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Verena Bögelein (Salzburg)

Frank Duzaar (Erlangen-Nürnberg)

Paolo Marcellini (Firenze)

Christoph Scheven, University Duisburg-Essen A variational approach to doubly nonlinear equations



Variational formulation of the problem
Existence results

Strategy of the proof

The model case
The nonstandard case

I. Variational formulation of the problem

Christoph Scheven, University Duisburg-Essen A variational approach to doubly nonlinear equations



Variational formulation of the problem
Existence results

Strategy of the proof

The model case
The nonstandard case

The model problem

Cauchy-Dirichlet problem:

Find u : ΩT → [0,∞) with{
∂tu

m − div
(
|Du|p−2Du

)
= 0 in ΩT ,

u = g on ∂parΩT ,
(1)

where here,

Ω ⊂ Rn is a bounded domain, T > 0, ΩT := Ω× (0,T ).

m > 0, p > 1.

g : ∂parΩT → [0,∞) are prescribed boundary values.

This generalizes both the porous medium equation (p = 2) and the
parabolic p-Laplace equation (m = 1).
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Variational Formulation I

We test (1) with
ϕ = w − u

for a comparison map w : ΩT → [0,∞) with w = u on the lateral
boundary ∂Ω× (0,T ). This leads to

¨
ΩT

∂tu
m(w − u)dxdt︸ ︷︷ ︸
=: I

+

¨
ΩT

|Du|p−2Du ·
(
Dw − Du

)
dxdt︸ ︷︷ ︸

=: II

= 0

By the convexity of Rn 3 ξ 7→ 1
p |ξ|

p we have

1
p |Du|

p + |Du|p−2Du ·
(
Dw − Du

)
≤ 1

p |Dw |
p.
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Variational Formulation II

¨
ΩT

∂tu
m(w − u)dxdt︸ ︷︷ ︸
=: I

+

¨
ΩT

|Du|p−2Du ·
(
Dw − Du

)
dxdt︸ ︷︷ ︸

=: II

= 0

By convexity,

II ≤ 1
p

¨
ΩT

|Dw |pdxdt − 1
p

¨
ΩT

|Du|pdxdt

Integration by parts and elementary calculations imply

I =

¨
ΩT

∂tw
(
wm − um)dx

+

ˆ
Ω
b[u(0),w(0)]dx −

ˆ
Ω
b[u(T ),w(T )]dx

with b[u,w ] := 1
m+1w

m+1 −
[

1
m+1u

m+1 + um(w − u)
]
≥ 0
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Variational Formulation III

This leads to the variational inequality

¨
ΩT

1
p |Du|

pdxdt ≤
¨

ΩT

[
1
p |Dw |

p + ∂tw
(
wm − um)

]
dxdt

+

ˆ
Ω
b[u(0),w(0)]dx −

ˆ
Ω
b[u(T ),w(T )]dx︸ ︷︷ ︸

=:B[u(0),w(0)]−B[u(T ),w(T )]

for any w : ΩT → [0,∞) with ∂tw ∈ L
m+1
m (ΩT ) and w = u on

∂Ω× (0,T ).
In the case m = 1 the boundary term simplifies to

b[u,w ] = 1
2 |u − w |2

so that the usual L2(Ω)-boundary terms appear in the variational
inequality.
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The Nonlinearity b

We replace the term um by a nonlinearity b : [0,∞)→ [0,∞)

which is continuous and piecewise C 1 with b(0) = 0,

and satisfies

0 < ` ≤ ub′(u)

b(u)
≤ m (2)

whenever u > 0, b(u) > 0 and b′(u) exists.

Assumption (2) implies the nonstandard growth condition

b(1) min{u`, um} ≤ b(u) ≤ b(1) max{u`, um} for all u > 0.
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Orlicz Spaces

The primitive φ : [0,∞)→ [0,∞) is defined by

φ(u) :=

ˆ u

0
b(s)ds ∀u ≥ 0.

Note that φ is convex with φ(0) = 0 and that (2) implies that φ
satisfies the ∆2- and ∇2-conditions. We consider the Orlicz-space

Lφ(Ω) =

{
w : Ω→ R, measurable :

ˆ
Ω
φ(|w |)dx <∞

}
Assumption (2) implies the nonstandard growth condition

φ(1) min{u`+1, um+1} ≤ φ(u) ≤ φ(1) max{u`+1, um+1}

for all u ≥ 0.
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The Integrand f

Instead of the model integrand 1
p |ξ|

p, we consider an general
integrand f : Ω× R× Rn → R such that the following convexity
and coercivity conditions hold:{

R× Rn 3 (u, ξ)→ f (x , u, ξ) is convex for a.e. x ∈ Ω,

f (x , u, ξ) ≥ ν|ξ|p for (x , u, ξ) ∈ Ω× R× Rn.

We do not require any growth condition from above.

More generally, we can assume

f (x , u, ξ) ≥ ν|ξ|p − g(x)
(
1 + |u|

)
for (x , u, ξ) ∈ Ω× R× Rn, with g ∈ L1(Ω) ∩ Lφ

∗
(Ω).
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The (time-independent) boundary values

We consider initial values uo : Ω→ [0,∞) (which also play the role
of time-independent boundary values) that satisfy

uo ∈ Lφ(Ω) and

ˆ
Ω
f (x , uo ,Duo)dx <∞.

For the given data, we wish to solve the Cauchy-Dirichlet problem{
∂tb(u)− divDξ f (x , u,Du) = −Du f (x , u,Du) in ΩT ,

u = uo on ∂parΩT ,

which generalizes the model case (1) from above.
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Variational formulation and integral convexity

Similarly as in the model case, the convexity of f implies

Dξ f (x , u,Du) · D(w − u) + Du f (x , u,Du)(w − u)

≤ f (x ,w ,Dw)− f (x , u,Du).

Actually, what we need in the argument is the convexity of the
integral

F (u) :=

ˆ
Ω
f (x , u,Du)dx

rather than the convexity of the integrand.

Theorem (Bögelein, Dacorogna, Duzaar, Marcellini, S., 2020)

For gradient flows (b(u) = u) for functionals with p-growth,
integral convexity is necessary and sufficient for existence of
variational solutions. (Also in the case of systems.)
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Variational formulation: the time term

For the term involving the time derivative, we calculate (formally)

¨
ΩT

∂tb(u)(w − u)dx

=

¨
ΩT

∂tw
(
b(w)− b(u))dx

+

ˆ
Ω
b[u(0),w(0)]dx −

ˆ
Ω
b[u(T ),w(T )]dx

with the boundary term

b[u,w ] := φ(w)−
[
φ(u) + b(u)(w − u)

]
≥ 0

As mentioned before, b[u,w ] = 1
2 |u − w |2 in the case b(u) = u.
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Variational Solutions

Definition

A non-negative measurable map u : ΩT → [0,∞) in the class

u ∈ C0
(
[0,T ];Lφ(Ω)

)
∩ Lp

(
0,T ; uo + W1,p

0 (Ω)
)

is called variational solution if and only if the variational inequality

B[u(τ),w(τ)] +

¨
Ωτ

f (x , u,Du)dxdt

≤ B[uo ,w(0)] +

¨
Ωτ

[
f (x ,w ,Dw) + ∂tw

(
b(w)− b(u)

)]
dxdt

holds true for any τ ∈ [0,T ], and any w ∈ Lp
(
0,T ; uo + W1,p

0 (Ω)
)

with ∂tw ∈ Lφ(ΩT ) and w(0) ∈ Lφ(Ω).

Here, B[u,w ] :=
´

Ω

[
φ(w)− φ(u)− b(u)(w − u)

]
dx . Here,

B[u,w ] := 1
2

´
Ω

∣∣w − u
∣∣2dx if b(u) = u.
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The General Existence Result

Theorem (Bögelein, Duzaar, Marcellini, S., ARMA 2018)

Suppose that the non-linearity b, the integrand f and the initial
datum uo are as before. Then there exists a variational solution

u ∈ C0
(
[0,T ];Lφ(Ω)

)
∩ Lp

(
0,T ; uo + W1,p

0 (Ω)
)

in the sense of the previous definition. The solution satisfies

∂t
√
φ(u) ∈ L2(ΩT )

and attains the initial datum uo in the C0−Lφ-sense.
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Weak solutions

Under additional assumptions, the variational solutions constructed
in the preceding theorem are distributional solutions of{

∂tb(u)− divDξ f (x , u,Du) = −Du f (x , u,Du) in ΩT ,

u = uo on ∂parΩT ,

The examples include general nonlinearities b(u) with

1 ≤ ` ≤ ub′(u)

b(u)
≤ m

and functionals with nonstandard growth such as

f (x , ξ) := α(x)|ξ|p + β(x)|ξ|q,
(1 < p < q ≤ p + 1, α(x) + β(x) > 0);

f (ξ) := |ξ|p log(1 + |ξ|);

f (ξ) := e
√

1+|ξ|2 .
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Extensions

The preceding existence result has been extended in various
directions:

to unbounded domains, in particular to the Cauchy-problem
on Ω = Rn (Bögelein, Duzaar, Marcellini, S., ARMA 2018);

to time-dependent boundary values (Bögelein, Duzaar,
Marcellini, S., Rend. Lincei 2018);

to doubly nonlinear systems with b(u) = um, m > 1, and
time-dependent boundary values (Schätzler, J. Elliptic
Parabol. Equ 2019)
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Known Results I

Grange & Mignot (1972), Alt & Luckhaus (1983):
equations/systems of the type

∂tb(u)− div
(
A(b(u),Du)

)
= f (b(u))

with u = g on ∂parΩT . The coefficients A satisfy
|A(s, ξ)| ≤ C (1 + |ξ|p−1),(

A(s, ξ)− A(s, η)
)
· (ξ − η) ≥ Co |ξ − η|p,

b is the continuous gradient of a convex C1-function φ.

The boundary values satisfy{
g ∈ Lp

(
0,T ;W1,p(Ω)

)
∩ L∞(ΩT ),

∂tg ∈ L1(0,T ;L∞(Ω))

Proof by Galerkin type method.
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Known Results II

Bernis (1988): Higher order doubly non-linear equations on
unbounded domains.

Ivanov & Mkrtychyan (1992, 1997): Existence of Hölder
continuous solutions to equations of the type

∂tu − div
(
um−1|Du|p−2Du

)
= 0.

Existence via approximation by strictly positive solutions and
a-priori Hölder-estimates.

Akagi & Stefanelli (2011): Equations of the type

b(∂tu)− div
(
|Du|p−2Du

)
= 0

Existence via elliptic regularization.
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Known Results III

Akagi & Stefanelli (2014):

∂tb(u)− div
(
A(Du)

)
= f

⇐⇒
v :=b(u)

−div
(
A(Db−1(v))

)
= f − ∂tv

for b and A with polynomial growth.
Existence for the dual problem via elliptic regularization.

Ambrosio & Gigli & Savare (2008): Gradient flows in metric
spaces.

Christoph Scheven, University Duisburg-Essen A variational approach to doubly nonlinear equations



Variational formulation of the problem
Existence results

Strategy of the proof

Modified Minimizing Movements
Passing to the limit
Properties of the limit map

III. Strategy of the proof

Christoph Scheven, University Duisburg-Essen A variational approach to doubly nonlinear equations



Variational formulation of the problem
Existence results

Strategy of the proof

Modified Minimizing Movements
Passing to the limit
Properties of the limit map

Modified Minimizing Movements

Fix a step size h ∈ (0, 1]. The goal is to construct
approximations ui of the solution at times t = ih, i ∈ N0.
Let u0 = uo .
Suppose that for some i ∈ N with ih ≤ T the non-negative
map 0 ≤ ui−1 ∈ Lφ(Ω) ∩

(
uo + W1,p

0 (Ω)
)

has been defined.
In the case b(u) = u, we define ui as the minimizer of

Fi [v ] :=

ˆ
Ω
f (x , v ,Dv)dx + 1

2h

ˆ
Ω

∣∣ui−1 − v
∣∣2dx .

in the class of functions 0 ≤ v ∈ L2(Ω) ∩
(
uo + W1,p

0 (Ω)
)
.

In the general case, we define ui as the minimizer of

Fi [v ] :=

ˆ
Ω
f (x , v ,Dv)dx + 1

h

ˆ
Ω
b[ui−1, v ]dx .

in the class of functions 0 ≤ v ∈ Lφ(Ω) ∩
(
uo + W1,p

0 (Ω)
)
.

Minimizers exist by the Direct Method of the Calculus of
Variations.
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The Euler operator for the time term

For a test function ψ ∈ C∞0 (Ω), we consider variations ui + sψ,
s ∈ (−ε, ε), of the minimizers ui and calculate

d

ds

∣∣∣
s=0

(
1

h

ˆ
Ω
b[ui−1, ui + sψ]dx

)
=

1

h

ˆ
Ω

∂

∂s

∣∣∣
s=0

[
φ(ui + sψ)− φ(ui−1)− b(ui−1)(ui + sψ − ui−1)

]
dx

=
1

h

ˆ
Ω

[
φ′(ui )ψ − b(ui−1)ψ

]
dx

=

ˆ
Ω

b(ui )− b(ui−1)

h
ψ dx
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Energy Estimates I

Observe that ui−1 is an admissible competitor for ui , and therefore
Fi [ui ] ≤ Fi [ui−1]. This can be iterated and leads to

ˆ
Ω
f (x , uk ,Duk)dx︸ ︷︷ ︸
≥ν|Duk |p

+ 1
h

k∑
i=1

ˆ
Ω
b[ui−1, ui ]dx ≤

ˆ
Ω
f (x , uo ,Duo)dx︸ ︷︷ ︸

=:M<∞

,

whenever k ∈ N with kh ≤ T .
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Monotonicity

For the boundary term b[u,w ], we have the following bounds:

Lemma

For any u,w ≥ 0, we have

b[u,w ] ≤
(
b(u)− b(w)

)
(u − w)

≤ C
∣∣∣√φ(u)−

√
φ(w)

∣∣∣2
≤ C 2b[u,w ],

with a constant C = C (`,m) ≥ 1.

The proof relies on the assumption

` ≤ ub′(u)

b(u)
≤ m.
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Energy Estimates II

From the previous energy estimate we immediately obtain:

1
h

k∑
i=1

ˆ
Ω

∣∣∣√φ(ui )−
√
φ(ui−1)

∣∣∣2dx
≤ C

h

k∑
i=1

ˆ
Ω
b[ui−1, ui ]dx ≤ C (`,m)M (3)

and ˆ
Ω
|Duk |pdx ≤ M

ν , (4)

whenever k ∈ N with kh ≤ T . Furthermore,
ˆ

Ω
φ(uk)dx ≤ 2k

k∑
i=1

ˆ
Ω

∣∣∣√φ(ui )−
√
φ(ui−1)

∣∣∣2dx + 2

ˆ
Ω
φ(uo)dx

≤ 2TM + 2

ˆ
Ω
φ(uo)dx . (5)
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Construction of the Limit Map I

From now on we consider only such h ∈ (0, 1] such that hk = T/k
with k ∈ N. From the construction before we obtain minimizers
u

(k)
i with i ∈ {0, 1, . . . k}.

We define u(k) : Ω× (−hk ,T ]→ [0,∞) by

u(k)(·, t) := u
(k)
i for t ∈ ((i − 1)hk , ihk ], i ∈ {0, . . . , k}.

The preceding estimates for u
(k)
i imply the uniform energy bound

sup
t∈[0,T ]

ˆ
Ω

[
φ
(
u(k)(t)

)
+
∣∣Du(k)(t))

∣∣p]dx
+

¨
ΩT

∣∣∣∂(−hk )
t

√
φ(u(k))

∣∣∣2 dx dt ≤ C , (6)

where the constant C is independent of k .
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Construction of the Limit Map II

From (6) we conclude that

(u(k))k∈N is uniformly bounded in L∞
(
0,T ;W1,p(Ω)

)
.

Therefore, we find a subsequence (still denoted by k) and

u ∈ L∞
(
0,T ; uo + W1,p

0 (Ω)
)

such that

u(k) ∗⇁ u weakly∗ in L∞
(
0,T ;W1,p(Ω)

)
.
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Construction of the Limit Map III: Compactness

Compactness lemma

The energy estimate

max
i∈{0,1,...k}

ˆ
Ω
φ
(
u

(k)
i

)
dx + sup

i∈{0,1,...k}

ˆ
Ω

∣∣Du(k)
i

∣∣pdx ≤ C , (7)

and the continuity estimate

1
h

k∑
i=1

ˆ
Ω

∣∣∣∣√φ(u
(k)
i )−

√
φ(u

(k)
i−1)

∣∣∣∣2 dx ≤ C (`,m)M, (8)

imply, after passing to a subsequence, that{ √
φ(u(k))→

√
φ(u) strongly in L1(ΩT ),

u(k) → u a.e. in ΩT .
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Compactness lemma

max
i∈{0,1,...k}

ˆ
Ω
φ
(
u

(k)
i

)
dx + sup

i∈{0,1,...k}

ˆ
Ω

∣∣Du(k)
i

∣∣pdx ≤ C , (7)

and 1
h

k∑
i=1

ˆ
Ω

∣∣∣∣√φ(u
(k)
i )−

√
φ(u

(k)
i−1)

∣∣∣∣2 dx ≤ C (`,m)M, (8)

=⇒

{ √
φ(u(k))→

√
φ(u) strongly in L1(ΩT ),

u(k) → u a.e. in ΩT .

This lemma can be interpreted as a Jacques Simon type
compactness result adapted to doubly nonlinear equations.

For the proof, we relied on techniques by Alt & Luckhaus.

Christoph Scheven, University Duisburg-Essen A variational approach to doubly nonlinear equations



Variational formulation of the problem
Existence results

Strategy of the proof

Modified Minimizing Movements
Passing to the limit
Properties of the limit map

Construction of the Limit Map IV: Time Derivative

From (6), we recall the uniform estimate¨
ΩT

∣∣∣∂(−hk )
t

√
φ(u(k))

∣∣∣2 dx dt ≤ CM

Extract a further subsequence such that

∂
(−hk )
t

√
φ(u(k)) ⇁ w weakly in L2(ΩT ).

Since
√
φ(u(k))→

√
φ(u) strongly in L1(ΩT ), we have

w = ∂t
√
φ(u).

We deduce ∂t
√
φ(u) ∈ L2(ΩT ), with the estimate¨

ΩT

∣∣∣∂t√φ(u)
∣∣∣2 dxdt ≤ C

ˆ
Ω
f (x , uo ,Duo)dx︸ ︷︷ ︸

≡M

.
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Variational Inequality for the Limit Map I

Let

F k [v ] :=

¨
ΩT

(
f (x , v ,Dv) + 1

hk
b
[
u(k)(t − hk), v(t)

])
dxdt.

Then, u(k) minimizes F k , i.e.

F k [u(k)] ≤ F k [v ]

for any 0 ≤ v ∈ Lφ(ΩT ) ∩ Lp
(
0,T ; uo + W1,p

0 (Ω)
)
. We test the

minimality with the admissible comparison map

ws := u(k) + s
(
v − u(k)

)
, s ∈ (0, 1),

and use the convexity of
´

Ω f (x , v ,Dv). Letting s ↓ 0, we get¨
ΩT

f
(
x , u(k),Du(k)

)
dxdt

≤
¨

ΩT

(
f
(
x , v ,Dv

)
+ ∆−hkb

(
u(k)

)(
v − u(k)

))
dxdt
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Variational Inequality for the Limit Map II

By lower semicontinuity

¨
ΩT

f
(
x , u,Du

)
dxdt ≤ lim inf

k→∞

¨
ΩT

f
(
x , u(k),Du(k)

)
dxdt.

Formally, in the limit k →∞ we have

¨
ΩT

∆−hkb
(
u(k)

)︸ ︷︷ ︸
→∂tb(u)

(
v − u(k)︸ ︷︷ ︸
→v−u

)
dxdt →

¨
ΩT

∂tb(u)
(
v − u

)
dxdt

=

¨
Ωτ

∂tv
(
b(v)− b(u)

)
dxdt + B[uo , v(0)]−B[u(T ), v(T )].

This formal argument can be made rigorous by a discrete
integration by parts formula.
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The Initial Datum I

Testing the variational equation with uo on Ωτ = Ω× (0, τ) for a
(small) time τ > 0, we obtain

B[u(τ), uo ] +

¨
Ωτ

f (x , u,Du)︸ ︷︷ ︸
≥0

dxdt ≤ τ
ˆ

Ω
f (x , uo ,Duo)dx︸ ︷︷ ︸

=:M<∞

.

Letting τ ↓ 0, we deduce

lim
τ↓0

B[u(τ), uo ] = 0.
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The Initial Datum II

Now with the Cauchy-Schwarz inequality and the monotonicity
lemmaˆ

Ω

∣∣φ(u(τ))− φ(uo)
∣∣dx

≤ C

[ˆ
Ω

∣∣∣√φ(u(τ))−
√
φ(uo)

∣∣∣2dx] 1
2
[ˆ

Ω

[
φ(u(τ)) + φ(uo)

]
dx

] 1
2

≤ C
√

B[u(τ), uo ]︸ ︷︷ ︸
−→ 0

[ˆ
Ω

[
φ(u(τ)) + φ(uo)

]
dx

] 1
2

.

This implies that u attains the initial data in the sense

u(τ)→ uo in Lφ(Ω) as τ ↓ 0.
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Merry Christmas!
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