
Practically Applicable Formal Methods

Jędrzej Fulara and Krzysztof Jakubczyk

Institute of Informatics
University of Warsaw

ul. Banacha 2
02-097 Warsaw, Poland

Abstract. Formal methods are considered to be highly expensive. There-
fore, they are currently applied almost only in high risk software develop-
ment. In this paper, we show that formal techniques can be also efficiently
used in standard large-scale applications. We focus on the generation of
specifications which state the termination condition of for loops in Java
code (expressed as so called Java Modeling Language decreases clauses).
We demonstrate that with help of relatively simple techniques it is pos-
sible to successfully generate the clauses for almost 80% of the loops in
a number of widely deployed applications. Moreover, it turns out that the
remaining 20% cases contain loops which should be carefully reviewed
by software quality assurance personnel. The results show that our tech-
nique might be helpful in spreading the usage of formal methods onto
typical business software.
Keywords: formal methods, annotation generation, Java, termination

1 Introduction

Commercial applications often do not make use of specification and verification
techniques, because people believe that such theoretical solutions are not ap-
plicable to software created for the real market. Business managers know that
employing formal methods would increase quality of produced software, but
these methods are considered to be very expensive and impractical. Therefore
program specification and verification methods are used only in critical compo-
nents or high risk software, e.g. avionics [10] or in nuclear power plants control
software [23], places where correctness and reliability is crucial. It is considered
to be not profitable to apply these techniques to standard code.

In standard program production unit tests [4] are used to assure clients that
created code meets their requirements and to assure code producers that the
code is faultless. The structure of the majority of specifications languages, such
as JML [19] for Java or Microsoft Code Contracts for .NET platform [3] follows
the structure of programming languages, so it seems that specifications should
be written by the same team that has developed the code. Since the most expen-
sive resource in the code production is programmers’ time, letting them write
annotations along with the code would increase overall costs, making company
not competitive on the market. To reduce costs of verification techniques, one

can generate annotations automatically. They can be used later by static analy-
sis tools (e.g. ESC/Java 2 [9]). Automatic generation of annotations has already
been explored and several generators were presented, e.g. CANAPA [8] for JML,
Houdini [15] for ESC/Java or Daikon [14] for various programming languages.

In this paper, we present an approach to develop formal techniques which
may be useful in typical code. This approach relies on existing tools that check
if the code realises given specifications, like ESC/Java 2 or JmlRAC [7] but it
broadens their applicability by automatic generation of specifications based on
the existing code. If the code is mature and its functionality was well tested
using common testing techniques, generated specifications may still be helpful,
when someone wants to turn the code into a library or may act as documentation
for maintenance. If the code is immature, automatic generation of specifications
describing correctness properties of the program (such as loop termination, ab-
sence of NullPointerExceptions and ArrayIndexOutOfBoundsExceptions, etc.)
combined with static checking can give feedback on what errors are present in
the code. With these scenarios in mind we have developed a tool which helps
to build annotations generators and reveals code fragments that are not obvious
and should be reviewed by a human. In addition we have conducted an experi-
ment which shows that our approach, using even very basic techniques, can give
promising results on real, large-scale code.

Applicability of formal methods has been discussed in [5], but the considera-
tions are mostly limited to safety-critical systems. A great number of examples
of formal method applications can be found in [12]. There exist also tools that
analyse various source code properties. For example, Eclipse Metrics plugin [22]
helps to find unnecessarily complex places in the code. Semmle, a more powerful,
commercial code analyser, comes with its own Query Language [21]. It allows
to create and run your checks to enforce specific architecture rules and coding
standards. FindBugs [17] detects code instances that are likely to be errors. Our
CodeStatistics is designed to find any user defined patterns and is able to insert
annotations into the code. In [2], statistics collected on Java libraries are used as
a motivation to focus on particular aspect of the code in termination analysis. In
our approach statistics are used to estimate coverage of a given formal method.

1.1 JML

The Java Modelling Language is a behavioural specification language for Java
programs [18]. It allows to write specifications in the design-by-contract fashion,
introduced by B. Meyer for Eiffel [20]. JML includes annotations which make
possible to describe the invariant properties that are maintained by objects,
method specifications (pre- and postconditions) and some lower level properties
of the code (e.g. loop invariants). JML annotations are written in Java comments,
so they do not disturb standard Java compilers. JML already has very rich tool
support [6].

In our research presented in Section 3 we focus on generation of decreases
clauses to prove loop termination. These clauses consist of the decreases JML
keyword followed by expression whose value is decreased in each loop iteration

(and cannot be smaller than 0). Figure 1 shows a simple loop together with
a valid decreases formula.

//@ decreases 15 - i;
for (int i = 0; i < 15; i++) {

// Loop body that does not change i
}

Fig. 1: Simple for loop with decreases formula.

1.2 Formal Methods

This work is an attempt to answer the question what does it mean to create
specification-based formal methods suitable for typical large-scale business appli-
cations, where code correctness is not considered to be critical. A formal method
designed for the real market cannot increase development costs too much. The
”80/20” rule applies to the development process: 20% of work produces 80%
of a project—big parts of systems can even be generated automatically from
requirements or specifications [16], so business managers may expect the same
from formal methods. Thus we should provide them solutions that cover auto-
matically at least 80% of the code and leave the remaining 20% (often unclear,
messy and unnecessarily complicated) to be reviewed by the programmers.

If we could show that a formal method gives acceptable results on various,
existing projects, then the code producers might expect that this method would
be applicable also to their software. Thus, to rate the created formal method,
a large set of well known projects should be used.

Modern programming languages offer developers big flexibility in creating the
code. This may lead to some inconsistencies in the code that can result in errors
which are hard to find. Using tests we can check, if the code meets functional
requirements, but to find programming errors (such as null pointer dereferences,
not terminating loops etc.) that occur in rare, but sometimes critical situations,
we should employ other techniques. This is especially important when the code
changes its original context of use, what often happens in case it is turned to
a library or is subject to maintenance tasks. Generating logical conditions assur-
ing absence of such inconsistencies may be the first step in introducing formal
methods in real, large-scale code. Such conditions can be safely generated auto-
matically. However specifications that describe program semantics (for example
method pre- or postconditions) might be generated only for mature and well
tested code. When they would be generated from incorrect code, they could be
even misleading.

We suggest building simple verification methods iteratively. This process in-
volves following steps:

1. Select code constructions you want to handle—e.g. for loops

2. Execute created method on the selected set of projects.
3. Find cases that are not handled yet.
4. From these cases pick up one for which you are able to provide generic

solution.
5. Mark as solved cases covered by the solution.
6. Generate statistics and calculate effectiveness.
7. If effectiveness does not meet the selected threshold, go to step 2.

To apply this strategy in practice, one has to identify interesting constructions
and their frequencies in the real code. Collecting frequencies should be done
automatically, based on a big, representative sample of software. In our work we
have developed a flexible tool to compute necessary statistics on the code and
estimate how effective given annotation generation (and verification) method is.

For example let us classify Java for loops in the context of generating termi-
nation condition. First step will be to identify all interesting code constructions –
that is all for loops that appear in the code. Next we need to take a look at all
loops and try to find patterns, for which we could easily generate the termination
condition. The simplest pattern is a for loop which increments a counter up to
some constant, see Figure 1. Termination condition for this case is trivial.

Now we should generate statistics—how many loops matching this pattern
are present in the code and discover what part of all for loops is covered by
this case. After this we know for how many loops we can generate termination
condition. If this coverage does not meet the selected threshold, we should do
another iteration— look at the for loops that are not covered and produce new
patterns.

Each iteration of the presented methodology can take advantage of different
strategy and technique as far as the goal—achieving desired threshold, is ac-
complished. The main advantage of the presented procedure is a possibility to
use different verification techniques, each applied where it performs the best.

A formal method created using this approach will give satisfying results on
a large and representative set of projects. It should convince managers and de-
velopers that such solution can be successfully applied in their work.

In our research we have checked if it is possible to achieve, using simple
methods, the expected by the market 80% coverage for a practical problem. We
have applied the above described methodology to generate annotations for loop
termination in Java programs. Our results are described in Section 3.

2 The CodeStatistics Tool

To make the above described approach applicable in practice, a tool that helps
to rate the effectiveness of a verification method for different programming lan-
guages, is necessary. In our work we have developed CodeStatistics1, a tool for
Java. It can recognize patterns specified by the user, count their frequencies in
given Java projects and output all matching code fragments, together with their
1 Available at http://www.mimuw.edu.pl/~fulara/CodeStatistics

locations in the project. Patterns are defined in XPath and correspond to nodes
from the Abstract Syntax Tree of the processed project.

2.1 Source Code Representation

Source code can be represented as an AST [1]. Each node in AST denotes a con-
struct occurring in the source code. Figure 2 contains an example of AST repre-
sentation for a small code fragment. Patterns that CodeStatistics finds, can be

while (x>y) {
a = a + 1;
}

(a) Source code

while

>

x y

Block

=

a +

a 1

(b) Abstract Syntax Tree

<While>
<Cond> ... <Cond>
<Block>

<Assignment>
<Left>

<Var name="a"/>
</Left>
<Right>...</Right>

</Assignment>
</Block>

</While>

(c) XML representation

Fig. 2: Sample AST representation

expressed as structural conditions for the AST. Our tool is generic. The patterns
are not hardcoded, but supplied by the user as a part of the system configuration.
They should be written in a simple and expressive language. We have decided
to adapt XML as an AST text representation format and XPath as a query
language (described in Section 2.2).

2.2 XML and XPath

The Extensible Markup Language (XML) is a general-purpose specification for
creating custom markup languages recommended by the World Wide Web Con-
sortium (W3C). It is used in our tool to represent the AST.

In CodeStatistics user defines queries in XPath. XPath is a language for
finding information in an XML document and provides the ability to navigate
around the tree, selecting nodes by a variety of criteria. A path notation is used
to navigate over the hierarchical XML structure. A simple path consists of steps
separated by "/" operator, for example a/b, which returns all elements that
are children of any <a>, which is a child of the current node. It is possible to
test attribute values, invoke different functions (string handling, arithmetic, date
and time etc.). XPath supports also logical operators, allows to specify branches
(for example a/b[c] will return only these elements that have <c> child. It
is also possible to easily obtain ancestors, descendants, siblings etc. for a given

node. XPath was defined by W3C and the version 2.0 is now recommended as
a standard.

An XPath query that finds all while loops that assign something to variable a
(such as the loop in Figure 2) is presented in Figure 3. It finds all <While>
elements that have <Block> child that has Assignment descendant (but maybe
not direct child) that has <Left> child that has <Var> child which has attribute
name set to a.

//While[Block//Assignment/Left/Var/attribute::name="a"]

Fig. 3: XPath query example.

2.3 CodeStatistics in Eclipse

CodeStatistics works as an Eclipse plugin. One can generate statistics for any
part of a Java project (for any subtree of the project tree in Eclipse) or print
out the XML representation of the AST for a selected class.

User specifies path to his configuration file in CodeStatistics submenu avail-
able from Preferences in Window menu. One can choose there also output file
location and the desired logging level.

3 Experiment

In our experiment we have developed a generator of termination conditions of
for loops in Java programs. According to the approach described in this pa-
per, we have analysed structural properties of real, productional code. We have
categorized for loops in the following open source applications:

– Apache Hadoop2 is a software platform that lets one easily write and
run applications that process vast amounts of data. It implements MapRe-
duce [13], using the Hadoop Distributed File System. Hadoop was tested on
clusters with 2000 nodes.

– Google App Engine3 lets you run your web applications on Google’s in-
frastructure. App Engine applications are easy to build, easy to maintain,
and easy to scale as your traffic and data storage needs grow. With App
Engine, there are no servers to maintain: You just upload your application,
and it’s ready to serve your users.

– JEdit4 is a cross platform programmer’s text editor that is customizable
with plugins. JEdit provides syntax highlighting for more than 130 pro-
gramming languages and supports the most important character encodings.

2 http://hadoop.apache.org/
3 http://code.google.com/appengine/
4 http://www.jedit.org/

– Hibernate5 is a powerful, high performance object/relational persistence
and query service. Hibernate lets you develop persistent classes following
object-oriented idiom— including polymorphism, association, inheritance,
composition and collections. Hibernate allows you to express queries in its
own portable SQL extension (HQL), as well as in native SQL, or with an
object-oriented Criteria and Example API.

– Oracle Berkeley DB6 is an open source, fast, embeddable database that
eliminates the overhead of SQL. It stores arbitrary key/value pairs as byte
arrays. Berkeley DB can handle multiple threads or concurrent processes
accessing the database.

– Tomcat7 is a servlet container developed by the Apache Software Founda-
tion. It implements the Java Servlet and Java Server Pages specifications
and it provides a web server for Java code to run.

Details of these projects are presented in Figure 4.

Project Size No. of for loops
Apache Hadoop 221 1817
Google App Engine 184 1048
JEdit 108 974
Hibernate 247 720
Oracle Berkeley DB 154 1191
Tomcat 181 1452

Fig. 4: Details of analysed projects (sizes are given in Kilo Lines of Code).

Our goal was to prove automatically termination property of at least 80%
of for loops in the code. The ideas used in this research are very basic. The
main advantage of our approach is that we are showing the effectiveness of such
methods in practical, large-scale applications.

Literal Let us start with the simplest type of for loop (Figure 5a).

int j = 0;
//@ decreases 5 - i;
for (int i = 0; i < 5; i += 1){

j += i;
}

(a) For to a literal.

public final static int CONST = 5;
...
//@ decreases i - CONST;
for (int i = 15; i > CONST; i--){

...
}

(b) For to a constant.

5 http://www.hibernate.org/
6 http://www.oracle.com/technology/products/berkeley-db/index.html
7 http://tomcat.apache.org/

In this case, the control variable i is compared to a literal (5). If i is not
modified in the loop body, we can automatically generate the appropriate JML
decreases formula. Using CodeStatistics one can find out that this kind of loops
cover 2% of all for loops (in the set of projects used in this experiment).

Constant In the next step we focus on loops that use in the comparison a con-
stant defined in the code (Figure 5b). As soon as the control variable i is not
modified in the loop body, the decreases formula can be generated automatically.
These two cases cover together 8,4% of for loops.

Local expression Another simple case that can be easily solved automatically is
when the control variable is compared to an arithmetic expression composed of
local variables that are not modified in the loop body (Figure 5).

int j = 0, m = 9, n = 12;
//@ decreases n + m - 7 - i;
for (int i = 0; i < n + m - 7; i++)

j += i;

Fig. 5: For to a non-modified local variable.

The decreases formula would be n+m− 7− i (if only i, n and m were not
modified in the loop body). This case covers 18,6% of all for loops. Together
27% are solved now.

int[] tab = new int[17];
//@ decreases tab.length - i;
for (int i = 0; i < tab.length; i++)

tab[i] = i * i;

Fig. 6: For to a final field.

Final field Often programmers iterate over a table. This case can be generalized
as iterating to a final field in an object (Figure 6). We have chosen a very
restrictive "alias safe" approach. If the guard (in our simple example tab.length)
was of form o1.o2.o3...on, then

– o1 must either be declared as final or be a local variable that is not assigned
in the loop body,

– all o2, o3, ... on must be declared as final.

In this case, the well-known problem of modification using aliases is eliminated.
Using CodeStatistics it occurs that this is a very common use of a for loop: it

Literal or constant

8.4%

Local expression

18.6%

Final field
47.7%

Not classified

25.3%

Fig. 7: Contribution of each loop type.

covers 47,7% of all cases. The above described categories cover 74,7% of all for
in the code.

All the above described categories can be expressed by pure syntactic criteria.
In order to verify that the obtained results should also apply to other projects,
we have checked our method against a fresh set of applications:

– AspectJ8 is a seamless aspect-oriented extension to the Java programming
language that enables clean modularization of these ’crosscutting concerns’.

– Spring9 is an application framework for Java platform. It includes Inver-
sion of Control container that manages object lifecycles. Objects created
by the container (Beans) are defined in XML configuration files. They can
be obtained using the Dependency Injection pattern. Spring includes also
Aspect-Oriented Programming framework.

– Vuze10 is an application to exchange and distribute data over the Internet.
In the BitTorrent protocol implemented by Vuze, the amount of downloaded
and uploaded data are linked, to eliminate users that do not want to share
downloaded data. Vuze is now the most popular BitTorrent client.

On these projects the recognized loop types cover 71% of for loops.

3.1 Bad Loops Found

Using CodeStatistics, we were also able to find non-trivial loops. They were
sometimes written improperly, sometimes could be simplified. Our tool provides
them (their code, location in the project etc.) so that a programmer can handle
them manually. Using output generated by CodeStatistics it was very easy to
select examples for this section. We have just taken random examples from the
code snippets that were marked as "not classified" and were short enough to be
included in this paper.

In the code fragment from Figure 8 it is not obvious why the loop should
be terminating. At first it seems correct but one can notice that the inequality
direction in termination condition is against intuition. The loop will terminate
8 http://www.eclipse.org/aspectj/
9 http://www.springsource.org/

10 http://www.vuze.com

for (int i=nSamples - 1; i < nSamples - nRemove; i--)
deltas.remove(i);

Fig. 8: Vuze: NetworkAdminSpeedTesterBTImpl.java, lines 644-645

only if nSamples - nRemove gets smaller than i, but this can be done only
inside the deltas.remove method.

In the next example (Figure 9) the termination depends on data stored in
some array (data). If it contained only negative numbers, the loop would not
terminate (and would probably cause an ArrayIndexOutOfBoundsException).

for (int shift=0; ; shift+=15) {
long s=data[index++];
if (s < 0) {

val+=(-1 - s) << shift;
} else {

val+=s << shift;
break;

}
}

Fig. 9: BerkeleyDB: PackedOffsets.java, lines 120-128

In the example from Figure 10 the control variable j is decreased in the loop
body. Since in some iterations j does not change, and count is not modified in
the loop body, it is not clear why should this loop terminate (in fact it terminates,
because count is decreased inside removeHeader(j−−) function call).

for (int j=i + 1; j < count; j++)
if (headers[j].getName().equalsIgnoreCase(name))

removeHeader(j--);

Fig. 10: Tomcat: MimeHeaders.java, lines 268-272

In all examples presented in this section, it is not obvious why the loops
are eventually terminating. It should be at least documented why it is working
correctly. It should be explained in the loop and in the place which is responsible
for the termination (e.g. in example from Figure 8, in the deltas.remove()
function it should be marked that termination of some loop depends on changes
made here to the nremove field). Finding such error prone code fragments is
crucial also for maintenance.

4 Summary

We have presented a simple approach for creating verification methods and de-
scribed the CodeStatistics tool that supports this methodology. We have also
applied the approach in an experiment—simple loop termination prover for
Java for loops. The received results show that basic verification techniques can
be successfully used in real, productional code. Tools similar to ours can be re-
ally helpful in Quality Assurance process. Code reviewers can pay less attention
to simple cases, hence they can focus on difficult aspects that are usually more
error prone. Such methods can even guarantee correctness of some aspect of the
code (in our case that for loops terminate). They can be used as a first step in
introducing formal methods into business applications.

5 Future Work

We plan to employ the described way of creating verification methods, CodeStatis-
tics and Abstract Interpretation techniques [11] to prove that no incorrect array
accesses may occur during program execution (or find places where such errors
could possibly occur).

6 Acknowledgements

This work was partly supported by Polish government grant 177/6.PR UE/2006/7
and Information Society Technologies programme of the European Commission
FET project IST-2005-015905 MOBIUS. This paper reflects only authors’ views
and the Community is not liable for any use that may be made of the information
contained therein.

References

1. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison Wesley, August 2006.

2. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Dealing with numeric fields in
termination analysis of java-like languages. In FTfJP, pages 77–87, 2008.

3. M. Andersen, M. Barnett, M. Fähndrich, B. Grunkemeyer, K. King, and F. Lo-
gozzo. Code Contracts User Manual.

4. K. Beck. Test Driven Development: By Example. Addison-Wesley Professional,
2002.

5. J. P. Bowen and M. G. Hinchey. The use of industrial-strength formal methods. In
Proceedings of 21st International Computer Software and Application Conference
(COMPSACŐ97, pages 332–337. IEEE Computer Society Press, 1997.

6. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. Int. J. Softw. Tools
Technol. Transf., 7(3):212–232, 2005.

7. P. Chalin and F. Rioux. Jml runtime assertion checking: Improved error reporting
and efficiency using strong validity. In FM ’08: Proceedings of the 15th international
symposium on Formal Methods, pages 246–261, Berlin, Heidelberg, 2008. Springer-
Verlag.

8. M. Cielecki, J. Fulara, K. Jakubczyk, and L. Jancewicz. Propagation of JML
non-null annotations in Java programs. In PPPJ, pages 135–140, 2006.

9. D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML: Progress
and issues in building and using ESC/Java2 and a report on a case study involving
the use of ESC/Java2 to verify portions of an Internet voting tally system. In
In Construction and Analysis of Safe, Secure and Interoperable Smart Devices:
International Workshop, CASSIS 2004. Springer–Verlag, 2004.

10. P. Cousot. Avionic software verification by abstract interpretation. In 2007 ISoLA
Workshop On Leveraging Applications of Formal Methods, Verification and Valida-
tion. Special Workshop Theme: Formal Methods in Avionics, Space and Transport,
Poitiers, France, December 12–14 2007.

11. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

12. D. Craigen, D. Craigen, O. Canada, O. Canada, S. Gerhart, S. Gerhart, T. Ralston,
and R. H. Brown. An international survey of industrial applications of formal
methods volume 2 case studies, 1993.

13. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008.

14. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 69(1–3):35–45, Dec. 2007.

15. C. Flanagan, K. Rustan, and M. Leino. Houdini, an Annotation Assistant for
ESC/Java. In In Proceedings of the International Symposium of Formal Methods
Europe, pages 500–517, 2001.

16. D. Harel and R. Marelly. Specifying and executing behavioral requirements: the
play-in/play-out approach. Software and System Modeling, 2(2):82–107, 2003.

17. D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106,
2004.

18. G. Leavens and Y. Cheon. Design by contract with jml, 2003.
19. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML

reference manual.
20. B. Meyer. Object-Oriented Software Construction. Prentice Hall PTR, March 1997.
21. O. Moor, D. Sereni, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ekman, N. Ongk-

ingco, and J. Tibble. .QL: Object-oriented queries made easy. Generative and
Transformational Techniques in Software Engineering II: International Summer
School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised Papers, pages 78–
133, 2008.

22. L. Walton. Eclipse metrics plugin: http://metrics.sourceforge.net/.
23. J. Yoo, S. Cha, and E. Jee. A verification framework for fbd based software in

nuclear power plants. In APSEC ’08: Proceedings of the 2008 15th Asia-Pacific
Software Engineering Conference, pages 385–392, Washington, DC, USA, 2008.
IEEE Computer Society.

