).

Let ũ :=

✓
1

kukL1+(kfkL1(B2)
/�)1/(p�1)

◆
u. We have osc ũ < 1 and L̃ũ = f̃ , for a suitable f̃ .

By suitably choosing " and � in the previous steps, we can start an iteration, to get

osc
B%(x0)

u  c(data)
✓
kukL1(Rn) + kfk

1
p�1

L1(B2)

◆
%� ,

for some � = �(data) 2 (0, 1), which implies, by covering, u 2 C0,�(B1), as desired. ⇤
For what concerns our approach to attack the problem, we extend that in the by-now classical

work by Silvestre in [36], where the author provides a surprisingly clean and purely analytical proof
of Hölder continuity for harmonic functions with respect to a class of integro-differential equations
like the fractional Laplace with coefficients. The approach developed by Silvestre also includes the
case of variable orders, and it has been proven to be very feasible to attack several problems in the
recent nonlocal theory, even in the case of the p-fractional Laplace equation, as seen in the recent
paper by Lindgren [26]. Clearly, the mentioned approach cannot be plainly applied to the operator
in (1.3) because our class of operators lives in the nonstandard (p, q)-growth setting, and, even
worst, we have to take care of the novelty given by the presence of the modulating coefficient a(·, ·).
In addition, it is worth mentioning that such non-uniform ellipticity together with the interplay
of the two differentiability orders via the modulating coefficient a will preclude the natural scaling
properties of pure fractional Laplace operators. In this respect, the aforementioned proof of the
Hölder regularity for solutions to the p-fractional Laplace equation via the approach by Silvestre is
applicable with no substantial modifications to the inhomogeneous case with a bounded datum f ;
see Remark 4.3 in [36] and Lemma 1 in [26]. On the contrary, the nonlocal double phase equations
treated here will require further efforts. Precisely, in order to carefully accomodate the presence
of the datum f , we need to take into account an appropriate analysis of the scaling effects on the
double phase equations, which will influence the involved kernels and the modulating coefficient as
well. We refer in particular to the detailed computations about such a nontrivial extension in the
forthcoming proofs of Proposition 2 and Lemma 1; see also the appendix. Finally, the wide range
of integrability we are considering here will force us to work in three different ranges depending on
the interaction between the exponents q � p, which can vary from singular to degenerate cases.
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Let ũ :=

✓
1

kukL1+(kfkL1(B2)
/�)1/(p�1)

◆
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Let ũ :=

✓
1

kukL1+(kfkL1(B2)
/�)1/(p�1)

◆
u. We have osc ũ < 1 and L̃ũ = f̃ , for a suitable f̃ .

By suitably choosing " and � in the previous steps, we can start an iteration, to get
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for some � = �(data) 2 (0, 1), which implies, by covering, u 2 C0,�(B1), as desired. ⇤
For what concerns our approach to attack the problem, we extend that in the by-now classical

work by Silvestre in [36], where the author provides a surprisingly clean and purely analytical proof
of Hölder continuity for harmonic functions with respect to a class of integro-differential equations
like the fractional Laplace with coefficients. The approach developed by Silvestre also includes the
case of variable orders, and it has been proven to be very feasible to attack several problems in the
recent nonlocal theory, even in the case of the p-fractional Laplace equation, as seen in the recent
paper by Lindgren [26]. Clearly, the mentioned approach cannot be plainly applied to the operator
in (1.3) because our class of operators lives in the nonstandard (p, q)-growth setting, and, even
worst, we have to take care of the novelty given by the presence of the modulating coefficient a(·, ·).
In addition, it is worth mentioning that such non-uniform ellipticity together with the interplay
of the two differentiability orders via the modulating coefficient a will preclude the natural scaling
properties of pure fractional Laplace operators. In this respect, the aforementioned proof of the
Hölder regularity for solutions to the p-fractional Laplace equation via the approach by Silvestre is
applicable with no substantial modifications to the inhomogeneous case with a bounded datum f ;
see Remark 4.3 in [36] and Lemma 1 in [26]. On the contrary, the nonlocal double phase equations
treated here will require further efforts. Precisely, in order to carefully accomodate the presence
of the datum f , we need to take into account an appropriate analysis of the scaling effects on the
double phase equations, which will influence the involved kernels and the modulating coefficient as
well. We refer in particular to the detailed computations about such a nontrivial extension in the
forthcoming proofs of Proposition 2 and Lemma 1; see also the appendix. Finally, the wide range
of integrability we are considering here will force us to work in three different ranges depending on
the interaction between the exponents q � p, which can vary from singular to degenerate cases.
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u. We have osc ũ < 1 and L̃ũ = f̃ , for a suitable f̃ .

By suitably choosing " and � in the previous steps, we can start an iteration, to get

osc
B%(x0)

u  c(data)
✓
kukL1(Rn) + kfk

1
p�1

L1(B2)

◆
%� ,

for some � = �(data) 2 (0, 1), which implies, by covering, u 2 C0,�(B1), as desired. ⇤
For what concerns our approach to attack the problem, we extend that in the by-now classical

work by Silvestre in [36], where the author provides a surprisingly clean and purely analytical proof
of Hölder continuity for harmonic functions with respect to a class of integro-differential equations
like the fractional Laplace with coefficients. The approach developed by Silvestre also includes the
case of variable orders, and it has been proven to be very feasible to attack several problems in the
recent nonlocal theory, even in the case of the p-fractional Laplace equation, as seen in the recent
paper by Lindgren [26]. Clearly, the mentioned approach cannot be plainly applied to the operator
in (1.3) because our class of operators lives in the nonstandard (p, q)-growth setting, and, even
worst, we have to take care of the novelty given by the presence of the modulating coefficient a(·, ·).
In addition, it is worth mentioning that such non-uniform ellipticity together with the interplay
of the two differentiability orders via the modulating coefficient a will preclude the natural scaling
properties of pure fractional Laplace operators. In this respect, the aforementioned proof of the
Hölder regularity for solutions to the p-fractional Laplace equation via the approach by Silvestre is
applicable with no substantial modifications to the inhomogeneous case with a bounded datum f ;
see Remark 4.3 in [36] and Lemma 1 in [26]. On the contrary, the nonlocal double phase equations
treated here will require further efforts. Precisely, in order to carefully accomodate the presence
of the datum f , we need to take into account an appropriate analysis of the scaling effects on the
double phase equations, which will influence the involved kernels and the modulating coefficient as
well. We refer in particular to the detailed computations about such a nontrivial extension in the
forthcoming proofs of Proposition 2 and Lemma 1; see also the appendix. Finally, the wide range
of integrability we are considering here will force us to work in three different ranges depending on
the interaction between the exponents q � p, which can vary from singular to degenerate cases.

HÖLDER REGULARITY FOR NONLOCAL DOUBLE PHASE EQUATIONS 5

Basically we extend the the approach of Silvestre in Indiana J. (2006), where he shows the Hölder
continuity of fractional harmonic functions, via a purely analytical proof which goes bak to De
Giorgi.
Not for free, because of the nonstandard (p, q)-growth, and the zero set of a(·, ·).

Sketch of the proof (be aware: lots of cheating)
For � > 0, let L̃ = L̃� be a suitable scaling of our functional, and let ' be any radial map which

is C2-regular, vanishes outside B1, and it is non-increasing along rays from the origin.
Step 1 (controlling the energy of smooth maps).

8" > 0 9 2 (0, 1/2] such that L̃' . "�/q�1,
which can be check by computations and usual fractional estimates

Step 2 (refining).

If u is such that |B1 \ {u(x) < 0}| > 0 and

8
<

:
L̃u  � in B1

u  1 in B1,
then u  1�  in B1/2,

which can be proven by working on the function u+ ' thanks to Step 1.
Step 3 (iterating).

Let ũ :=
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Let u 2 L1(Rn) be a viscosity solution to Lu = f .
We rescale and blow u around x0 2 B1 as follows. For �, µ > 0 and x 2 B1, we define the map

u(�)µ,x0
(x) := �u(µx+ x0).

Such a function satisfies
L̂u(�)µ,x0

(x) := f̂(x) in B1,

where

L̂v(x) :=

Z

Rn
|v(x)� v(x+ y)|p�2(v(x)� v(x+ y))K̂sp(x, y) dy

+

Z

Rn
â(x, y)|v(x)� v(x+ y)|q�2(v(x)� v(x+ y))K̂tq(x, y) dy

and

f̂(x) := �p�1µspf(µx+ x0).

The modulating coefficient and the kernels appearing above are defined as

â(x, y) := �p�qµsp�tqa(µx+ x0, µy)

and 8
<

:
K̂sp(x, y) := µn+spKsp(µx+ x0, µy)

K̂tq(x, y) := µn+tqKtq(µx+ x0, µy)
,

respectively.
From (5.15), it immediately follows that K̂sp and K̂tq satisfy (2). Moreover, (5.14) yields (2.3) via

replacing M with M̂ := �p�qµsp�tqM and, by (5.13) it follows that kf̂kL1(B1)  �p�1µsp�tqkfkL1(B1).

5.4. Some useful inequalities. We report some elementary algebraic inequalities whose proofs are
essentially contained in the Appendix in [26]; see in particular Lemma 3 and Lemma 4 there. We
refer also to Section 2 in [22] where similar inequalities do appear. All of them are very useful in
estimating the p-fractional Sobolev seminorms, and they were needed in the whole paper. For the
sake of completeness, here below we address the plain modifications in order to extend them to the
fractional (p, q)-growth case.

Lemma 2. Let r � 2, r 2 {p, q}. Then
���|a+ b|r�2(a+ b)� |a|r�2a

���  (r � 1)|b|(|a|+ |b|)r�2,

for all a, b 2 R.

Proof. The proof is contained in [26, Lemma 2]. ⇤
Lemma 3. Let q � p � 2 and let a, b 2 R such that a+ b � 0. Then, for r 2 {p, q} there holds

|a+ b|r�2(a+ b)  2q�2(|a|r�2a+ |b|r�2b).

Proof. Firstly, notice that, a+b � 0 implies |a|r�2a+|b|r�2b � 0 and, by homogeneity, the statement
is equivalent to |1 + ⌧ |r�2(1 + ⌧)  2r�2(1 + |⌧ |r�2⌧) with ⌧ � �1 and r 2 {p, q}. For this, it will

suffice to study the asymptotics of the function ⌧ 7! fr(⌧) :=
|1 + ⌧ |r�2(1 + ⌧)

1 + |⌧ |r�2⌧
for ⌧ � �1. It is

easy to check that fr(⌧)  2r�2  2q�2, and this will give the desired inequality. ⇤

HÖLDER REGULARITY FOR NONLOCAL DOUBLE PHASE EQUATIONS 29

Let u 2 L1(Rn) be a viscosity solution to Lu = f .
We rescale and blow u around x0 2 B1 as follows. For �, µ > 0 and x 2 B1, we define the map

u(�)µ,x0
(x) := �u(µx+ x0).

Such a function satisfies
L̂u(�)µ,x0

(x) := f̂(x) in B1,

where

L̂v(x) :=

Z

Rn
|v(x)� v(x+ y)|p�2(v(x)� v(x+ y))K̂sp(x, y) dy

+

Z

Rn
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Related open problems
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•Whether or not, and under which assumptions on the structural quantities, the viscosity 
solutions to nonlocal double phase equations are indeed fractional harmonic 
functions and/or weak solutions, and vice versa (see, e. g. [Korvempaa-Kuusi-Lindgren, 
JMPA 2019] for the fractional p-Laplace equation).
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solutions to nonlocal double phase equations are indeed fractional harmonic 
functions and/or weak solutions, and vice versa (see, e. g. [Korvempaa-Kuusi-Lindgren, 
JMPA 2019] for the fractional p-Laplace equation).

•In the same spirit of Baroni-Colombo-Mingione [Nonlinear Anal. 2015, Calc.Var. 
PDE 2018], one would expect higher differentiability and regularity results for 
the bounded solutions to nonlocal double phase equations (see, e. g., Brasco-
Lindgren-Schikorra [Adv. Math. 2018] for the fractional p-Laplace equation). 
First relevant results for bounded weak solutions, for the pure fractional double-
phase equations when q and p are greater or equal than 2, by Mengesha-Scott 
[Preprint arXiv, December 2020].
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First relevant results for bounded weak solutions, for the pure fractional double-
phase equations when q and p are greater or equal than 2, by Mengesha-Scott 
[Preprint arXiv, December 2020].

•Harnack-type inequalities. Preliminary results for weak supersolutions have been 
proven in De Filippis-Palatucci [Preprint 2021], namely by dealing with the resulting 
error term as a right hand-side (a nonlocal tail), and proving local Boundedness, a 
Caccioppoli Inequality with tail, and a weak Harnack, in the same flavour of the 
works by Brasco, Chen, Kassmann, Kuusi, Iannizzotto, Lindgren, Silvestre, 
Squassina, et Al. (that is, in the spirit of the De Giorgi-Nash-Moser theory).
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•Both in the local and in the nonlocal double phase theory, nothing is known 
about the regularity  for  solutions to parabolic double phase equations.
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