

Regularity VS Lavrentiev gap: borderline case of double-phase potential

Anna Kh.Balci

Lavrentiev Gap

Fakultät für Mathematik

What is the *natural* space to minimize

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, \nabla w) \, dx?$$

All w ∈ W^{1,Φ(·)} with finite energy? (1915 Tonelli's Existence Theorem)
Smooth functions w ∈ H^{1,Φ(·)}?

Lavrentiev Gap

Fakultät für Mathematik

What is the *natural* space to minimize

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, \nabla w) \, dx?$$

All w ∈ W^{1,Φ(·)} with finite energy? (1915 Tonelli's Existence Theorem)
Smooth functions w ∈ H^{1,Φ(·)}?

Lavrentiev's example 1926

$$\inf_{\|w\|} \mathcal{F}(w) < \inf_{\text{smooth } w} \mathcal{F}(w)$$

[Mania]:
$$f(x, w, \nabla w) = (x - w^3)^2 (w')^6$$
,
 $w(0) = 0$ and $w(1) = 1$,
 $w_{\min}(x) = x^{\frac{1}{3}}$, $\mathcal{F}(w_{\min}) = 0$.

M. A. Lavrentiev

Anna Kh.Balci

Density of Smooth Functions

Let

$$W^{1,p}(\Omega) := \{ w : \|w\|_{1,p} := \|w\|_p + \|\nabla w\|_p < \infty \},\$$

$$H^{1,p}(\Omega) := \text{closure of } C^1(\Omega) \text{ in } W^{1,p}.$$

Meyers and Serrin, 1964, "H = W"

 $W^{1,p}(\Omega) = H^{1,p}(\Omega)$ for all domains and $p \in [1,\infty)$.

Local result due to Friedrichs.

Main tool:

```
Friedrichs mollifies: w * \varphi_{\varepsilon} 	o w in W^{1,p}.
```

 $\Rightarrow No Lavrentiev gap for f(\nabla w).$

Anna Kh.Balci

Density of Smooth Functions

Let

$$W^{1,p}(\Omega) := \{ w : \|w\|_{1,p} := \|w\|_p + \|\nabla w\|_p < \infty \},\$$

$$H^{1,p}(\Omega) := \text{closure of } C^1(\Omega) \text{ in } W^{1,p}.$$

Meyers and Serrin, 1964, "H = W"

$$W^{1,p}(\Omega) = H^{1,p}(\Omega)$$
 for all domains and $p \in [1,\infty)$.

Local result due to Friedrichs.

Main tool:

Friedrichs mollifies: $w * \varphi_{\varepsilon} \to w$ in $W^{1,p}$.

```
\Rightarrow No Lavrentiev gap for f(\nabla w).
```

Anna Kh.Balci

We assume Δ_2 and ∇_2 conditions and

Fakultät für Mathematik

 $|t|^{p_{-}} \lesssim \Phi(x,t) \lesssim |t|^{p_{+}},$

where $1 < p_{-} \le p_{+} < \infty$, $c_0 \ge 0$, $c_1, c_2 > 0$.

$$\|f\|_{L^{\Phi(\cdot)}(\Omega)} \coloneqq \inf \left\{ \gamma > 0 : \int_{\Omega} \Phi(x, |f(x)/\gamma|) \, dx \le 1 \right\},$$
$$L^{\Phi(\cdot)}(\Omega) \coloneqq \left\{ f \in L^{0}(\Omega) : \|f\|_{L^{\Phi(\cdot)}(\Omega)} < \infty \right\}.$$

We define the generalized Orlicz-Sobolev spaces $\mathcal{W}^{1, \varPhi(\cdot)}$ and $\mathcal{H}^{1, \varPhi(\cdot)}$

$$W^{1,\Phi(\cdot)}(\Omega) \coloneqq \{ w \in W^{1,1}(\Omega) : \nabla w \in L^{\Phi(\cdot)}(\Omega) \}, \\ \|w\|_{W^{1,\Phi(\cdot)}(\Omega)} \coloneqq \|w\|_{L^{1}(\Omega)} + \|\nabla w\|_{L^{\Phi(\cdot)}(\Omega)}, \\ H^{1,\Phi(\cdot)}(\Omega) \coloneqq (\text{closure of } C^{\infty}(\Omega) \cap W^{1,\Phi(\cdot)}(\Omega)).$$

Anna Kh.Balci

Regular case: H = W

Fakultät für Mathematik

UNIVERSITÄT

An integrand $\Phi(x,t)$ is regular in the domain Ω if for all $u \in W_0^{1,\Phi(\cdot)}(\Omega)$ there exists a smooth sequence $u_{\varepsilon} \in C_0^{\infty}(\Omega)$ such that

$$u_{\varepsilon} \to u \text{ in } W_0^{1,1}(\Omega); \lim_{\varepsilon \to 0} \int_{\Omega} \Phi(x, \nabla u_{\varepsilon}) \, dx = \int_{\Omega} \Phi(x, \nabla u) \, dx \coloneqq \mathcal{F}(u).$$

This is equivalent to H = W:

Sheffeé's theorem: $\Phi(x, \nabla u_{\varepsilon}) \rightarrow \Phi(x, \nabla u)$ in $L^{1}(\Omega)$, Convexity+ Δ_{2} : $\Phi(x, |\nabla u_{\varepsilon} - \nabla u|) \leq \Phi(x, |\nabla u_{\varepsilon}|) + \Phi(x, |\nabla u|)$.

Thus $\Phi(x, |\nabla u_{\varepsilon} - \nabla u|)$ is uniformly inegrable, goes to zero.

Anna Kh.Balci

The Sufficient Condition for Regularity

Fakultät für Mathematik

Lemma (Zhikov 1995)

Assume, that there exist Carathéodory functions $\Phi_{arepsilon}(x,t)$:

- Non-standard growth conditions: $|t|^{p^{-}} \leq \Phi(x,t) \leq |t|^{p^{+}}$;
- $\Phi_{\varepsilon}(x,0) = 0;$
- $\ \, {} { \ \, { \bigcirc } \ \, \Phi(x,t) \lesssim \Phi_{\varepsilon}(x,t) + 1 \ \, for \ \, x \in \bar{\Omega}, \ t \lesssim \varepsilon^{\frac{-d}{p^-}}; }$
- $\ \, {} { \ \, { \ 0 } } \ \, { \ \, \Phi_{ \varepsilon}(x,t) \lesssim \varPhi(y,t) + 1 } \ \, { for } \left| x y \right| \lesssim \varepsilon, \ t \in \mathbb{R}_+.$

Then the integrand $\Phi(x, t)$ is regular.

The other form in Harjulehto and Hästö 2019: ADec-condition

The Sufficient Condition for Regularity

Fakultät für Mathematik

Lemma (Zhikov 1995)

Assume, that there exist Carathéodory functions $\Phi_{\varepsilon}(x,t)$:

- Non-standard growth conditions: $|t|^{p^{-}} \leq \Phi(x,t) \leq |t|^{p^{+}}$;
- $\Phi_{\varepsilon}(x,0) = 0;$
- $\ \, {} { \ \, { \bigcirc } \ \, \Phi } (x,t) \lesssim \varPhi_{\varepsilon}(x,t) + 1 \ \, { for } \ x \in \bar{\Omega}, \ t \lesssim \varepsilon^{\frac{-d}{p^-}};$
- $\ \, {} { \ \, { \ 0 } } \ \, \Phi_{\varepsilon}(x,t) \lesssim \varPhi(y,t) + 1 \ \, { for } \, |x-y| \lesssim \varepsilon, \ t \in \mathbb{R}_+.$

Then the integrand $\Phi(x, t)$ is regular.

The other form in Harjulehto and Hästö 2019: ADec-condition

Fine Properties

Fakultät für Mathematik

Zhikov-Fan, $\Phi(x, t) \coloneqq t^{p(x)}$, 1995

If p(x) is log-Hölder continuous, i.e.

$$|p(x) - p(y)| \le \frac{c}{\log(e + \frac{1}{|x-y|})}$$
, then $\Phi(x, t)$ is regular.

$$\Phi_{\varepsilon}(x,y) \coloneqq |t|^{p_{\varepsilon}(x)}, \ p_{\varepsilon}(x) = \min \{p(y), |y-x| \le 2k\varepsilon\}.$$

Barabanov-Zhikov 1995, $\Phi(x,t) \coloneqq t^p + a(x)t^q$

If a(x) is Lipschitz continuous and

$$q < \frac{d+1}{d}p$$
, then $\Phi(x,t)$ is regular.

$$\Phi_{\varepsilon}(x,y) \coloneqq |t|^{p} + a_{\varepsilon}(x)|t|^{q}, \ a_{\varepsilon}(x) = \min \{a(y), |y-x| \le 2k\varepsilon\}$$

Anna Kh.Balci

Applications

If H = W there are many questions to study for different models:

Regularity of solution: Acerbi-Mingione, Fonseca, Maly, Baroni, Colombo...

Boudedness of integral operators: Diening, Cruz-Uribe, Fiorenza, Samko...

Calderon-Zygmund estimates: Mingione, Diening, Byun, Hästö...

Byun, Oh, Ok, ...

Manifolds: De Fillipis, Mingione...

General Muselak-Orlicz spaces: Chlebicka, Zatorska-Goldstein, Lee ...

Many models and overview: also nonconvex book of Harjulehto and Hästö

If $H \neq W$ Regularity of H- and W-solution: Zhikov, Alkhutov, Surnachev

UNIVERSITÄT

Obstacles:

Applications

If H = W there are many questions to study for different models:

Regularity of solution: Acerbi-Mingione, Fonseca, Maly, Baroni, Colombo...

Boudedness of integral operators: Diening, Cruz-Uribe, Fiorenza, Samko...

Calderon-Zygmund estimates: Mingione, Diening, Byun, Hästö...

Byun, Oh, Ok, ...

Manifolds: De Fillipis, Mingione...

General Muselak-Orlicz spaces: Chlebicka, Zatorska-Goldstein, Lee ...

Many models and overview: also nonconvex book of Harjulehto and Hästö

If $H \neq W$ Regularity of *H*- and *W*-solution: Zhikov, Alkhutov, Surnachev

UNIVERSITÄT

Obstacles:

Fakultät für Mathematik

V. V. Zhikov 1940-2017

Saddle point, Exponent crosses dimension.

Fakultät für Mathematik

V. V. Zhikov 1940-2017

Saddle point, Exponent crosses dimension.

Fakultät für Mathematik

V. V. Zhikov 1940-2017

Saddle point, Exponent crosses dimension.

Fakultät für Mathematik

V. V. Zhikov 1940-2017

Saddle point, Exponent crosses dimension.

Fakultät für Mathematik

V. V. Zhikov 1940-2017

Saddle point, Exponent crosses dimension.

Double Phase Potential

Fakultät für Mathematik

UNIVERSITÄT

BIFI FFFI D

Let
$$\mathcal{F}(w) \coloneqq \int_{\Omega} |\nabla w|^p + a(x) |\nabla w|^q dx$$
 with $1 and $a \ge 0$.$

Marcellini '80's; Esposito-Leonetti-Mingione '04:

Gap if $p < d < d + \alpha < q$ – lack of the higher regularity Dimensional threshold ? General procedure for Lavrentiev gap examples **Balci, Diening, Surnachev 2020**

Anna Kh.Balci

UNIVERSITÄT

RIELECEL D

Let
$$\mathcal{F}(w) \coloneqq \int_{\Omega} |\nabla w|^p + a(x) |\nabla w|^q dx$$
 with $1 and $a \ge 0$.$

Marcellini '80's; Esposito-Leonetti-Mingione '04:

Gap if $p < d < d + \alpha < q$ – lack of the higher regularity Dimensional threshold ?

General procedure for Lavrentiev gap examples Balci, Diening, Surnachev 2020

Anna Kh.Balci

BIELEFELD Fakultät für Mathematik

UNIVERSITÄT

Let
$$\mathcal{F}(w) \coloneqq \int_{\Omega} |\nabla w|^p + a(x) |\nabla w|^q dx$$
 with $1 and $a \ge 0$.$

Marcellini '80's; Esposito-Leonetti-Mingione '04:

Gap if $p < d < d + \alpha < q$ – lack of the higher regularity Dimensional threshold ? NO! General procedure for Lavrentiev gap examples **Balci**, **Diening**, **Surnachev 2020**

General algorithm: Balci, Diening, Surnachev 2020

Using fractal geometry we construct function u and b such that

Theorem Balci, Diening, Surnachev, CalVar and PDE's 2020

For all $p_0 \in (1,\infty)$ we have d=2

- **(**) There exist u, v with $\nabla u \in L^{\Phi(\cdot)}$ and $\nabla^{\perp} v \in L^{\Phi^*(\cdot)}$.
- $\bigcirc \langle \nabla^{\perp} v, \nabla u \rangle = 0 \text{ for } C_0^{\infty} \text{ but } \langle \nabla^{\perp} v, \nabla u \rangle \neq 0 \text{ for } W^{1, \Phi(\cdot)}.$

Lavrentiev gap.

The Dimension Conjecture: *d* is not important for the special cases. $d \ge 2 \nabla^{\perp} v$ replaced by $b = \operatorname{div} A$

Basic building block

Fakultät für Mathematik

UNIVERSITÄT

BIFLEFFLD

Contact set *S* of *u* has dimension zero. $W^{1,p^+} \leftrightarrow C^0$ controls *u* on *S*, but not W^{1,p^-} .

Idea: Increase $\mathfrak{D} := \dim(S)$ to reduce p^{\pm} .

For example: $S := \frac{1}{3}$ -Cantor-set

 $\mathfrak{D} = \log(2)/\log(3) \approx 0.631, \quad 2 = 3^{\mathfrak{D}}$

Anna Kh.Balci

Basic building block

Fakultät für Mathematik

UNIVERSITÄT

BIFLEFFLD

Contact set *S* of *u* has dimension zero. $W^{1,p^+} \hookrightarrow C^0$ controls *u* on *S*, but not W^{1,p^-} .

Idea: Increase $\mathfrak{D} := \dim(S)$ to reduce p^{\pm} . For example: $S := \frac{1}{3}$ -Cantor-set.

Anna Kh.Balci

Basic building block

Fakultät für Mathematik

UNIVERSITÄT

RIELECEL D

Contact set *S* of *u* has dimension zero. $W^{1,p^+} \hookrightarrow C^0$ controls *u* on *S*, but not W^{1,p^-} .

Idea: Increase $\mathfrak{D} := \dim(S)$ to reduce p^{\pm} .

For example: $S := \frac{1}{3}$ -Cantor-set.

$$\mathfrak{D} = \log(2)/\log(3) \approx 0.631, \qquad 2 = 3^{\mathfrak{D}}.$$

Anna Kh.Balci

$$-\mathfrak{D}, \quad 2 = 3^{\mathfrak{D}}$$
$$p(x) \coloneqq \begin{cases} p^{+} & \text{green,} \\ p^{-} & \text{blue.} \end{cases}$$

Function u and exponent p

Regularity VS Lavrentiev gap: borderline case of double-phase potential

 $p \approx 2$

$$-\mathfrak{D}, \quad 2 = 3^{\mathfrak{D}}$$
$$p(x) \coloneqq \begin{cases} p^{+} & \text{green,} \\ p^{-} & \text{blue.} \end{cases}$$

Function u and exponent p

Regularity VS Lavrentiev gap: borderline case of double-phase potential

 $p \approx 2$

Function u and exponent p

 $p \approx 2 - \mathfrak{D}$. $2 = 3^{\mathfrak{D}}$ $p(x) \coloneqq \begin{cases} p^+ & \text{green,} \\ p^- & \text{blue.} \end{cases}$ Integrability of ∇u $\int_{\Omega} |\nabla u|^{p(x)} dx$ $\approx \sum_{\text{scale}\,j\,\text{block}\,\mathfrak{B}} \int_{\mathfrak{B}} |\nabla u|^{p^-} \, dx$

Function u and exponent p

$$2 - \mathfrak{D}, \quad 2 = 3^{\mathfrak{D}}$$

$$p(x) := \begin{cases} p^{+} & \text{green}, \\ p^{-} & \text{blue}. \end{cases}$$
Integrability of ∇u

$$\int_{\Omega} |\nabla u|^{p(x)} dx$$

$$\approx \sum_{\text{scale} j \text{ block } \mathfrak{B}} \int_{\mathfrak{B}} |\nabla u|^{p^{-}} dx$$

$$\approx \sum_{j \ge 0} 2^{j} \cdot (3^{-j})^{2} (3^{j})^{p^{-}}$$

$$= \sum_{j \ge 0} 3^{(\mathfrak{D} - 2 + p^{-})j} < \infty$$
if $p^{-} < 2 - \mathfrak{D}.$

Regularity VS Lavrentiev gap: borderline case of double-phase potential

p≈

$$p \approx 2 - \mathfrak{D}$$
, $2 = 3^{\mathfrak{D}}$

Fakultät für Mathematik

Function v

Cantor Necklace $p \approx 2 - \mathfrak{D}$

$$p(x) := \begin{cases} p^+ & \text{green,} \\ p^- & \text{blue.} \end{cases}$$

Fakultät für Mathematik

Function v and exponent p

$$p \approx 2 - \mathfrak{D}$$
, $2 = 3^{\mathfrak{D}}$
 $p(x) := \begin{cases} p^+ & \text{green}, \\ p^- & \text{blue}. \end{cases}$

Function v and exponent p

Function v and exponent p

$$p \approx 2 - \mathfrak{D}$$
, $2 = 3^{\mathfrak{D}}$
 $p(x) \coloneqq \begin{cases} p^+ & \text{green}, \\ p^- & \text{blue}. \end{cases}$

Integrability of
$$\nabla^{\perp} v \in L^{p'(\cdot)}$$

 $p^+ > 2 - \mathfrak{D}$

Case $p \approx (2 - \mathfrak{D})' > 2$

In 2D roles of u and v just change.

Anna Kh.Balci

Application 2: Double Phase Potential

Fakultät für Mathematik

UNIVERSITÄT

RIELECEL D

Let
$$\mathcal{F}(w) \coloneqq \int_{\Omega} |\nabla w|^p + a(x) |\nabla w|^q dx$$
 with $1 and $a \ge 0$.
Resent Positive results:$

Colombo and Mingione '15:

if w is a bounded minimizer of \mathcal{F} and $q \leq p + \alpha$, then w is automatically in $W^{1,q}(\Omega)$.

Baroni, Colombo and Mingione '18:

if w is a minimizer of \mathcal{F} , $h \in C^{0,\gamma}(\overline{\Omega})$ and $q \leq p + \frac{\alpha}{1-\gamma}$, then w is automatically in $W^{1,q}(\Omega)$.

These results are sharp!

Application 2: Double Phase Potential

Fakultät für Mathematik

UNIVERSITÄT

RIELECEL D

Let
$$\mathcal{F}(w) \coloneqq \int_{\Omega} |\nabla w|^p + a(x) |\nabla w|^q dx$$
 with $1 and $a \ge 0$.
Resent Positive results:$

Colombo and Mingione '15:

if w is a bounded minimizer of \mathcal{F} and $q \leq p + \alpha$, then w is automatically in $W^{1,q}(\Omega)$.

Baroni, Colombo and Mingione '18:

if w is a minimizer of \mathcal{F} , $h \in C^{0,\gamma}(\overline{\Omega})$ and $q \leq p + \frac{\alpha}{1-\gamma}$, then w is automatically in $W^{1,q}(\Omega)$.

These results are sharp!

Balci, Diening and Surnachev, CalcVar, 2020
Gap for
$$q > p + \alpha \max \{1, \frac{p-1}{d-1}\}$$
.

Motivation: Baroni, Colombo, Mingione

BIELEFELD Fakultät für Mathematik

UNIVERSITÄT

Borderline case of double-phase:
$$\Phi(x,t) = |t|^{p} + a(x)|t|^{p} \log (e + |t|)$$

Baroni, Colombo, Mingione (2015)

Let $a(\cdot)$ be log-Hölder continuous. Then $u \in C_{loc}^{0,\beta}(\Omega)$ for some $\beta \in (0,1)$. If $a(\cdot)$ is vanishing log-Hölder, then $u \in C_{loc}^{0,\beta}(\Omega)$ for every $\beta \in (0,1)$.

Example of Lavrentiev gap? Balci, Surnachev 2020

 $\Phi(x,t) \coloneqq |\nabla t|^p \log^{-\beta}(e+|\nabla t|) + a(x) |\nabla t|^p \log^{\alpha}(e+|\nabla t|) dx$

the case $\beta = 0$, $\alpha = 1$ corresponds to **[BCM15]**.

More general $\Phi(x,t) \coloneqq \varphi(t) + a(x)\psi(t)$.

Anna Kh.Balci

Motivation: Baroni, Colombo, Mingione

BIELEFELD Fakultät für Mathematik

UNIVERSITÄT

Borderline case of double-phase:
$$\Phi(x,t) = |t|^{p} + a(x)|t|^{p} \log (e + |t|)$$

Baroni, Colombo, Mingione (2015)

Let $a(\cdot)$ be log-Hölder continuous. Then $u \in C_{loc}^{0,\beta}(\Omega)$ for some $\beta \in (0,1)$. If $a(\cdot)$ is vanishing log-Hölder, then $u \in C_{loc}^{0,\beta}(\Omega)$ for every $\beta \in (0,1)$.

Example of Lavrentiev gap? Balci, Surnachev 2020

 $\Phi(x,t) \coloneqq |\nabla t|^{\rho} \log^{-\beta}(e+|\nabla t|) + a(x) |\nabla t|^{\rho} \log^{\alpha}(e+|\nabla t|) dx$

the case $\beta = 0$, $\alpha = 1$ corresponds to **[BCM15]**.

More general $\Phi(x, t) \coloneqq \varphi(t) + a(x)\psi(t)$.

Anna Kh.Balci

Borderline case: Sufficient Condition for Regularity

With the help of general Lemma of Zhikov we get

Balci, Surnachev 2020

Let
$$\Phi(x,t) \coloneqq |\nabla t|^{\rho} \log^{-\beta}(e+|\nabla t|) + a(x) |\nabla t|^{\rho} \log^{\alpha}(e+|\nabla t|) dx$$
.

Assume that the weight a(x) is non-negative, bounded and has the modulus of continuity

$$\omega(r) \leq rac{k_0}{\log^{lpha+eta}(r^{-1})}, \quad ext{if } r \leq rac{1}{4}.$$

Then the integrand Φ is regular: $C_0^{\infty}(\Omega)$ is dense in $W_0^{1,\Phi(\cdot)}(\Omega)$.

Anna Kh.Balci

BIELEFELD Fakultät für Mathematik

UNIVERSITÄT

$$\mathcal{F}(w) \coloneqq \int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) dx$$

The weight $a(x)$ as defined as

$$a(x) = \begin{cases} 1, & \text{if } |x_1| < |x_2| \\ 0, & \text{if } |x_1| \ge |x_2|. \end{cases}$$

Borderline Case: Density

Fakultät für Mathematik

$$\mathcal{F}(w) \coloneqq \int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) dx$$

Theorem (Balci, Surnachev ArXiv 2020)

$$\begin{split} &H_0^{1,\Phi(\cdot)} = W_0^{1,\Phi(\cdot)} \ \text{if } \min(\alpha,\beta) \leq 1. \\ &H_0^{1,\Phi(\cdot)} \neq W_0^{1,\Phi(\cdot)} \ \text{if } \ \alpha > 1 \ \text{and } \beta > 1 \ . \end{split}$$

This is the case of one saddle point.

- $\alpha, \beta > 1 example of Lavrentiev gap.$
- $\ \ \, \bigcirc \quad \alpha \leq 1 {\rm the \ saddle \ point \ is \ removable}.$
- α > 1, β ∈ [0,1] use the estimates for the modulus of continuity of u ∈ W^{1,Φ(·)}, a = 1.

Borderline Case: Density

Fakultät für Mathematik

$$\mathcal{F}(w) \coloneqq \int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) dx$$

Theorem (Balci, Surnachev ArXiv 2020)

$$\begin{aligned} &H_0^{1,\Phi(\cdot)} = W_0^{1,\Phi(\cdot)} \text{ if } \min(\alpha,\beta) \leq 1, \\ &H_0^{1,\Phi(\cdot)} \neq W_0^{1,\Phi(\cdot)} \text{ if } \alpha > 1 \text{ and } \beta > 1 . \end{aligned}$$

This is the case of one saddle point.

- $\alpha, \beta > 1$ example of Lavrentiev gap.
- $\alpha \leq 1$ the saddle point is removable.
- ◎ $\alpha > 1$, $\beta \in [0, 1]$ use the estimates for the modulus of continuity of $u \in W^{1, \Phi(\cdot)}$, a = 1.

Proof Sketch: Case $\alpha > 1$, $\beta > 1$

BIELEFELD Fakultät für Mathematik

UNIVERSITÄT

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, w) \, dx$$

=
$$\int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) \, dx.$$

Lavrentiev gap:
$$\int_{\Omega} \Phi(x, |\nabla u|) \, dx \lesssim \int_{Green} |\nabla u|^2 \log^{-\beta} (e + |\nabla u|) \, dx$$
$$\lesssim \int_0^2 \frac{dt}{t \log^{\beta}(e + t)} < \infty, \text{ provided } \beta > 1.$$

$$b = \nabla^{\perp} v: \quad \int_{\Omega} \Phi^{*}(x, |b|) \, dx \lesssim \int_{Blue} |b|^{2} \log^{-\alpha}(e + |b|) \, dx$$
$$\lesssim \int_{0}^{2} \frac{dt}{t \log^{\alpha}(e + t)} < \infty, \quad \text{provided } \alpha > 1.$$

Anna Kh.Balci

Regularity VS Lavrentiev gap: borderline case of double-phase potential

 $\frac{1}{2}$

Weight a

a = 1

a = 1

Function <u>u</u>

Function v

 $-\frac{1}{2}$

a = 0

a = 0

UNIVERSITÄT

BIFLEFFLD

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, w) \, dx$$

=
$$\int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) \, dx.$$

So for $\alpha, \beta > 1$ we have $\int_{\Omega} \Phi(x, |\nabla u|) dx, \int_{\Omega} \Phi^*(x, |\nabla^{\perp}v|) dx < \infty$. $S(w) \coloneqq \int_{\Omega} \nabla w \cdot \nabla^{\perp} v dx.$

•
$$\tilde{u} := \eta u \in W_0^{1, \Phi(\cdot)}(\Omega).$$

• $S = 0$ on $H_0^{1, \Phi(\cdot)}(\Omega)$ using div $\nabla^{\perp} = 0.$
• $S(\tilde{u}) = -\int_{\partial\Omega} (u\nabla^{\perp}v) \cdot v \, ds = -1.$
Then $\mathcal{F}(t\tilde{u}) + S(t\tilde{u}) < 0$ for some $t > 0.$

Anna Kh.Balci

UNIVERSITÄT

BIFLEFFLD

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, w) \, dx$$

=
$$\int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) \, dx.$$

So for $\alpha, \beta > 1$ we have $\int_{\Omega} \Phi(x, |\nabla u|) dx, \int_{\Omega} \Phi^*(x, |\nabla^{\perp}v|) dx < \infty$. $S(w) \coloneqq \int_{\Omega} \nabla w \cdot \nabla^{\perp} v dx.$

•
$$\tilde{u} := \eta u \in W_0^{1, \Phi(\cdot)}(\Omega).$$

• $S = 0$ on $H_0^{1, \Phi(\cdot)}(\Omega)$ using div $\nabla^{\perp} = 0.$
• $S(\tilde{u}) = -\int_{\partial\Omega} (u\nabla^{\perp}v) \cdot v \, ds = -1.$
Then $\mathcal{F}(t\tilde{u}) + S(t\tilde{u}) < 0$ for some $t > 0.$

Anna Kh.Balci

UNIVERSITÄT

RIELECEL D

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, w) \, dx$$

=
$$\int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) \, dx.$$

So for $\alpha, \beta > 1$ we have $\int_{\Omega} \Phi(x, |\nabla u|) dx, \int_{\Omega} \Phi^*(x, |\nabla^{\perp} v|) dx < \infty$. $S(w) \coloneqq \int_{\Omega} \nabla w \cdot \nabla^{\perp} v dx.$ • $\tilde{u} \coloneqq \eta u \in W_0^{1, \Phi(\cdot)}(\Omega).$ • S = 0 on $H_0^{1, \Phi(\cdot)}(\Omega)$ using div $\nabla^{\perp} = 0$.

• $\mathcal{S}(u) = -\int_{\partial\Omega} (u \nabla^2 v) \cdot v \, ds = -1.$ Then $\mathcal{F}(t\tilde{u}) + \mathcal{S}(t\tilde{u}) < 0$ for some t > 0.

Regularity VS Lavrentiev gap: borderline case of double-phase potential

 $\frac{1}{2}$

Weight a

a = 1

a = 1

Function u

Function v

 $-\frac{1}{2}$

a = 0

a = 0

UNIVERSITÄT

BIFLEFFLD

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, w) \, dx$$

=
$$\int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) \, dx.$$

So for $\alpha, \beta > 1$ we have $\int_{\Omega} \Phi(x, |\nabla u|) dx, \int_{\Omega} \Phi^*(x, |\nabla^{\perp} v|) dx < \infty$. $S(w) \coloneqq \int_{\Omega} \nabla w \cdot \nabla^{\perp} v dx.$

•
$$\tilde{u} := \eta u \in W_0^{1,\Phi(\cdot)}(\Omega).$$

• $S = 0$ on $H_0^{1,\Phi(\cdot)}(\Omega)$ using div $\nabla^{\perp} = 0.$
• $S(\tilde{u}) = -\int_{\partial\Omega} (u\nabla^{\perp}v) \cdot v \, ds = -1.$
Then $\mathcal{F}(t\tilde{u}) + S(t\tilde{u}) < 0$ for some $t > 0.$

Anna Kh.Balci

UNIVERSITÄT

BIFI FFFI D

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, w) \, dx$$

=
$$\int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) \, dx.$$

So for $\alpha, \beta > 1$ we have $\int_{\Omega} \Phi(x, |\nabla u|) dx, \int_{\Omega} \Phi^*(x, |\nabla^{\perp} v|) dx < \infty$.

$$\begin{split} \mathcal{S}(w) &\coloneqq \int_{\Omega} \nabla w \cdot \nabla^{\perp} v \, dx. \\ &\bullet \quad \tilde{u} \coloneqq \eta u \in W_0^{1, \Phi(\cdot)}(\Omega). \\ &\bullet \quad \mathcal{S} = 0 \text{ on } H_0^{1, \Phi(\cdot)}(\Omega) \text{ using div } \nabla^{\perp} = 0 \\ &\bullet \quad \mathcal{S}(\tilde{u}) = -\int_{\partial\Omega} (u \nabla^{\perp} v) \cdot \nu \, ds = -1. \\ &\text{Then } \mathcal{F}(t\tilde{u}) + \mathcal{S}(t\tilde{u}) < 0 \text{ for some } t > 0. \end{split}$$

Anna Kh.Balci

Proof Sketch: Case $\alpha \leq 1$

Fakultät für Mathematik

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, w) \, dx$$

=
$$\int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) \, dx.$$

If $\alpha \leq 1$ then H = W.

The saddle point is removable by cut-off.

$$\begin{split} C_{0}^{\infty} & \text{approximating sequence: } u_{\varepsilon} = u\eta_{\varepsilon}. \\ \int_{\Omega} \Phi(x, |\nabla \eta_{\varepsilon}|) \, dx \to 0 \text{ as } \varepsilon \to 0. \\ \text{Sufficient to show that} & \eta_{\varepsilon}(r) = \begin{cases} 1, & r \ge \varepsilon, \\ \frac{\log(1/\varepsilon) - \log\log(1/r)}{\log(1/\varepsilon) - \log\log(1/\varepsilon)}, & e^{-1/\varepsilon} < r < \varepsilon, \\ 0, & r \le e^{-1/\varepsilon}. \end{cases} \\ \int_{\Omega} |\nabla \eta_{\varepsilon}|^{2} \log(e + |\nabla \eta_{\varepsilon}|) \, dx \to 0. \end{cases} & \end{split}$$

Proof Sketch: Case $\alpha \leq 1$

Fakultät für Mathematik

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, w) \, dx$$

=
$$\int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) \, dx$$

If $\alpha \leq 1$ then H = W.

The saddle point is removable by cut-off.

 $\begin{array}{lll} C_0^\infty & \text{approximating sequence:} & u_\varepsilon &= & u\eta_\varepsilon. \\ \int_\Omega \varPhi(x, |\nabla \eta_\varepsilon|) \ dx \to 0 \ \text{as} \ \varepsilon \to 0. \end{array}$

Sufficient to show that

$$\int_{\Omega} |\nabla \eta_{\varepsilon}|^2 \log(e + |\nabla \eta_{\varepsilon}|) \, dx \to 0.$$

$$\int_{\Omega} \Phi(x, |\nabla(u-u_{\varepsilon})|) \, dx \to 0.$$

$$(r) = \begin{cases} 1, & r \ge \varepsilon, \\ \frac{\log(1/\varepsilon) - \log\log(1/r)}{\log(1/\varepsilon) - \log\log(1/\varepsilon)}, & e^{-1/\varepsilon} < r < \varepsilon, \\ 0, & r \le e^{-1/\varepsilon}. \end{cases}$$

Weight
$$a$$

 $a = 1$
 $a = 0$ $a = 0$

Anna Kh.Balci

Proof Sketch: Case $\alpha \leq 1$

Fakultät für Mathematik

$$\mathcal{F}(w) = \int_{\Omega} \Phi(x, w) \, dx$$

=
$$\int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) \, dx.$$

If $\alpha \leq 1$ then H = W.

The saddle point is removable by cut-off.

$$C_{0}^{\infty} \text{ approximating sequence: } u_{\varepsilon} = u\eta_{\varepsilon}.$$

$$\int_{\Omega} \Phi(x, |\nabla\eta_{\varepsilon}|) \, dx \to 0 \text{ as } \varepsilon \to 0.$$
Sufficient to show that
$$\int_{\Omega} |\nabla\eta_{\varepsilon}|^{2} \log(e + |\nabla\eta_{\varepsilon}|) \, dx \to 0.$$

$$\int_{\Omega} \Phi(x, |\nabla(u - u_{\varepsilon})|) \, dx \to 0.$$

$$\int_{\Omega} \Phi(x, |\nabla(u - u_{\varepsilon})|) \, dx \to 0.$$

$$\int_{\Omega} \Phi(x, |\nabla(u - u_{\varepsilon})|) \, dx \to 0.$$

$$\int_{\Omega} \Phi(x, |\nabla(u - u_{\varepsilon})|) \, dx \to 0.$$

$$\int_{\Omega} \Phi(x, |\nabla(u - u_{\varepsilon})|) \, dx \to 0.$$

Anna Kh.Balci

Regularity VS Lavrentiev gap: borderline case of double-phase potential

r

Proof sketch:Case $\alpha > 1$, $\beta \leq 1$

Fakultät für Mathematik

$$\mathcal{F}(w) \coloneqq \int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) dx$$
$$= \int_{\Omega} \Phi(x, w) dx = \int_{\Omega} \varphi(t) + a(x) \psi(t) dx.$$

Lemma (On continuity)

If $\alpha > 1$ and $u \in W^{1,\Phi(\cdot)}(\Omega)$ then it is continuous in Blue with modulus of continuity

$$\omega(t) \lesssim \|\nabla u\|_{L^{\psi(\cdot)}(\underline{B}|ue)} \log^{\frac{1-\alpha}{2}}(1/t), \quad t < 1/e.$$

Limit values from below and above u^-, u^+ . If $\alpha > 1$, $\beta \le 1$ and $u \in W^{1,\Phi(\cdot)}(\Omega)$, then $u^+ = u^-$. If $u^+ = u^-$, then $u \in H^{1,\Phi(\cdot)}(\Omega)$. Anna Kh.Balci Regularity VS Lavrentiev gap: borderline case of double-phase potential

Borderline case: Summary

Fakultät für Mathematik

$$\mathcal{F}(w) \coloneqq \int_{\Omega} \frac{1}{2} |\nabla w|^2 \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{2} |\nabla w|^2 \log^{\alpha} (e + |\nabla w|) dx$$

Theorem (Balci, Surnachev ArXiv 2020)

$$\begin{aligned} &H_0^{1,\Phi(\cdot)} = W_0^{1,\Phi(\cdot)} \text{ if } \min(\alpha,\beta) \leq 1. \\ &H_0^{1,\Phi(\cdot)} \neq W_0^{1,\Phi(\cdot)} \text{ if } \alpha > 1 \text{ and } \beta > 1 . \end{aligned}$$

Borderline case: Summary

Fakultät für Mathematik

$$\mathcal{F}(w) \coloneqq \int_{\Omega} \frac{1}{d} |\nabla w|^d \log^{-\beta} (e + |\nabla w|) + a(x) \frac{1}{d} |\nabla w|^d \log^{\alpha} (e + |\nabla w|) dx$$

Theorem (Balci, Surnachev ArXiv 2020)

$$\begin{aligned} &H_0^{1,\Phi(\cdot)} \neq W_0^{1,\Phi(\cdot)} \text{ if } \alpha > d-1 \text{ and } \beta > 1 \text{ .} \\ &\text{otherwise } H_0^{1,\Phi(\cdot)} = W_0^{1,\Phi(\cdot)}. \end{aligned}$$

Also works for any d.

New density results+examples of Lavrentiev gap. Surprising hidden regularity even for bad weights.

H-Minimizer VS W-Minimizer

Different notions of $\varPhi(\cdot)$ -harmonic functions:

$$\begin{split} \mathcal{E}_{1} &\coloneqq \inf \mathcal{G} \Big(W_{0}^{1, \Phi(\cdot)}(\Omega) \Big) \\ W_{g}^{1, \Phi(\cdot)}(\Omega) &\coloneqq g + W_{0}^{1, \Phi(\cdot)}(\Omega) \\ h_{W}(g) &= \arg \min \mathcal{F} \Big(W_{g}^{1, \Phi(\cdot)}(\Omega) \Big) \end{split}$$

 $\inf \mathcal{G}(H_0^{1,\Phi(\cdot)}(\Omega)) \coloneqq \mathcal{E}_2$ $H_g^{1,\Phi(\cdot)}(\Omega) \coloneqq g + H_0^{1,\Phi(\cdot)}(\Omega)$ $h_H(g) = \arg\min \mathcal{F}(H_g^{1,\Phi(\cdot)}(\Omega))$

If there is Lavrentiev gap, the $h_W \neq h_H$! Idea: use *tu* as a boundary value, then for sufficiently large *t* $h_W \neq h_H$

Balci, Surnachev 2020

UNIVERSITÄT

BIFI FFFI D

Let $\alpha, \beta > 1$. Any *H*-minimizer h_H is continuous in Ω . Any *W*-minimizer h_W that is not equal to h_H is discontinuous at the origin.

Can we calculate h_W numerically?

H-Minimizer VS W-Minimizer

Different notions of $\varPhi(\cdot)$ -harmonic functions:

$$\begin{split} \mathcal{E}_{1} &\coloneqq \inf \mathcal{G} \Big(W_{0}^{1, \Phi(\cdot)}(\Omega) \Big) & \inf \mathcal{G} \Big(H_{0}^{1, \Phi(\cdot)}(\Omega) \Big) &\coloneqq \mathcal{E}_{2} \\ W_{g}^{1, \Phi(\cdot)}(\Omega) &\coloneqq g + W_{0}^{1, \Phi(\cdot)}(\Omega) & H_{g}^{1, \Phi(\cdot)}(\Omega) &\coloneqq g + H_{0}^{1, \Phi(\cdot)}(\Omega) \\ h_{W}(g) &= \arg \min \mathcal{F} \Big(W_{g}^{1, \Phi(\cdot)}(\Omega) \Big) & h_{H}(g) &= \arg \min \mathcal{F} \Big(H_{g}^{1, \Phi(\cdot)}(\Omega) \Big) \end{split}$$

If there is Lavrentiev gap, the $h_W \neq h_H$! Idea: use *tu* as a boundary value, then for sufficiently large *t* $h_W \neq h_H$.

Balci, Surnachev 2020

UNIVERSITÄT

RIELECEL D

Let $\alpha, \beta > 1$. Any *H*-minimizer h_H is continuous in Ω . Any *W*-minimizer h_W that is not equal to h_H is discontinuous at the origin.

Can we calculate h_W numerically?

Anna Kh.Balci

H-Minimizer VS W-Minimizer

Different notions of $\varPhi(\cdot)$ -harmonic functions:

$$\begin{split} \mathcal{E}_{1} &\coloneqq \inf \mathcal{G} \Big(W_{0}^{1, \Phi(\cdot)}(\Omega) \Big) & \inf \mathcal{G} \Big(H_{0}^{1, \Phi(\cdot)}(\Omega) \Big) &\coloneqq \mathcal{E}_{2} \\ W_{g}^{1, \Phi(\cdot)}(\Omega) &\coloneqq g + W_{0}^{1, \Phi(\cdot)}(\Omega) & H_{g}^{1, \Phi(\cdot)}(\Omega) &\coloneqq g + H_{0}^{1, \Phi(\cdot)}(\Omega) \\ h_{W}(g) &= \arg \min \mathcal{F} \Big(W_{g}^{1, \Phi(\cdot)}(\Omega) \Big) & h_{H}(g) &= \arg \min \mathcal{F} \Big(H_{g}^{1, \Phi(\cdot)}(\Omega) \Big) \end{split}$$

If there is Lavrentiev gap, the $h_W \neq h_H$! Idea: use *tu* as a boundary value, then for sufficiently large *t* $h_W \neq h_H$.

Balci, Surnachev 2020

UNIVERSITÄT

Let $\alpha, \beta > 1$. Any *H*-minimizer h_H is continuous in Ω . Any *W*-minimizer h_W that is not equal to h_H is discontinuous at the origin.

Can we calculate h_W numerically?

Anna Kh.Balci

Numerics for Problems with Lavrentiev Gap

Fakultät für Mathematik

UNIVERSITÄT

$$\mathcal{F}(w) \coloneqq \int_0^1 (x - w(x)^3)^2 (w'(x))^6 dx$$

for $w(0) = 0$ and $w(1) = 1$

 $w_{\min}(x) = x^{\frac{1}{3}}$

$$0 = \inf_{\text{all } w} \mathcal{F}(w) < \inf_{\text{smooth } w} \mathcal{F}(w)$$

Problem: Standard FEM fails to converge to correct solution.

[Ball, Knowes; Carstensen, Ortner] Partial results for DG-methods. Idea is to use Crouzeix-Raviart FEM for functionals with *x*-dependence.

Anna Kh.Balci

 $-\operatorname{div}(|\nabla h|^{p(\cdot)-2}|\nabla h|) = 0 \quad \text{in } \Omega,$ $h = tu \quad \text{on } \partial\Omega.$

for log-Hölder $p(\cdot)$ standard FEM: Breit, Diening, Schwarzacher 2015.

J. Storn

Summary and further research

Fakultät für Mathematik

UNIVERSITÄT

RIELECEL D

- General procedure using fractals: variable exponent, double-phase, weighted p-energy.
- We have the full description for the model

$$\Phi(x,t) \coloneqq |\nabla t|^{\rho} \log^{-\beta}(e+|\nabla t|) + a(x) |\nabla t|^{\rho} \log^{\alpha}(e+|\nabla t|) dx \quad \text{if } p = d.$$

$$H_0^{1,\Phi(\cdot)} \neq W_0^{1,\Phi(\cdot)}$$
 if $\alpha > d-1$ and $\beta > 1$. Otherwise $H_0^{1,\Phi(\cdot)} = W_0^{1,\Phi(\cdot)}$.

New numerical results for special cases.

What about general *p*? Need thin and ultra-thin Cantor sets.

We study Lavrentiev gap for partial spaces of differential forms. Tomorrow: 14:15 - **Swarnendu Sil** Nonlinear Stein theorem for differential forms via ZOOM-Conference ID 926 5310 0938 Password: 1928

Anna Kh.Balci

Summary and further research

Fakultät für Mathematik

UNIVERSITÄT

- General procedure using fractals: variable exponent, double-phase, weighted p-energy.
- We have the full description for the model

$$\Phi(x,t) \coloneqq |\nabla t|^{p} \log^{-\beta}(e+|\nabla t|) + a(x) |\nabla t|^{p} \log^{\alpha}(e+|\nabla t|) dx \quad \text{if } p = d.$$

$$H_0^{1,\Phi(\cdot)} \neq W_0^{1,\Phi(\cdot)} \text{ if } \alpha > d-1 \text{ and } \beta > 1. \text{ Otherwise } H_0^{1,\Phi(\cdot)} = W_0^{1,\Phi(\cdot)}.$$

Solution New numerical results for special cases.

What about general p? Need thin and ultra-thin Cantor sets.

We study Lavrentiev gap for partial spaces of differential forms. Tomorrow: 14:15 - Swarnendu Sil Nonlinear Stein theorem for differential forms via ZOOM-Conference ID 926 5310 0938 Password: 1928

Anna Kh.Balci

Summary and further research

Fakultät für Mathematik

UNIVERSITÄT

- General procedure using fractals: variable exponent, double-phase, weighted *p*-energy.
- We have the full description for the model

$$\Phi(x,t) \coloneqq |\nabla t|^{p} \log^{-\beta}(e+|\nabla t|) + a(x) |\nabla t|^{p} \log^{\alpha}(e+|\nabla t|) dx \quad \text{if } p = d.$$

$$H_0^{1,\Phi(\cdot)} \neq W_0^{1,\Phi(\cdot)} \text{ if } \alpha > d-1 \text{ and } \beta > 1. \text{ Otherwise } H_0^{1,\Phi(\cdot)} = W_0^{1,\Phi(\cdot)}.$$

Solution New numerical results for special cases.

What about general p? Need thin and ultra-thin Cantor sets.

We study Lavrentiev gap for partial spaces of differential forms. Tomorrow: 14:15 - **Swarnendu Sil** Nonlinear Stein theorem for differential forms via ZOOM-Conference ID 926 5310 0938 Password: 1928 Anna Kh.Balci Regularity VS Lavrentiev gap: borderline case of double-phase potential