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Goals

—divA(x,Du) = in Qc RN

with nonnegative bounded measure i and Carathéodory’s function
A: QxRN - RN — nonlinear operator (including A and A,).

Solutions can be unbounded, but we can control them precisely by a
certain potential and infer local properties such as Holder continuity.

Chlebicka, Giannetti, AZG, Wolff potentials and local behaviour of solutions
to measure data elliptic problems with Orlicz growth, arxiv:2006.02172
Problems:

e definition of solution

e Orlicz growth (no homogeneity A(x, k&) = |k|P2kA(x, €))

e measurable dependence x — A(x, &)

e ———————————————————————————————



The operator of general growth

Growth & ellipticity condition - Orlicz framework

G'G(E) < A(x€) ¢ and  AKx Q)] < es'g(lE)),
g=G"and G € A;NVy (= G is sandwiched between power functions)
e.g. Zygmund-type function Gp o(s) = sPlog®(1 +s)

Examples

—div (a(x)Du) = p with 0 < ae€ L*(Q)
—div (a(x)|Du|P™2Du) = with 0 < a€ L™(Q)

D
—div (a(x) Ci([‘)u;‘)Du) =pu with 0<ael™(Q)

e ———————————————————————————————————



Potential estimate in the linear case 1/2

Global case

If u solves —Au =y in RN, with 1 - a locally integrable function,
and u — 0 at oo, then

u(x) = /R JE(y)duly)

where E is the fundamental solution, i.e.,

—yFnif 2
E(X) — Cn |X .y| I n > Y
—log|x—y| ifn=2,

so, for n > 2, it can be estimated as follows:

|u(x)| 5/ _dlultr) =: Ir(|p|)(x) < Riesz potential
RN [x — |72

e e ———————————————————————————————————————————————————



Potential estimate in the linear case 2/2

Local behaviour of solutions to —Au = p

Localized/trucated Riesz potential of a nonnegative measure

R |pl(By(x)) do d|pl(y)
N

IY(x, R ::/ — 2 —<
20 R) o 0% o R(x) X = y[n=2

< / d|,u|(y)2 =Ix(Jp|)(x) < Riesz potential
RV X — y["

Then locally

lu(x)| < C (I5(x, R) + ‘sth not that much important’) .



Potential estimate in the power growth case
—Apu = —div(|DulP™2Du) = p for 1 < p < oo

For the nonlinear operator we have
lu(x)| < C (Wh(x, R) + ‘sth(u, R) not that much important) ,

Wi, R) = /OR (|u|(sg(x)>)vil 4o

with

Qn—l
called Wolff potential (similar ones were considered by Havin & Maz'ya).
For p = 2 we are back with Riesz potential.

Kilpeldinen & Maly ['92,'94] proven that for ;1 > 0 we actually have
Wg(x, R)Su(x) < Wg(x, 2R) + ‘sth(u, R)’

Trudinger & Wang [2002], Korte & Kuusi [2010], Kuusi & Mingione [2018]
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Measure data problems

Let 1 be a nonnegative Radon measure. Consider problems
e —Au=yp

o —A,u= —div(|DulP~2Du) = p

e —divA(x, Du) = p,

where A(x,&) - & ~ G(|¢]), and G is an Orlicz function.
How the equation can be interpreted?

What is a correct notion of a solution?

The function G generates an Orlicz space L¢(2) and a Sobolev-type
space W1¢(Q) which is reflexive and separable if G € Ay N V5.



Who can be called ‘a solution’?

A function u € W°(RQ) is called a weak solution to a problem

—divA(x,Du) =p in Q,
u=0 on 09,

if /.A(x7 Du) - D¢ dx = / ¢ du(x) for every ¢ € C°(Q).
Q Q

e weak solutions are too restrictive;
e distributional solutions can be too wild;

e already for —Au = Jp in B(0,1) we have the fundamental solution
E(x) = c,,Lx —y|?>=", (n > 2), which does not belong to the enegy
space Wol’ (B(0,1)), but we like it!

e ————————————————————————————————————————————————



Different notions of very weak solutions

One may study various kids of very weak solutions:

* SOLA (Boccardo&Gallouét),

e renormalized solutions (DiPerna&Lions, Boccardo, Giachetti, Diaz,
Murat),

e entropy solutions (Bénilan, Boccardo, Gallouét, Gariepy, Pierre,
Vazquez, Murat),

e approximable solutions (Cianchi-Mazya),

e A-superharmonic functions (Kilpeldinen, Maly, Korte, Kuusi,
Tuhola-Kujanpaa '11) — nonlinear counterpart of the Perron
method for Laplacian;

The class of A-superharmonic functions is wide enough to solve the

equation. Conversely, each A-superharmonic function solves equation

with some nonnegative (not necessarily finite) Radon measure 1 on Q.

e ———————————————————————————————————



A-superharmonic functions

A-harmonicity
A continuous function u € W,i’CG(Q) is an A-harmonic function in an
open set Q if it is a (weak) solution to —div.A(x, Du) = 0.

A-super/subharmonicity

We say that a lower semicontinuous function u is A-superharmonic if
for any K € Q and any A-harmonic h € C(K) in K, u> h on 0K
implies u > h in K (u is A-subharmonic if (—u) is A-superharmonic).

An A-superharmonic function

e is defined everywhere,

e can be unbounded,

has a generalized gradient Du;

* generates a measure: —div.A(x, Du) = p;

This object we want to ‘control by a potential’ and prove its regularity.

o ———————————————————————————————————————————



Potential theory in the Musielak-Orlicz setting

Chlebicka, AZG, Generalized superharmonic functions with strongly
nonlinear operator, arxiv:2005.00118

Properties of .A-harmonic and .A-superharmonic functions involving
an operator having generalized Orlicz growth (reflexive Orlicz spaces,
natural variants of variable exponent and double-phase spaces).

In particular: Harnack's Principle, Minimum Principle, boundary
Harnack inequality, etc.

For more references: see last presentation of Petteri Harjulehto
https://www.mimuw.edu.pl/ ichlebicka/nonstandard-seminar.html



Theorem - potential estimates

Assume that v is a nonnegative function being A-superharmonic and
finite a.e. in B(xo, Rw) € Q for some Ryy. Let (Havin-Mazy'a-)Wolff
potential be given by

R
Ly — :U’u B X07r
WIG (Xo,R) :A g 1 (—( rlf—l ))) dr
with 11, generated by u and g = G’. Then for R € (0, Ryy/2) we have
CL (W%"(Xo, R) - R) < U(Xo) < CU ( (Inf )U(X) + Wléu(Xo, R) + R)
X0,

with C;, Cy > 0 depending only on parameters ig, sg, cf‘, c§4, n.

e o e ————————————————————————————————————



Powerful corollaries
u > 0 is A-superharmonic and finite a.e. and p, := —div.A(x, Du) (distrib.)

e The result is sharp as the same potential controls bounds from
above and from below.

e uis continuous in xg <= WZ¢‘(x, r) is small for x € B(xo, r).

e if —divA(x, Du) = py = dx,; X is close to xp, r = |x — xp|, then

o1 (/rzr g t(s'™") ds — r) < u(x)
<c "

(/ g ! (51_") ds +infu+ r) )
r BZr

If additionally G is so fast in infinity that [, g~! (s'™") ds < oo,
then u € L*°(B,). This bound is optimal.

e o ———————————————————————————————



Powerful corollaries
u > 0 is A-superharmonic and finite a.e. and p, := —div.A(x, Du) (distrib.)

o ue CPQ) = tuo(B(x,r)) < cr"1g(rf=1) ~ rn=0G(rf1)

loc

(Orlicz-Morrey-type condition; * [C., Karppinen, 2019])

e Orlicz version of the fact that Lorentz regularity of the datum
(1 e L(3, ﬁ)(Q)) implies continuity of the solution

e Orlicz version of the fact that Marcinkiewicz regularity of the

datum (p € L(m 00)(€2)) implies Holder continuity of the
solution.

e Orlicz version of the Hedberg—Wolff Theorem yielding full
characterization of the natural dual space to WOI’G(Q) by the
means of the Wolff potential



The Hedberg—Wolff Theorem

Let i be a nonnegative bounded Radon measure compactly supported
in bounded open set Q C RV, Let

We(x0, R) Z/ORg‘l (—”(B(Xo’r))> dr

rn—l

be its Wollf potential.
Then
G
ne (Wo ()

if and only if

/QWZ(X, R)du(x) < oo for some R > 0.

e o —————————————————————————————————



Potential estmates - about the proof

It is enough to prove Theorem 1 for continuous .A-supersolutions.

* we take a nondecreasing sequence {¢;} of Lipschitz functions
converging pointwise to u.

* we consider the obstacle problem with a nonnegative obstacle ¢;,
and boundary datum u (Chlebicka-Karppinen, Karppinen-Lee);

* we get a nondecreasing sequence {u;} of nonnegative continuous
A-supersolutions converging to u pointwise with Du; — Du a.e.
for generalized gradient 'D’.



{uj} — nonnegative supersolutions — u

e for every j, we have that { Tu;} is a nondecreasing sequence of
continuous functions converging to u; and they generate a
sequence of measures { 7,4}k C (WOI’G(Q))’.

° {HTkuj}k locally converge weakly-* to pu;.

e Choosing diagonally subsequence of { Tyu;}x j, we get a
nondecreasing sequence {u'}; of continuous and bounded
A-supersolutions converging pointwise to v and such that
Du" — Du a.e. in Q.

e the corresponding measures i, locally converge weakly-* to p,,.



Upper bound

e we modify u to be a weak solution in a countable union of disjoint
annuli shrinking to a point xg (we construct a Poisson’s
modification of u over a family of annuli)

e the corresponding measure in each annulus concentrates on the
boundary of the particular annulus

e we can control the concentrations, since the measure corresponding
to the new solution stays also in the dual of WC(B(xg, R)).

e being a solution is a local property, so we are equipped with a
priori estimates for weak solutions in each annulus.



Thank you for your attention!



