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Removable sets are essentially null sets for some function
classes. For Lebesgue integrable functions L'(Q) over a
domain 2, zero measured sets E are removable since
L'Y(Q\E)=L"(9Q).

In Sobolev spaces W'-P(Q) this is not enough since removing a
zero measured set changes the test functions:

f af(X)(p(X) ax = —J f(x) 99(x) ax
Q Q

9X; X

for all ¢ € C°(%2).
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A notion of p-capacity yields the characterization of removable
sets in W(;’p(Q). For compact set E C  we define

cap,(E, Q) = mf J [Vv|Pdx,

where Sg:= {f€ C°(Q): f>1in E}. A set E satisfies
W,P(Q\ E) = W,"P(Q) if and only if cap,(E, Q) = 0.

In this talk we are interested in removable sets of continuous
@-harmonic functions, where @ is a generalized Orlicz function.
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@ : Q2 x [0,0) — [0, 00] is a convex $(2)-function if
@ For every measurable function f: Q2 — R the function
x — @(x, f(x)) is measurable and for every x € Q the
function t — @(x, t) is non-decreasing.

@ @(x,0)=limio+ @(x, t) =0 and lim;—eo (X, t) = 0o for
almost every x € Q.
@ t— ¢(x, t)is convex and left-continuous.
u e W'?(Q)if uand its weak gradient have finite norms

. 1)
Ifllce@ =inf{A: [ @] x, dx <1} < oo,
Q A
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Generalized Orlicz functions have familiar special cases:
@ ¢(x, t) = tPis the classical p-growth
@ @(x,t) = @o(t) is the Orlicz growth (for example
@o(t) = log(e+ t)tP)
e ¢(x, t) = a(x)tP) is the variable exponent growth
@ @(x,t)=tP+ a(x)t9is the double phase growth
@ log(e+ t)tPX), () 4 g(x)t9™), .
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Let us write @5(S) := supyepna @(S) and
¢5(5) :=infxesna @(s). We need ¢ to satisfy the following
regularity assumptions

(AD) There exists B > 0 such that ¢ (B) <1< @~ (1/B)
(A1) There exists B > 0 such that ¢ (8s) < ¢(s) for every
se[1, (p5)"(1/1B)]

(alnc), There exists L, > 1 such that ‘P( 0 < Lp@ forallt<s

(aDec), There exists Lq > 1 such that ¢(X )< L% forall t > s
We write just (alnc) if there exists p > 1 such that ¢ satisfies

(alnc)p, similarly for (aDec).
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@(x, t) (A0) (A1) (alnc) (aDec)

tP True True p>1 p <

a(x)tP™X) a(-) ~1 peCloe essinf p(x) > 1 esssup p(x) < 0
log(e + 1)tP True True p>1(V2) p< oo (A2)

P + a(x)tq ael® aeco’g(q_p) p>1 g<o
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Definition
A function u € W'9(Q) is a A-harmonic function in Q if

J A(x,Vu)-Vwdx =0
Q

for all w € C° ().

We assume that Q ¢ R”, n> 2 is an open bounded set and
A:Q x R" — R" satisfies

@ x — A(x, z) is measurable

@ z— A(x, z) is continuous

o |A(x, 2)| < ¢ <p()|<éI|2I)

° oo(x, |z]) AKX, 2)-z

@ 0 < (A(x,z1)— A(x, z2)) - (z1 — z2) for almost every x € Q
and distinct zq, 2o

for fixed ¢1, co > 0 and a convex generalized Orlicz function ¢.
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Let ¢ be a convex ¢(Q2)-function and define

1
he(B(y, r)) = fB( )(p (x, 7) ax.
y.r

We get a Hausdorff measure of a set E by a standard
construction

Ho(E) = lim Hy,5(E) = lim |gfz ho(B)),
E

where CZ_ is a countable collection of balls B; C Q2 such that
they cover E and have radii less than é.
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We can also define a relative ¢-capacity following the standard
construction as in Baruah, Harjulehto & Hasto (2018): for a
compact K ¢ Q

cap,(K, ) := inf f o(x, |Vv])dx,
VESK Q
with similar test functions
Sk ={veW"?(Q)NnCy(Q):v=1inKandv=0}.

For open sets U we define

cap,(U, Q)= sup capy(K, Q)
KcU
K compact

and for any set E

cap,(E, Q) = sup cap,(U, Q).
EcUcQ
U open
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Suppose E is a relatively closed subset of Q2. Then the
following are equivalent

o W,%(Q)=w,*(Q\E)
@ cap,(E, 2)=0.

Since Hy(E) < oo implies that capy(E, ©2) = 0 by De Filippis &
Mingione (2020), we get the following result (without
harmonicity of u):

Corollary

Let E C Q) be a relatively closed subset of Q such that
Ho(E) < o0 and u € W'9(Q) satisfying

J A(x,Vu)-Vwdx =0
Q\E

forall w € C°(2\ E). Then u is a A-harmonic on the whole .

v
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In the case of ¢(x, t) = tP, a full characterization was obtained
by Kilpelainen and Zhong (2000).

Theorem

Let E C Q) be closed and s > 0. Suppose that u is a continuous
function in Q, A-harmonic in Q \ E such that

lu(x0) — u(y)| < Clxo— y|(EHP=/(P=1)

forally € Q and xo € E. If E is of s-Hausdorff measure zero,
then u is A-harmonic in Q.

| A\

Corollary

Let0 < a < 1. A closed set E is removable for a-Hblder
continuous p-harmonic functions if and only if E is of
n—p+ a(p— 1) Hausdorff measure zero.

See also Carleson (1967), Hirata (2011), Ono (2013).
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A variable exponent analogue of the classical case can be
found in paper of Latvala, Lukkari & Toivanen (2010).
Theorem

Let p(-) be alog-Hdlder continuous and E C Q be closed and

let u € C(Q) be a weak solution to — div(|Vul[P¥)2Vu) = 0 in
Q\ E, and assume that

lu(Xo) — u(y)l < Mlxo— y1?
forally € Q and xo € E forsome0 < a < 1. If
Hs(y(E) =0,
where

s(x) = n—p(x) + a(p(x) — 1),

then u is a weak solution in <.

See also Fu & Shan (2015).
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In Orlicz growth the result the following result was proven by
Challal & Lyaghfouri (2011).

Theorem

Let E C Q) be a closed set and s > 0. Assume that u is a
continuous function in Q, Ag,-harmonic in Q \ E, and such that
forsome a € (0, 1)

lux)—u(y)| < Llx—y|* VyeQ VxeE.

If E is of m-Hausdorff measure zero, with m = T(a), then u is
A-harmonic in 2.

v

ao ao 1
Here T(a)=(aa—1)——(1+a1) + + n—1
ao+ 1 a+1 a+1
and ap and a; correspond to p— 1 and g— 1 from (alnc), and

(aDec)q.
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Double phase case was settled by Chlebicka & De Filippis
(2020)

Theorem

Let 1 <1+ 7 and E ¢ Q be a closed subset and u € C(Q) be a

continuous solution to — div Ay(x, Du) = 0 in Q \ E such that,
forall x1 € E, xo € Q,

lu(x1) — u(x2)| < Culxs — xo|P0

for a positive, absolute constant C, and some By € (0, 1]. If
HHy()(E) =0, foro :=1— ﬁ—;(p— 1) then u is a solution in Q.

<

Here Hy(x, z) := |z|P9 + a(x)?|z|9?, - < 0 < 1.

1
p
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Corresponding result in generalized Orlicz spaces:

Theorem (Chlebicka & K)

Suppose 2 c R", n= 2, is a bounded open set and A satisfies
structural conditions with a convex ®—function

@ : Q% [0, ) — [0, o0) satisfying (A0), (A1), (alnc), and
(aDec)q with some1 < p< g<n. Let E C Q be a closed
subset and u € C(Q) N W'%(Q\ E) be a continuous solution to
—div(A(x, Vu)) =0 in Q \ E such that there exist some C, > 0
and 6 € (0, 1]

lu(x1) — u(x2)| < Cylxy — x2|®  forall xy €E, xp € Q.

If H.704(E) = 0, with Jo,¢(B(y, 1)) = r7° [, , #(x, r®~") dx,
then u is A-harmonic in Q.

Arttu Karppinen Removable sets with generalized Orlicz growth



If @(x, t) = tP, then
Jo,0(B(y. 1)) = r—ef @ (x, r% ") ax < crfr0=1p
B(y.r)
_ Crmpoe-1)

If @(x, t) = tP + a(x)t9, then

Jo.0(B(y, 1)) = ,—ef rPO=1) ¢ a(x)ra(®=1) gx
B(y,r)

< CJ r_p(1_%(p_1)) + a(x)1—§(p—1)r—q(1—§(p—1))
B(y.r)
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Main steps of the proof:

@ Existence and uniqueness of solutions v to obstacle
problems

@ Hoélder continuity of v for Hlder continuous ¢
@ The following estimate

—divA(x, Vv)(B(xo, r)) =: M(B(xo, r))
< Cr_QJ @ (x, r*") dx,
B(xo.r)

where v is a solution to a an obstacle problem, where u is
the obstacle.

@ Show what v is actually A-harmonic in  and equals to u
almost everywhere.
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Normally the argument is to use Hélder’s inequality

H(Bzr(X0)) < f n9 du = qf n%1A(x, Vv)-Vn dx
Bar(xo) Bar(x0)
@(-, |Vvl)
Cl—o IVl
|Vv| Lo*

However, the Luxemburg norms are difficult to estimate and the
best we got was

1 1/p’
H(Bar(x0)) < C— ] (J o (x, r*") dx) .
reg— (Xo, —IB(Xo,f)I) B(xo,r)

This is more or less equivalent to known Orlicz result and
recovers classical and variable exponent results.
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The way forward was to use Young’s inequality instead of

Hoélder’s inequality (here n is a standard cut-off function with
Vil < 3)

H(B(xo, 2r)) < J nidu=gq f n~"A(x, Vv) - Vn dx
B(Xo 4r Xo 4f)

o(x, [Vvl)
< cqr- f
B(x0,47) |VV|

o o(x, |Vv|) 0
<cqr- + @(x, r’|Vn|) dx
B(xo, 4r) Cwv

< qu‘ef @(x, Vv]) + @(x, r®|Vn|) dx
B(xo,4r)

0 osc v(x) o
<cqr- ol x, +o(x, r’|Vn|) dx
B(x0,8r) r

< cqr‘ef o(x, r%~ ") dx
B(X0,4I’)

r°|Vn| dx
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Thank you for your attention!
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