Author: Cristiana De Filippis (University of Turin)

Title: Regularity for non-homogeneous systems

Abstract

My starting point is the analysis of the behavior of manifold-constrained minima to certain non-homogeneous functionals: under sharp assumptions, we prove that they are regular everywhere, except on a negligible, "singular" set of points, $[1,2,4]$. The presence of the singular set is in general unavoidable. Looking at minima as solutions to the associated Euler-Lagrange system does not help: it presents an additional component generated by the curvature of the manifold having critical growth in the gradient variable. It is then natural to consider general systems of type $$
\begin{equation*} -\operatorname{div} a(x, D u)=f \tag{0.1} \end{equation*}
$$ and study how the features of f and of the partial map $x \mapsto a(x, z)$ influence the regularity of solutions. In this respect, I am able to cover non-linear tensors with exponential type growth conditions as well as with unbalanced polynomial growth: I prove everywhere Lipschitz regularity for vector-valued solutions to (0.1) under optimal assumptions on forcing term and space-depending coefficients, [3]. This approach also yields optimal regularity results for obstacle problems.

References

[1] I. Chlebicka, C. De Filippis, L. Koch, Boundary regularity for manifold constrained $p(x)$ harmonic maps. Preprint (2020), submitted. https://arxiv.org/pdf/2001.06243.pdf
[2] C. De Filippis, Partial regularity for manifold constrained $p(x)$-harmonic maps. Calc. Var. \& PDE 58:47, (2019). https://doi.org/10.1007/s00526-019-1483-6
[3] C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals. Preprint (2020), submitted. https://arxiv.org/pdf/2007.07469.pdf
[4] C. De Filippis, G. Mingione, Manifold constrained non-uniformly elliptic problems. Journal of Geometric Analysis 30:1661-1723, (2020). https://doi.org/10.1007/s12220-019-00275-3

