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The historical key problem

• Let Ω ⊂ Rn be open,

• F ∈ C(RN×n) satisfy standard growth assuptions – i.e., for p ∈ (1,∞)

|F (z)| ≤ c(1 + |z |p) for all z ∈ RN×n

and consider, for u0 ∈W1,p(Ω;RN), the problem

to minimise F [u; Ω] :=

ˆ
Ω

F (Du) dx over W1,p
u0

(Ω;RN)

• For the direct method in the Calculus of Variations, we require

(i) coerciveness.
(ii) sequential weak lower semicontinuity:

W 1,p
u0

(Ω;RN) 3 uj ⇀ u ⇒ F [u; Ω] ≤ lim inf
j→∞

F [uj ; Ω].

Morrey’s Quasiconvexity

Call F : RN×n → R as above quasiconvex provided

F (z) ≤
 

Ω

F (z + Dϕ) dx for all z ∈ RN×n, ϕ ∈ C∞c (Ω;RN).
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The canonical setup

Aim: Partial regularity of (local) minima of integral functionals

v 7→
ˆ

F (Dv) dx

subject to

(H1) F ∈ C2(RN×n) (smoothness)

(H2) |F (z)| . c(1 + |z |p) (growth bound)

(H3) F − `Vp is QC (SWLSC + coercivity)

Metaprinciple

These assumptions not only guarantee existence of minima,

but also their partial regularity.

Many contributors: – among others Evans, Acerbi, Fusco, Pasarelli di Napoli,

Carozza, Mingione, Kristensen, Duzaar, Schmidt, Diening, Fuchs, Stroffolini ...

and many, many others
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Differential conditions

• In applications, variational problems often depend on differential opera-
tors of maps:

v 7→
ˆ

Ω

F (Av) dx ,

where, for V ,W finite dimensional vector spaces and Aj : V →W linear,

Av :=
n∑

j=1

Aj∂jv for v : Ω→ V .

Example (The symmetric gradient)

V = Rn, W = Rn×n
sym, Av := ε(v) := 1

2
(Du + Du>)

Example (The trace-free symmetric gradient)

V = Rn, W = Rn×n
tf,sym, Av := εD(v) := ε(u)− 1

n
div(u)En

 Existence and regularity of minima?
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The historical development

• Idea: Q = (0, 1)n, T : Q → RN×n and curl(T ) = 0 ⇒ T = ∇u.

• General setup: V ,W ,Z finite dimensional vector spaces, and A, A are
differential operators

A =
n∑

j=1

Aj∂j , A =
∑
|α|=k

Aα∂
α,

with Aj : V →W , Aα : W → Z .

• We say that A is an annihilator for A, and A is a potential for A if

V
A[ξ]−→W

A [ξ]−→ Z is exact for any ξ ∈ Rn \ {0}.

• Based on Dacorogna (80s), Fonseca & Müller defined

A -quasiconvexity

An integrand F : W → R is called A -quasiconvex provided

F (z) ≤
ˆ

(0,1)n
F (z + ψ) dx

holds for all z ∈W , ψ ∈ C∞(Tn;W ) with (ψ)(0,1)n = 0 and A ψ = 0.
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Lower semicontinuity

Call A a constant-rank operator provided dim(A [ξ](W )) does not depend
on ξ ∈ Rn \ {0}.

Metatheorem a lá Fonseca & Müller SIAM ’99

If F is A -quasiconvex and of p-growth, the associated integral functional

v 7→
ˆ

Ω

F (v) dx

is weakly lower semicontinuous along sequences (vj) with A vj = 0.

�
Since ’99 largerly preferred viewpoint: View gradients as curl-free fields

�
The above results yields the existence of minima for functionals depending on

Au (!). Is this the same?

�
Put differenty, does any reasonable A possess a potential A?
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A paradigm shift: The Raita theorem

Theorem (Raita, Calc Var PDE ’19)

Any constant rank operator A has a potential A.

Upshot: The regularity theory for A -quasiconvex problems can be fully
reduced to that for functionals depending on Au.

Aim: Partial regularity of (local) minima u ∈ X of integral functionals

v 7→
ˆ

F (Av) dx

subject to

(H1) F ∈ C2(W ) (smoothness)

(H2) |F (z)| . c(1 + |z |p) for all z ∈W (growth bound, 1 < p <∞)

(H3) F − `Vp is A -QC (SWLSC + coercivity)
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Main theorem

Theorem (Conti & FXG, ’20)

Let A be an elliptic differential operator of order one and F : W → R satisfy

(H1) F ∈ C2(W ),

(H2) |F (z)| . c(1 + |z |p) for all z ∈W (growth bound, 1 < p <∞),

(H3) F − `Vp is A -QC.

Then any local minimiser of the integral functional

v 7→
ˆ

F (Av) dx

is partially regular.

• higher order equally possible, here first order for simplicity

• completely resolves the matter of partial regularity.

• partial partial regularity for non-elliptic operators is not included here but
is currently investigated.
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Elliptic differential operators

Ellipticity a lá Spencer & Hörmander

Call a differential operator A :=
∑n

j=1 Aj∂j with Aj : V →W elliptic provided

A[ξ] =
n∑

j=1

ξjAj : V →W is injective for all ξ ∈ Rn \ {0}.

• For the partial regularity as above, this is a necessary requirement: If A is
not elliptic, then

∃ξ ∈ Rn \ {0} ∃v ∈ V \ {0} : A[ξ]v = 0,

and we consider the plane waves w(x) := h(〈x , ξ〉)v .

 crucial for the partial regularity.

• Partial regularity proofs are sometimes lengthy ...
...here we argue via reduction
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A versus ∇ – weighted Korn-type inequalities I

Theorem (Weighted Korn for elliptic operators)

Let 1 < p <∞ and let A be an elliptic operator of order one. Then for any
ω ∈ Ap, where

ω ∈ Ap ⇔ [ω]Ap := sup
Q

(  
Q

ω dx
)(  

Q

ω1−p′ dx
)p−1

<∞,

there exists c = c(A, p, [ω]Ap ) > 0 such that

‖∇u‖L
p
ω(Rn) ≤ c‖Au‖L

p
ω(Rn)

holds for all u ∈ C∞c (Rn;V ).

• Write for u ∈ C∞c (Rn;V ) and j ∈ {1, ..., n}:

∂ju = cnF
−1
(
ξj(A[ξ]∗A[ξ])−1A[ξ]∗︸ ︷︷ ︸

=mj (ξ)

F [Au]
)

−→ mj ∈ C∞(Rn \ {0}; L (W ;V )) and is homogeneous of degree zero.

−→ Apply Theorem of Mihlin-Hörmander / Calderón-Zygmund + sharp
weight bounds for such operators. �
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−→ Apply Theorem of Mihlin-Hörmander / Calderón-Zygmund + sharp
weight bounds for such operators. �



Introduction A -quasiconvexity Coercivity and harmonic analysis On the general proof

A versus ∇ – weighted Korn-type inequalities I

Theorem (Weighted Korn for elliptic operators)

Let 1 < p <∞ and let A be an elliptic operator of order one. Then for any
ω ∈ Ap, where

ω ∈ Ap ⇔ [ω]Ap := sup
Q

(  
Q

ω dx
)(  

Q

ω1−p′ dx
)p−1

<∞,

there exists c = c(A, p, [ω]Ap ) > 0 such that

‖∇u‖L
p
ω(Rn) ≤ c‖Au‖L

p
ω(Rn)

holds for all u ∈ C∞c (Rn;V ).

• Write for u ∈ C∞c (Rn;V ) and j ∈ {1, ..., n}:

∂ju = cnF
−1
(
ξj(A[ξ]∗A[ξ])−1A[ξ]∗︸ ︷︷ ︸

=mj (ξ)

F [Au]
)

−→ mj ∈ C∞(Rn \ {0}; L (W ;V )) and is homogeneous of degree zero.
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A versus ∇ – weighted Korn-type inequalities II

Let ϕ : R≥0 → R≥0 be an N-function, i.e.,

• ϕ is right-continuous, differentiable, convex, and

lim
t↘0

ϕ(t)

t
= 0 and lim

t→∞

ϕ(t)

t
=∞.

• ϕ is said to be ∆2 if ϕ(2t) ≤ cϕ(t) for all t > 0.

• ϕ is said to be ∇2 if ϕ∗(t) := sups>0 st − ϕ(s) is ∆2.

Miracle of extrapolation – a lá Rubio de Francia

Let 1 < p <∞. If for any ω ∈ Ap there exists a constant c = c(..., p, [ω]p) > 0
such that ˆ

Rn

|f |pω dx ≤ c

ˆ
Rn

|g |pω dx for all (f , g) ∈ F .

Then for any N-function ϕ : R≥0 → R≥0 of class ∆2 ∩∇2 there exists
c(p,∆2(ϕ),∇2(ϕ)) > 0 such thatˆ

Rn

ϕ(|f |) dx ≤ c

ˆ
Rn

ϕ(|g |) dx for all (f , g) ∈ F .
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A quick digression I

• Even for smooth Ω, ellipticity is not sufficient to yield the full Korn
estimate

‖Du‖Lp(Ω) . (‖u‖Lp(Ω) + ‖Au‖Lp(Ω)) for all u ∈ C∞(Ω;V ). (♣)

• (♣) implies that

WA,p(Ω) := {v : ‖v‖Lp(Ω) + ‖Av‖Lp(Ω) <∞} h W1,p(Ω;V ).

Peetre-Tartar Lemma

• (X1, ‖ · ‖X1 ) Banach, (X2, ‖ · ‖X2 ), (X3, ‖ · ‖X3 ) normed spaces

• A ∈ L (X1,X2), and a compact B ∈ L (X1,X3),

• ‖x‖X1 ' ‖Ax‖X2 + ‖Bx‖X3 for x ∈ X1.

=⇒ dim(ker(A)) <∞.

−→ (♣) implies dim(ker(A)) <∞.
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A digression II

• By Smith ’70, Kalamajska ’94 and Breit, Diening & FXG ’20:

dim(ker(A)) <∞⇐⇒ C-ellipticity of A
Call A C-elliptic provided

A[ξ] : V + iV →W + iW is injective for all ξ ∈ Cn \ {0}.

Example (The trace-free symmetric gradient for n = 2)

The operator εD(u) := ε(u)− 1
2

div(u)I2×2 is elliptic, but not C-elliptic:

εD(u)
!

= 0 =⇒

{
∂1u1 = ∂2u2

∂2u1 = −∂1u2

Cauchy-Riemann!

−→ WA,p(Ω) 'W1,p(Ω;V ) ⇐⇒ A is C-elliptic.

but: WA,p
loc (Ω) = W1,p

loc (Ω;V ) ⇐⇒ A is elliptic, since

ˆ
Br

|Du|p dx ≤
ˆ

BR

|D(ρu)|p dx .
ˆ

BR

|A(ρu)|p dx .
ˆ

BR

|u ⊗A ∇ρ|p + |ρAu|p dx .
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A digression III

A not C-elliptic

A contains a copy of the two-dimensional εD

shift singularity in C ' R2 along {0} × Rn−2

•
•

(0, 0)

z 7→ 1
z−1

C ' R2

(1, 0)

•
• R2

∂D

Rn−2

u ∈WA,p(D× (−1, 1)n−2) for 1 ≤ p < 2,
´
∂D(0,1)×(−1,1)n−2 |u| dH n−1 = +∞
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Proof outline

The essential cone and span of A
For a differential operator A, define

v ⊗A ξ :=
n∑

j=1

ξjAjv , v ∈ V , ξ ∈ Rn.

We then define the

• essential cone by C (A) := {v ⊗A ξ : v ∈ V , ξ ∈ Rn}.
• essential span by R(A) := span(C (A)) ⊂W .

Upshot: If N := dim(V ), then R(A) ↪→ RN×n.

−→ upon identification, we may assume that W = R(A) ⊂ RN×n.

For F : W → R A -quasiconvex, now define

G(z) := F (ΠA(z)), z ∈ RN×n,

with ΠA : RN×n → R(A) such that ΠA[∇v ] = Av .
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The case p ≥ 2: Properties of G = F ◦ ΠA

(H1’) G ∈ C2 if F ∈ C2.

(H2’) |G(z)| . (1 + |z |p) since F satisfies this estimate.

(H3’) As a consequence of the p-strong A -quasiconvexity, with Q = (0, 1)n,

ν

ˆ
Q

(1 + |z |2 + |Aϕ|2)
p−2

2 |Aϕ|2 dx ≤
ˆ
Q

F (z + Aϕ)− F (z) dx .

Thus with φ(t) := t2 + tp,ˆ
Q

|Dϕ|2 + |Dϕ|p dx .
ˆ
Q

|Aϕ|2 + |Aϕ|p dx

.
ˆ
Q

F (ΠA(z) + Aϕ)− F (ΠA(z)) dx .
ˆ
Q

G(z + Dϕ)− G(z) dx

A note on 1 < p < 2

More intricate, hinges on Diening’s shifted φ-functions andˆ
Q

(1 + |z |2 + |Dϕ|2)
p−2

2 |Dϕ|2 dx .
ˆ
Q

(1 + |ΠA(z)|2 + |Dϕ|2)
p−2

2 |Dϕ|2︸ ︷︷ ︸
hφ|ΠA(z)|(Dϕ)

dx
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The case p ≥ 2 – and comments on the general case

Theorem (Partial regularity a lá Acerbi & Fusco)

If G ∈ C2(RN×n) satisfies (H1’), (H2’) andˆ
(0,1)n

|Dϕ|2 + |Dϕ|p dx ≤ c

ˆ
(0,1)n

G(z + Dϕ)− G(z)

holds for all z ∈ RN×n and ϕ ∈ C∞c ((0, 1)n;RN), then any local minimiser
u ∈W1,p

loc (Ω;RN) of the integral functional

v 7→
ˆ

G(Dv) dx

is partially regular.

−→ Since WA,p
loc = W1,p

loc , this concludes the proof in this growth regime. �

• For 1 < p < 2, invoke e.g. Carozza, Fusco & Mingione.
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Some final comments

• Some results for (p, q)-growth, equally possible:

Theorem (Kristensen & FXG, to appear soon, generalising Schmidt ’09)

Let 1 < p ≤ q < min{ np
n−1

, p + 1} and let F ∈ C∞(RN×n) be an integrand that

• is of q-growth: 0 ≤ F (z) ≤ c(1 + |z |q) for all z ∈ RN×n,

• is p-strongly quasiconvex, i.e., F − `Vp is quasiconvex.

Then any weak local minimiser of the W1,p
loc -relaxed functional

F [u, ω] := inf

{
lim inf
j→∞

ˆ
ω

F (Duj) dx :
(uj) ⊂ (W1,q

loc ∩W1,p)(ω;RN)
uj ⇀ u in W1,p(ω;RN)

}
is C∞-partially regular.

• As above: This theorem ’self-improves’ to a partial regularity result in the
A-framework.



Introduction A -quasiconvexity Coercivity and harmonic analysis On the general proof

Thank You! – & References

Many thanks for your attention!
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