Bounded weak solutions to elliptic PDE with data in Orlicz spaces

David V. Cruz-Uribe, OFS

University of Alabama

The Nonstandard Seminar

Acknowledgments

Joint work with Scott Rodney, Cape Breton University

Cruz-Uribe (UA)

Bounded weak solutions

November 23, 2020 2/33

Basic notation

Hereafter:

- Ω bounded, open, connected set in \mathbb{R}^n
- $Q = Q(x) n \times n$, positive semidefinite, measurable matrix function
- *v* a weight: non-negative, measurable function
- $Lip_0(\Omega)$ Lipschitz functions with compact support in Ω

Trudinger's theorem

Theorem (Trudinger, 1973)

4

Let $f \in L^q(\Omega)$, $q > \frac{n}{2}$, Q uniformly elliptic, and let u be a non-negative weak (sub)solution of

$$\begin{cases} -\operatorname{Div}(Q\nabla u) = f & x \in \Omega, \\ u = 0 & x \in \partial\Omega. \end{cases}$$

Then

$$\|\boldsymbol{u}\|_{L^{\infty}(\Omega)} \leqslant \boldsymbol{C}\|\boldsymbol{f}\|_{L^{q}(\Omega)}.$$

Trudinger's theorem

Theorem (Trudinger, 1973)

4

Let $f \in L^q(\Omega)$, $q > \frac{n}{2}$, Q uniformly elliptic, and let u be a non-negative weak (sub)solution of

$$\begin{cases} -\operatorname{Div}(Q\nabla u) = f & x \in \Omega, \\ u = 0 & x \in \partial\Omega. \end{cases}$$

Then

$$\|\boldsymbol{u}\|_{L^{\infty}(\Omega)} \leqslant \boldsymbol{C}\|\boldsymbol{f}\|_{L^{q}(\Omega)}.$$

The proof

Standard proof (e.g. Gilbarg & Trudinger) uses Moser iteration.

Critical exponent $\frac{n}{2} = \left(\frac{n}{n-2}\right)'$ is dual of the "gain" in classical Sobolev inequality.

The proof

Standard proof (e.g. Gilbarg & Trudinger) uses Moser iteration.

Critical exponent $\frac{n}{2} = \left(\frac{n}{n-2}\right)'$ is dual of the "gain" in classical Sobolev inequality.

Sharpness

Theorem is sharp: take Q = I and let $q = \frac{n}{2}$. Then

$$f(x) = |x|^{-2} \log(e + |x|^{-1})^{-1} \in L^q(B(0, 1))$$

but solution *u* unbounded at origin.

- Sharper version of Trudinger's theorem in scale of Orlicz spaces
- Improve size of bound
- Extend to degenerate elliptic operators

- Sharper version of Trudinger's theorem in scale of Orlicz spaces
- Improve size of bound
- Extend to degenerate elliptic operators

- Sharper version of Trudinger's theorem in scale of Orlicz spaces
- Improve size of bound
- Extend to degenerate elliptic operators

- Sharper version of Trudinger's theorem in scale of Orlicz spaces
- Improve size of bound
- Extend to degenerate elliptic operators

First generalization

Theorem (DCU-SR 2020, Cianchi 1999)

Let $f \in L^{A}(\Omega)$, $A(t) = t^{\frac{n}{2}} \log(e + t)^{q}$, $q > \frac{n}{2}$, Q uniformly elliptic, and let u be a non-negative weak (sub)solution of

$$\begin{cases} -\operatorname{Div}(Q\nabla u) = f & x \in \Omega, \\ u = 0 & x \in \partial\Omega. \end{cases}$$

Then

$$\|u\|_{L^{\infty}(\Omega)} \leq C \|f\|_{L^{A}(\Omega)}.$$

First generalization

Theorem (DCU-SR 2020, Cianchi 1999)

Let $f \in L^{A}(\Omega)$, $A(t) = t^{\frac{n}{2}} \log(e + t)^{q}$, $q > \frac{n}{2}$, Q uniformly elliptic, and let u be a non-negative weak (sub)solution of

$$\begin{cases} -\operatorname{Div}(Q\nabla u) = f \quad x \in \Omega, \\ u = 0 \qquad x \in \partial\Omega. \end{cases}$$

Then

$$\|\boldsymbol{u}\|_{L^{\infty}(\Omega)} \leq \boldsymbol{C}\|\boldsymbol{f}\|_{L^{A}(\Omega)}.$$

Result almost sharp

Above counter-example satisfies $f \in L^A(B(0, 1))$ for $q < \frac{n}{2} - 1$.

Cianchi (1999) showed this bound is sharp.

So our proof has a gap.

Result almost sharp

Above counter-example satisfies $f \in L^A(B(0,1))$ for $q < \frac{n}{2} - 1$.

Cianchi (1999) showed this bound is sharp.

So our proof has a gap.

Result almost sharp

Above counter-example satisfies $f \in L^A(B(0,1))$ for $q < \frac{n}{2} - 1$.

Cianchi (1999) showed this bound is sharp.

So our proof has a gap.

Second generalization

Theorem (DCU-SR 2020, X. Xu 2011)

Let $f \in L^{A}(\Omega)$, $A(t) = t^{\frac{n}{2}} \log(e + t)^{q}$, $q > \frac{n}{2}$, Q uniformly elliptic, and let u be a non-negative weak (sub)solution of

$$\begin{cases} -\operatorname{Div}(Q\nabla u) = f & x \in \Omega, \\ u = 0 & x \in \partial\Omega. \end{cases}$$

Then

$$\|u\|_{L^{\infty}(\Omega)} \leq C \|f\|_{L^{\frac{n}{2}}(\Omega)} \left(1 + \log\left(1 + \frac{\|f\|_{L^{A}(\Omega)}}{\|f\|_{L^{\frac{n}{2}}(\Omega)}}\right)\right)$$

Second generalization

Theorem (DCU-SR 2020, X. Xu 2011)

Let $f \in L^{A}(\Omega)$, $A(t) = t^{\frac{n}{2}} \log(e + t)^{q}$, $q > \frac{n}{2}$, Q uniformly elliptic, and let u be a non-negative weak (sub)solution of

$$\begin{cases} -\operatorname{Div}(Q\nabla u) = f & x \in \Omega, \\ u = 0 & x \in \partial\Omega. \end{cases}$$

Then

$$\|\boldsymbol{u}\|_{L^{\infty}(\Omega)} \leqslant \boldsymbol{C}\|\boldsymbol{f}\|_{L^{\frac{n}{2}}(\Omega)} \left(1 + \log\left(1 + \frac{\|\boldsymbol{f}\|_{L^{A}(\Omega)}}{\|\boldsymbol{f}\|_{L^{\frac{n}{2}}(\Omega)}}\right)\right)$$

Entropy bump

The quantity

 $\frac{\|f\|_{L^A(\Omega)}}{\|f\|_{L^{\frac{n}{2}}(\Omega)}}$

is an "*entropy bump*" (Treil & Volberg); measures how close/far f is from an $L^{\frac{n}{2}}$ function.

General PDE

We consider the Dirichlet problem

$$\begin{cases} -v^{-1}\operatorname{Div}(Q\nabla u) = f & x \in \Omega, \\ u = 0 & x \in \partial\Omega. \end{cases}$$

Weight v "cancels" bad behavior of Q. First explicit in

$$L_w u = -w^{-1} \operatorname{Div}(wQ\nabla u)$$

(DCU-Rios 2008)

General PDE

We consider the Dirichlet problem

$$\begin{cases} -v^{-1}\operatorname{Div}(Q\nabla u) = f & x \in \Omega, \\ u = 0 & x \in \partial\Omega. \end{cases}$$

Weight v "cancels" bad behavior of Q. First explicit in

$$L_w u = -w^{-1} \operatorname{Div}(wQ \nabla u)$$

(DCU-Rios 2008)

- $\boldsymbol{v} \in L^1(\Omega)$
- $|Q(x)|_{op} = \sup\{|Q(x)\xi| : \xi \in \mathbb{R}^n, |\xi| = 1\} \leq kv(x)$
- for all $\psi \in Lip_0(\Omega)$

$$\left(\int_{\Omega} |\psi(x)|^{2\sigma} v(x) dx\right)^{\frac{1}{2\sigma}} \leqslant C_0 \left(\int_{\Omega} \left|\sqrt{Q(x)}\nabla\psi(x)\right|^2 dx\right)^{\frac{1}{2}}$$

• $\boldsymbol{v} \in L^1(\Omega)$

- $|Q(x)|_{op} = \sup\{|Q(x)\xi| : \xi \in \mathbb{R}^n, |\xi| = 1\} \leq kv(x)$
- for all $\psi \in Lip_0(\Omega)$

$$\left(\int_{\Omega} |\psi(x)|^{2\sigma} v(x) dx\right)^{\frac{1}{2\sigma}} \leq C_0 \left(\int_{\Omega} \left|\sqrt{Q(x)}\nabla\psi(x)\right|^2 dx\right)^{\frac{1}{2\sigma}}$$

- $v \in L^1(\Omega)$
- $|Q(x)|_{op} = \sup\{|Q(x)\xi| : \xi \in \mathbb{R}^n, |\xi| = 1\} \leq kv(x)$
- for all $\psi \in Lip_0(\Omega)$

$$\left(\int_{\Omega} |\psi(x)|^{2\sigma} v(x) dx\right)^{\frac{1}{2\sigma}} \leq C_0 \left(\int_{\Omega} \left|\sqrt{Q(x)}\nabla\psi(x)\right|^2 dx\right)^{\frac{1}{2}}$$

- $v \in L^1(\Omega)$
- $|Q(x)|_{op} = \sup\{|Q(x)\xi| : \xi \in \mathbb{R}^n, |\xi| = 1\} \leq kv(x)$
- for all $\psi \in Lip_0(\Omega)$

$$\left(\int_{\Omega} |\psi(x)|^{2\sigma} v(x) dx\right)^{\frac{1}{2\sigma}} \leqslant C_0 \left(\int_{\Omega} \left|\sqrt{Q(x)} \nabla \psi(x)\right|^2 dx\right)^{\frac{1}{2}}$$

Muckenhoupt weights

Fabes, Kenig, Serapioni 1982:

$$[v]_{A_2} = \sup_{B} \frac{1}{|B|} \int_{B} v(x) \, dx \frac{1}{|B|} \int_{B} v(x)^{-1} \, dx < \infty,$$

 $\lambda v(x) |\xi|^2 \leq \langle Q(x)\xi, \xi \rangle \leq \Lambda v(x) |\xi|^2$

Muckenhoupt weights

Fabes, Kenig, Serapioni 1982:

$$[\mathbf{v}]_{A_2} = \sup_{B} \frac{1}{|B|} \int_{B} \mathbf{v}(x) \, dx \frac{1}{|B|} \int_{B} \mathbf{v}(x)^{-1} \, dx < \infty,$$

 $\lambda \mathbf{v}(\mathbf{x}) |\xi|^2 \leq \langle \mathbf{Q}(\mathbf{x})\xi, \xi \rangle \leq \Lambda \mathbf{v}(\mathbf{x}) |\xi|^2$

p-admissible pairs

Chanillo, Wheeden 1985:

 $u(x) \leqslant v(x)$ a.e., v doubling, $u \in A_2$

there exists $\sigma > 1$ such that for $B_1 \subset B_2 \subset \Omega$,

$$\frac{r(B_1)}{r(B_2)} \left(\frac{v(B_1)}{v(B_2)}\right)^{\frac{1}{2\sigma}} \leqslant C\left(\frac{u(B_1)}{u(B_2)}\right)^{\frac{1}{2}}$$

$|u(x)|\xi|^2 \leq \langle Q(x)\xi,\xi\rangle \leq |v(x)|\xi|^2$

p-admissible pairs

Chanillo, Wheeden 1985:

 $u(x) \leqslant v(x)$ a.e., v doubling, $u \in A_2$

there exists $\sigma > 1$ such that for $B_1 \subset B_2 \subset \Omega$,

$$\frac{r(B_1)}{r(B_2)} \left(\frac{v(B_1)}{v(B_2)}\right)^{\frac{1}{2\sigma}} \leqslant C \left(\frac{u(B_1)}{u(B_2)}\right)^{\frac{1}{2}}$$

$$|u(x)|\xi|^2 \leq \langle Q(x)\xi,\xi\rangle \leq |v(x)|\xi|^2$$

Solution space

$QH_0^1(v; \Omega)$ is the closure of $Lip_0(\Omega)$ with respect to norm

$$\begin{split} \|\psi\|_{QH_{0}^{1}(\nu;\Omega)} &= \|\psi\|_{L^{2}(\nu;\Omega)} + \|\nabla\psi\|_{L^{2}_{Q}(\Omega)} \\ &= \left(\int_{\Omega} |\psi|^{2}\nu \, dx\right)^{\frac{1}{2}} + \left(\int_{\Omega} |\sqrt{Q(x)}\nabla\psi|^{2} \, dx\right)^{\frac{1}{2}} \end{split}$$

Each element of $QH_0^1(v; \Omega)$ is equivalence class of Cauchy sequences.

Associate to each a unique pair $\mathbf{u} = (u, \mathbf{g})$ converging in $L^2(v; \Omega) \times L^2_Q(\Omega)$.

Define $\nabla u = \mathbf{g}$ to be weak gradient of u.

Each element of $QH_0^1(v; \Omega)$ is equivalence class of Cauchy sequences.

Associate to each a unique pair $\mathbf{u} = (u, \mathbf{g})$ converging in $L^2(v; \Omega) \times L^2_Q(\Omega)$.

Define $\nabla u = \mathbf{g}$ to be weak gradient of u.

Each element of $QH_0^1(v; \Omega)$ is equivalence class of Cauchy sequences.

Associate to each a unique pair $\mathbf{u} = (u, \mathbf{g})$ converging in $L^2(v; \Omega) \times L^2_Q(\Omega)$.

Define $\nabla u = \mathbf{g}$ to be weak gradient of u.

Each element of $QH_0^1(v; \Omega)$ is equivalence class of Cauchy sequences.

Associate to each a unique pair $\mathbf{u} = (u, \mathbf{g})$ converging in $L^2(v; \Omega) \times L^2_Q(\Omega)$.

Define $\nabla u = \mathbf{g}$ to be weak gradient of u.

Weak solutions

$$\begin{split} \mathbf{u} &= (u, \nabla u) \in \mathcal{Q}H^1_0(v; \Omega) \text{ is weak solution of Dirichlet problem if} \\ &\int_{\Omega} \nabla \psi(x) \cdot \mathcal{Q}(x) \nabla u(x) \, dx = \int_{\Omega} f(x) \psi(x) v(x) \, dx \end{split}$$
 for every $\psi \in Lip_0(\Omega)$.

By approximation argument, can take $(h, \nabla h) \in QH_0^1(v; \Omega)$ as test functions

Weak solutions

$$\begin{split} \mathbf{u} &= (u, \nabla u) \in QH_0^1(v; \Omega) \text{ is weak solution of Dirichlet problem if} \\ &\int_{\Omega} \nabla \psi(x) \cdot Q(x) \nabla u(x) \, dx = \int_{\Omega} f(x) \psi(x) v(x) \, dx \end{split}$$
 for every $\psi \in Lip_0(\Omega)$.

By approximation argument, can take $(h, \nabla h) \in QH_0^1(v; \Omega)$ as test functions

Main result I

Theorem (DCU-SR 2020)

Let $f \in L^{A}(v; \Omega)$, $A(t) = t^{\sigma'} \log(e + t)^{q}$, $q > \sigma'$, and let $\mathbf{u} = (u, \nabla u) \in QH_{0}^{1}(v; \Omega)$ be a non-negative weak (sub)solution of Dirichlet problem. Then

$$\|\boldsymbol{u}\|_{L^{\infty}(\boldsymbol{\nu};\Omega)} \leqslant \boldsymbol{C}\|\boldsymbol{f}\|_{L^{A}(\boldsymbol{\nu};\Omega)}.$$

Main result II

Theorem (DCU-SR 2020)

Let $f \in L^{A}(v; \Omega)$, $A(t) = t^{\sigma'} \log(e + t)^{q}$, $q > \sigma'$, and let $\mathbf{u} = (u, \nabla u) \in QH_{0}^{1}(v; \Omega)$ be a non-negative weak (sub)solution of Dirichlet problem. Then

$$\|\boldsymbol{u}\|_{L^{\infty}(\boldsymbol{\nu};\Omega)} \leqslant \|\boldsymbol{f}\|_{L^{\sigma'}(\Omega)} \left(1 + \log\left(1 + \frac{\|\boldsymbol{f}\|_{L^{A}(\Omega)}}{\|\boldsymbol{f}\|_{L^{\sigma'}(\Omega)}}\right)\right)$$

Why De Georgi iteration

Could not make Moser iteration work!

Open problem: make Moser iteration work in this setting.

Why De Georgi iteration

Could not make Moser iteration work!

Open problem: make Moser iteration work in this setting.

Step 1: Technical obstacle

Prove pairs $(u, \nabla u) \in QH_0^1(v; \Omega)$ behave like classical weak gradients.

Key place to use hypothesis $|Q|_{op} \leq kv$.

Step 1: Technical obstacle

Prove pairs $(u, \nabla u) \in QH_0^1(v; \Omega)$ behave like classical weak gradients.

Key place to use hypothesis $|Q|_{op} \leq kv$.

Step 2: Apply Sobolev inequality

For each r > 0, define

$$\phi = \phi_r(\mathbf{U}) = (\mathbf{U} - \mathbf{r})_+.$$

Let $S(r) = \{x : u(x) > r\}$. Then

$$(\phi, \nabla \phi) = ((\boldsymbol{u} - \boldsymbol{r})_+, \chi_{\mathcal{S}(\boldsymbol{r})} \nabla \boldsymbol{u}) \in \boldsymbol{QH}_0^1(\Omega).$$

By Sobolev inequality and definition of weak (sub)solution with ϕ as test function

$$\|\phi\|_{L^{2\sigma}(v;\Omega)}^{2} \leqslant C_{0}\|f\|_{L^{(2\sigma)'}(v;\Omega)}\|\phi\|_{L^{2\sigma}(v;S(r))}$$

Step 2: Apply Sobolev inequality

For each r > 0, define

$$\phi = \phi_r(\mathbf{U}) = (\mathbf{U} - \mathbf{r})_+.$$

Let $S(r) = \{x : u(x) > r\}$. Then

$$(\phi, \nabla \phi) = ((\boldsymbol{u} - \boldsymbol{r})_+, \chi_{\mathcal{S}(\boldsymbol{r})} \nabla \boldsymbol{u}) \in \boldsymbol{QH}_0^1(\Omega).$$

By Sobolev inequality and definition of weak (sub)solution with ϕ as test function

$$\|\phi\|_{L^{2\sigma}(\boldsymbol{\nu};\Omega)}^{2} \leqslant C_{0}\|f\|_{L^{(2\sigma)'}(\boldsymbol{\nu};\Omega)}\|\phi\|_{L^{2\sigma}(\boldsymbol{\nu};\mathcal{S}(\boldsymbol{r}))}$$

Step 3: Use Orlicz space properties

By generalized Hölder's inequality and definition of Orlicz norm, for s > r

$$\begin{aligned} \mathbf{v}(\mathbf{S}(\mathbf{s}))^{\frac{1}{2\sigma}}(\mathbf{s}-\mathbf{r}) &\leq \|\phi\|_{L^{2\sigma}(\mathbf{v};\Omega)} \\ &\leq \mathbf{C}\|f\|_{L^{(2\sigma)'}(\mathbf{v};\mathbf{S}(\mathbf{r}))} \\ &\leq \mathbf{C}\|f\|_{L^{A}(\mathbf{v};\Omega)}\|\chi_{\mathbf{S}(\mathbf{r})}\|_{L^{B}(\mathbf{v};\Omega)} \\ &\leq \mathbf{C}\|f\|_{L^{A}(\mathbf{v};\Omega)} \frac{\mathbf{v}(\mathbf{S}(\mathbf{r}))^{\frac{1}{2\sigma}}}{\log(\mathbf{e}+(\mathbf{v}(\mathbf{S}(\mathbf{r})))^{-1})^{q\left(\frac{(2\sigma)'}{\sigma'}\right)}} \end{aligned}$$

Step 4: Moser iteration

Define

$$C_k = \tau_0 \|f\|_{L^A(\nu;\Omega)} \left(1 - \frac{1}{(k+1)^{\epsilon}}\right)$$

Goal to show

$$\mathbf{v}(\mathbf{S}(\tau_0 \| \mathbf{f} \|_{L^{\mathbf{A}}(\mathbf{v};\Omega)})) = \lim_{k \to \infty} \mathbf{v}(\mathbf{S}(\mathbf{C}_k)) = \mathbf{0}.$$

Step 5: Iteration formula

Let
$$m_k = -\log(\mathbf{v}(\mathbf{S}(\mathbf{C}_k)))$$
.

Let
$$s = C_{k+1}$$
, $r = C_k$. Fix $e = \frac{q}{\sigma'} - 1 > 0$

Then

$$m_{k+1} \ge \log\left(\frac{\epsilon au_0}{C}\right) + \log\left(\frac{m_k}{k+2}\right)^{\frac{2\sigma q}{\sigma'}} + m_k$$

Step 5: Iteration formula

Let
$$m_k = -\log(v(\mathcal{S}(\mathcal{C}_k))).$$

Let
$$s = C_{k+1}$$
, $r = C_k$. Fix $\epsilon = \frac{q}{\sigma'} - 1 > 0$

Then

$$m_{k+1} \geqslant \log\left(rac{\epsilon au_0}{C}
ight) + \log\left(rac{m_k}{k+2}
ight)^{rac{2\sigma q}{\sigma'}} + m_k$$

Step 6: Induction argument

By induction, there exists $\tau_0 > 0$ (very large) such that

$m_k \ge m_0 + k$

Therefore

 $\lim_{k\to\infty}m_k=\infty.$

Cruz-Uribe (UA)

Step 6: Induction argument

By induction, there exists $\tau_0 > 0$ (very large) such that

$m_k \ge m_0 + k$

Therefore

 $\lim_{k\to\infty}m_k=\infty.$

Step 1: Exponential integrability

Theorem (DCU-SR 2020, Xu 2011, Cianchi 1999) Let $||f||_{L^{\sigma'}(v;\Omega)} = 1$ and let *u* be (bounded) solution of Dirichlet problem. Then for $\gamma > 0$ (very small)

$$\int_{\Omega} e^{\gamma u(x)} v(x) \, dx \leqslant M,$$

where $M = (\gamma, C_0, v(\Omega))$ is independent of u.

Need first theorem to apply this result!

Step 1: Exponential integrability

Theorem (DCU-SR 2020, Xu 2011, Cianchi 1999) Let $||f||_{L^{\sigma'}(v;\Omega)} = 1$ and let *u* be (bounded) solution of Dirichlet problem. Then for $\gamma > 0$ (very small)

$$\int_{\Omega} e^{\gamma u(x)} v(x) \, dx \leqslant M,$$

where $M = (\gamma, C_0, v(\Omega))$ is independent of u.

Need first theorem to apply this result!

Step 2: Auxiliary Dirichlet problem

Let
$$h = e^{\frac{\gamma u}{p}}$$
 and $w = h - 1$. Then
 $(w, \frac{\gamma}{p}h\nabla u) \in QH_0^1(v; \Omega)$

is a weak (sub)solution to

$$\begin{cases} -v^{-1}\operatorname{Div}(Q\nabla w) = \frac{\gamma}{p}hf \quad x \in \Omega, \\ w = 0 \qquad \qquad x \in \partial\Omega. \end{cases}$$

Step 2: Auxiliary Dirichlet problem

Let
$$h = e^{\frac{\gamma u}{p}}$$
 and $w = h - 1$. Then
 $(w, \frac{\gamma}{p}h\nabla u) \in QH_0^1(v; \Omega)$

is a weak (sub)solution to

$$\begin{cases} -v^{-1}\operatorname{Div}(Q\nabla w) = \frac{\gamma}{p}hf \quad x \in \Omega, \\ w = 0 \qquad \qquad x \in \partial\Omega. \end{cases}$$

Step 3: Moser iteration

Assume
$$\|f\|_{L^{\sigma'}(v;\Omega)} = 1$$
.

Repeat Moser iteration and induction argument on auxiliary solution *w* to conclude

$$\|\boldsymbol{w}\|_{L^{\infty}(\boldsymbol{\nu};\Omega)} = \boldsymbol{e}^{\boldsymbol{c}\|\boldsymbol{u}\|_{L^{\infty}(\boldsymbol{\nu};\Omega)}} \leqslant \tau_{0}(1 + \|\boldsymbol{f}\|_{L^{A}(\boldsymbol{\nu};\Omega)}).$$

Hence,

$$\|\boldsymbol{u}\|_{L^{\infty}(\boldsymbol{\nu};\Omega)} \leqslant \boldsymbol{C}\log(1+\|\boldsymbol{f}\|_{L^{A}(\boldsymbol{\nu};\Omega)})+\boldsymbol{C}.$$

Step 3: Moser iteration

Assume
$$||f||_{L^{\sigma'}(v;\Omega)} = 1.$$

Repeat Moser iteration and induction argument on auxiliary solution *w* to conclude

$$\|\boldsymbol{w}\|_{L^{\infty}(\boldsymbol{v};\Omega)} = \boldsymbol{e}^{\boldsymbol{c}\|\boldsymbol{u}\|_{L^{\infty}(\boldsymbol{v};\Omega)}} \leqslant \tau_{0}(1 + \|\boldsymbol{f}\|_{L^{A}(\boldsymbol{v};\Omega)}).$$

Hence,

$$\|\boldsymbol{u}\|_{L^{\infty}(\boldsymbol{\nu};\Omega)} \leqslant \boldsymbol{C}\log(1+\|\boldsymbol{f}\|_{L^{A}(\boldsymbol{\nu};\Omega)})+\boldsymbol{C}.$$

Additional Results

Rodney & MacDonald (undergraduate honors thesis) have extended this result to the most general degenerate linear elliptic operator with first order and zero order terms.

Future work

- Prove sharp result (Cianchi 1999)
- Extend to parabolic equations (Xu to appear)
- Extend to other function spaces: L^{p(·)}(v; Ω), grand Lebesgue spaces
- Extend to nonlinear elliptic equations (SR, DCU, KM)

Future work

- Prove sharp result (Cianchi 1999)
- Extend to parabolic equations (Xu to appear)
- Extend to other function spaces: L^{p(·)}(v; Ω), grand Lebesgue spaces
- Extend to nonlinear elliptic equations (SR, DCU, KM)

Future work

- Prove sharp result (Cianchi 1999)
- Extend to parabolic equations (Xu to appear)
- Extend to other function spaces: L^{p(·)}(v; Ω), grand Lebesgue spaces
- Extend to nonlinear elliptic equations (SR, DCU, KM)

Future work

- Prove sharp result (Cianchi 1999)
- Extend to parabolic equations (Xu to appear)
- Extend to other function spaces: L^{p(·)}(ν; Ω), grand Lebesgue spaces
- Extend to nonlinear elliptic equations (SR, DCU, KM)

Future work

- Prove sharp result (Cianchi 1999)
- Extend to parabolic equations (Xu to appear)
- Extend to other function spaces: L^{p(·)}(ν; Ω), grand Lebesgue spaces
- Extend to nonlinear elliptic equations (SR, DCU, KM)

Roll Tide!

