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Introduction

The historical key problem

® et Q C R" be open,
® £ e C(RV*") satisfy standard growth assuptions — i.e., for p € (1,00)

|F(z)] < c(1+|z|7) for all z € RM*"

and consider, for ug € Wl"’(Q;RN), the problem
to minimise Z[u; Q] := / F(Du)dx over W},éP(Q;RN)
Q

® For the direct method in the Calculus of Variations, we require
(i) coerciveness.
(ii) sequential weak lower semicontinuity:

WEP(Q;RY) 5 uj — u = F[u; Q] < liminf F[u;; Q).
Jj—oo

Morrey’s Quasiconvexity

Call F: RV*" — R as above quasiconvex provided

F(z) < ][ F(z+ Dp)dx  forallz e RV e C(Q;RY).
Q




Introduction

The canonical setup

Aim: Partial regularity of (local) minima of integral functionals

V= /F(Dv) dx
subject to
(H1) F € C3(RV*") (smoothness)
(H2) |F(2)| £ ¢(1+|z|P) (growth bound)
(H3) F—1¢V, is QC (SWLSC + coercivity)

Metaprinciple

These assumptions not only guarantee existence of minima,

but also their partial regularity.

Many contributors: — among others Evans, Acerbi, Fusco, Pasarelli di Napoli,

Carozza, Mingione, Kristensen, Duzaar, Schmidt, Diening, Fuchs, Stroffolini ...
and many, many others



of -quasiconvexity

Differential conditions

® |n applications, variational problems often depend on differential opera-
tors of maps:

V!—>/ F(Av)dx,
Q

where, for V, W finite dimensional vector spaces and A;: V — W linear,

Av:=) Ay forviQ— V.
j=1

Example (The symmetric gradient)
V=R" W=RYJ Av:=¢(v) := 3(Du+ Du")

Example (The trace-free symmetric gradient)

V=R" W=RY" . Av:=c’(v):=¢e(uv) — idiv(v)E,

tf,sym?

~ Existence and regularity of minima?



o -quasiconvexity

The historical development

® Idea: Q=(0,1)", T: Q@ = RV " and curl(T)=0= T = Vu.
® General setup: V, W, Z finite dimensional vector spaces, and A, &/ are
differential operators

A=A, o= dd,
J=1 lae|=k
with Aj: V> W, &, W — Z.
® We say that 7 is an annihilator for A, and A is a potential for o if

v 2w 8 7 s exact for any £ € R"\ {0}.

® Based on Dacorogna (80s), Fonseca & Miiller defined

2/ -quasiconvexity

An integrand F: W — R is called .o7-quasiconvex provided
F(z)g/ F(z + ) dx
(0,1)"

holds for all z € W, ¢ € C*°(T"; W) with (¢))(,1)» = 0 and &/7) = 0.




o -quasiconvexity

Lower semicontinuity

Call & a constant-rank operator provided dim(%/[£](W)) does not depend
on £ € R"\ {0}.

Metatheorem a |3 Fonseca & Miiller SIAM '99

If F is o/-quasiconvex and of p-growth, the associated integral functional

V= /QF(V)dX

is weakly lower semicontinuous along sequences (v;) with </v; = 0.

i

Since '99 largerly preferred viewpoint: View gradients as curl-free fields
1
The above results yields the existence of minima for functionals depending on
Au (1). Is this the same?

i

Put differenty, does any reasonable ./ possess a potential A?



o -quasiconvexity

A paradigm shift: The Raita theorem

Theorem (Raita, Calc Var PDE '19)

Any constant rank operator 2/ has a potential A.

Upshot: The regularity theory for 2/-quasiconvex problems can be fully
reduced to that for functionals depending on Auw.
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A paradigm shift: The Raita theorem

Theorem (Raita, Calc Var PDE '19)

Any constant rank operator 2/ has a potential A.

Upshot: The regularity theory for 2/-quasiconvex problems can be fully
reduced to that for functionals depending on Auw.

Aim: Partial regularity of (local) minima u € X of integral functionals
vH/F(Av)dx

subject to

(H1) F € C*(W) (smoothness)

(H2) |F(2)|] S c(1+ |z|P) for all z € W (growth bound, 1 < p < o0)
(H3) F—1¢V,is &/-QC (SWLSC + coercivity)



o -quasiconvexity

Main theorem

Theorem (Conti & FXG, '20)
Let A be an elliptic differential operator of order one and F: W — R satisfy

(H1) F e C3(W),
(H2) |F(2)| S c(1 + |z|P) for all z € W (growth bound, 1 < p < o0),
(H3) F—1¢V, is o/-QC.

Then any local minimiser of the integral functional

v /F(Av)dx

is partially regular.

® higher order equally possible, here first order for simplicity
® completely resolves the matter of partial regularity.

® partial partial regularity for non-elliptic operators is not included here but

is currently investigated.



Coercivity and harmonic analysis

Elliptic differential operators

Ellipticity a I1a Spencer & Hormander
Call a differential operator A := ZJ'.’:I A;0; with Aj: V — W elliptic provided

Al¢] = Zngj: V- W is injective for all £ € R" \ {0}.

=i

® For the partial regularity as above, this is a necessary requirement: If A is
not elliptic, then

I eR"\ {0}3ve V\{0}: A[¢]v=0,
and we consider the plane waves w(x) := h({x,&))v.

~» crucial for the partial regularity.
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Elliptic differential operators

Ellipticity a I1a Spencer & Hormander
Call a differential operator A := ZJ'.’:I A;0; with Aj: V — W elliptic provided

Al¢] = Zngj: V- W is injective for all £ € R" \ {0}.

=i

® For the partial regularity as above, this is a necessary requirement: If A is
not elliptic, then

I eR"\ {0}3ve V\{0}: A[¢]v=0,
and we consider the plane waves w(x) := h({x,&))v.
~» crucial for the partial regularity.

® Partial regularity proofs are sometimes lengthy ...
...here we argue via reduction



Coercivity and harmonic analysis

A versus V — weighted Korn-type inequalities |

Theorem (Weighted Korn for elliptic operators)

Let 1 < p < oo and let A be an elliptic operator of order one. Then for any
w € Ap, where

we A & wa, = <y (]{pwdx) (]iwl’p/ dx)k1 < 00,

there exists ¢ = c(A, p, [w]a,) > 0 such that
||v“||L5,(R") < CHAUHLQ’,(JR")
holds for all u € CZ(R"; V).




Coercivity and harmonic analysis

A versus V — weighted Korn-type inequalities |

Theorem (Weighted Korn for elliptic operators)

Let 1 < p < oo and let A be an elliptic operator of order one. Then for any
w € Ap, where

we A & wa, = <y (]{pwdx) (]iwl’p/ dx)k1 < 00,

there exists ¢ = c(A, p, [w]a,) > 0 such that
||v“||L5,(R") < CHAUHLQ’,(JR")
holds for all u € CZ(R"; V).

® Write for u € C(R"; V) and j € {1,...,n}:

du =7 (&AL ALE) AT FTAu])
=m;(§)




Coercivity and harmonic analysis

A versus V — weighted Korn-type inequalities |

Theorem (Weighted Korn for elliptic operators)

Let 1 < p < oo and let A be an elliptic operator of order one. Then for any
w € Ap, where

we A & wa, = <y (]{pwdx) (]iwl’p/ dx)k1 < 00,

there exists ¢ = c(A, p, [w]a,) > 0 such that
||v“||L5,(R") < CHAUHLQ’,(JR")
holds for all u € CZ(R"; V).

® Write for u € C(R"; V) and j € {1,...,n}:

du =7 (&AL ALE) AT FTAu])
=m;(§)

— mj € C=(R"\ {0}; Z(W; V)) and is homogeneous of degree zero.
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A versus V — weighted Korn-type inequalities |

Theorem (Weighted Korn for elliptic operators)

Let 1 < p < oo and let A be an elliptic operator of order one. Then for any
w € Ap, where

we A & wa, = <y (]{pwdx) (]iwl’p/ dx)k1 < 00,

there exists ¢ = c(A, p, [w]a,) > 0 such that
||v“||L5,(R") < CHAUHLQ’,(JR")
holds for all u € CZ(R"; V).

® Write for u € C(R"; V) and j € {1,...,n}:

du =7 (&AL ALE) AT FTAu])
=m;(§)

— mj € C=(R"\ {0}; Z(W; V)) and is homogeneous of degree zero.

— Apply Theorem of Mihlin-H6rmander / Calder6n-Zygmund + sharp
weight bounds for such operators. ]



Coercivity and harmonic analysis

A versus V — weighted Korn-type inequalities Il

Let o: R>g — R>o be an N-function, i.e.,
® o is right-continuous, differentiable, convex, and

Iim@:O and lim @:oo

tN\O t— 00

® o is said to be A if ¢(2t) < cp(t) for all £ > 0.
® o is said to be Va if o™ (t) 1= sup,.q st — ¢(s) is Ao.



Coercivity and harmonic analysis

A versus V — weighted Korn-type inequalities Il

Let o: R>g — R>o be an N-function, i.e.,
®  is right-continuous, differentiable, convex, and

Iim@:O and lim @
t

tN\O t— 00

® o is said to be A if ¢(2t) < cp(t) for all £ > 0.
® o is said to be Va if o™ (t) 1= sup,.q st — ¢(s) is Ao.

Miracle of extrapolation — a |18 Rubio de Francia

Let 1 < p < 0. If for any w € A, there exists a constant ¢ = ¢(..., p, [w],) > 0
such that

/\f|”wdx§c/ lg|Pwdx  forall (f,g) € F.
R RN

Then for any N-function ¢: R>q — R>o of class Ay N V3 there exists
c(p, A2(v), Va(v)) > 0 such that

/Rnga(|f|)dx§c/R"<p(|g|)dx for all (f,g) € F.




Coercivity and harmonic analysis

A quick digression |

® Even for smooth €, ellipticity is not sufficient to yield the full Korn
estimate

1Dulli@ S (lullio@ + [Aulog)  forallue CE@ V). (%)
® (&) implies that
W4P(Q) = {v: [IVllLe) + [[AV]Iee) < 00} = WP (Q; V).

Peetre-Tartar Lemma

* (Xi [l - [Ix) Banach, (Xa, || - [[x,), (X3, | - [x;) normed spaces
® Ae Z(Xy,X2), and a compact B € Z(X1, X3),

® [Ixlbx = [[Ax[lx, + [ Bx[lx; for x € Xi.

— dim(ker(A)) < oo.

— () implies dim(ker(A)) < oo.



Coercivity and harmonic analysis

A digression |l

® By Smith '70, Kalamajska '94 and Breit, Diening & FXG '20:

dim(ker(A)) < co <= C-ellipticity of A
Call A C-elliptic provided
Al¢]: V +1V — W +iW s injective for all £ € C" \ {0}.
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Coercivity and harmonic analysis

A digression |l

® By Smith '70, Kalamajska '94 and Breit, Diening & FXG '20:

dim(ker(A)) < co <= C-ellipticity of A
Call A C-elliptic provided
Al¢]: V +1V — W +iW s injective for all £ € C" \ {0}.

Example (The trace-free symmetric gradient for n = 2)

The operator e°(u) := e(u) — 3 div(u)l2x2 is elliptic, but not C-elliptic:

| {31U1 = Oy
=

Cauchy-Riemann!
Oouy = —O1p

— WAP(Q) ~ WHP(Q; V) <= A is C-elliptic.
but: WEP(Q) = WEP(Q; V) <= A is elliptic, since

loc loc

/ |Dul? dx < / ID(pu)P dx < / |A(pu) P dx < / lu @ VplP + [pAul” dx.
B, Br Bg Br
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A digression Il

A not C-elliptic

1

A contains a copy of the two-dimensional ¢°

!

shift singularity in C ~ R? along {0} x R"~?
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RZ
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A contains a copy of the two-dimensional ¢°

!

shift singularity in C ~ R? along {0} x R"~?

A Rn—2




Coercivity and harmonic analysis

A digression Il

A not C-elliptic

1

A contains a copy of the two-dimensional ¢°

!

shift singularity in C ~ R? along {0} x R"~?

A Rn—2

u€ WHP(D x (=1,1)"7%) for 1< p <2, [,

ulds"t = +oo

—1,1)n—2 |



On the general proof

Proof outline

The essential cone and span of A

For a differential operator A, define

V®A£:=Z:£J-Ajv7 veV,EeR".

j=1
We then define the
® essential cone by ¥(A) :={v®s&: veV,EeR"}.
® essential span by Z(A) := span(¢(A)) C W.

Upshot: If N := dim(V), then Z(A) — RY*".
— upon identification, we may assume that W = Z(A) Cc RV*".
For F: W — R /-quasiconvex, now define
G(z) == F(Nu(2)),  zeR"",
with My RY*" — 2(A) such that Ma[Vv] = Av.



On the general proof

The case p > 2: Properties of G = F o[l

(H1') GeC¥if Fe C2
(H2") |G(2)] £ (14 |z|?) since F satisfies this estimate.
(H3") As a consequence of the p-strong .«7-quasiconvexity, with Q = (0, 1)",

y/(1 + 1z + [AeP) T |Ap]? dx < / F(z + Ap) — F(z)dx.
Q Q
Thus with ¢(t) := t* + 7,

/ D@ + | Dol dx < / Al + |Agl? dx
Q Q

5/QF(FIA(Z)JrAgo)fF(I'IA(Z))dXS/QG(erDgo)fG(z)dx
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The case p > 2: Properties of G = F o[l

(H1') GeC¥if Fe C2
(H2") |G(2)] £ (14 |z|?) since F satisfies this estimate.
(H3") As a consequence of the p-strong .«7-quasiconvexity, with Q = (0,1)",

y/(1 + 1z + [AeP) T |Ap]? dx < / F(z + Ap) — F(z)dx.
Q Q
Thus with ¢(t) := t* + 7,

/ D@ + | Dol dx < / Al + |Agl? dx
Q Q

5/QF(FIA(Z)JrAga)fF(I'IA(z))dXS/QG(erDgo)fG(z)dx

Anoteonl<p<?2

More intricate, hinges on Diening's shifted ¢-functions and

=2 -2
/ (1+ |z + |Del?) = |DylPdx S / (1+ [Na(2)P + |Dp?) T | D dx
Q Q

=N, (2)| (PP)




On the general proof

The case p > 2 — and comments on the general case

Theorem (Partial regularity a 18 Acerbi & Fusco)
If G € C3(R"*") satisfies (H1'), (H2') and

/ \D¢|2+|D¢|desc/ Gz + D) — 6(2)
0,1)" (0,1)"

holds for all z € RN*" and ¢ € C2°((0,1)"; R"), then any local minimiser
u € WLP(Q;RV) of the integral functional

v / G(Dv)dx

is partially regular.

— Since Wf})’cp = W,lof this concludes the proof in this growth regime. |

® For 1 < p < 2, invoke e.g. Carozza, Fusco & Mingione.



On the general proof

Some final comments

® Some results for (p, g)-growth, equally possible:

Theorem (Kristensen & FXG, to appear soon, generalising Schmidt '09)

Let1< p<q<min{-22, p+1} and let F € C*(R"*") be an integrand that
® s of g-growth: 0 < F(z) < c(1+ |z|9) for all z € RN*",
® js p-strongly quasiconvex, i.e., F — £V}, is quasiconvex.

Then any weak local minimiser of the Wllo’f—relaxed functional
S L () C (WA NWER) (i RY)
Flu,w] :=inf {h,riégf/w F(Du;) dx: U = 0 WP(w: RY)

is C*°-partially regular.

® As above: This theorem ’self-improves’ to a partial regularity result in the
A-framework.



Thank You! — & References

Many thanks for your attention!
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Thank You! — & References

Many thanks for your attention!
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