Imperative Programming in Sets with Atoms*

Mikotaj Bojanczyk and Szymon Torunczyk

University of Warsaw, Warsaw, Poland

——— Abstract

We define an imperative programming language, which extends while programs with a type for
storing atoms or hereditarily orbit-finite sets. To deal with an orbit-finite set, the language has
a loop construction, which is executed in parallel for all elements of an orbit-finite set. We show
examples of programs in this language, e.g. a program for minimising deterministic orbit-finite

automata.

1998 ACM Subject Classification D.3.3 Language Constructs and Features, F.4.1 Mathematical
Logic

Keywords and phrases Nominal sets, sets with atoms, while programs

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2012.4

Introduction

This paper introduces a programming language that works with sets with atoms, which
appear in the literature under various other names: Fraenkel-Mostowski models [2], nominal
sets [7], sets with urelements [1], permutation models [9].

Sets with atoms are an extended notion of a set — such sets are allowed to contain
“atoms”. The existence of atoms is postulated as an axiom. The key role in the theory is
played by permutations of atoms. For instance, if a, b, ¢, d are atoms, then the sets

{a,{a,b,c},{a,c}} {b,{b,c,d},{b,d}}

are equal up to permutation of atoms. In a more general setting, the atoms have some struc-
ture, and instead of permutations one talks about automorphisms of the atoms. Suppose
for instance that the atoms are real numbers, equipped with the successor relation © = y+1
and linear order x < y. Then the sets

{-1,0,0.3} {5.2,6.2,6.12}
are equal up to automorphism of the atoms, but the sets
{0,2} {5.3,8.3}

are not.

Here is the definition of sets with atoms. The definition is parametrized by a notion of
atoms. The atoms are given as a relational structure, which induces a notion of automorph-
ism. (One can also consider atoms with function symbols, but we do not do this here.) A
set with atoms is any set that can contain atoms or other sets with atoms, in a well-founded

way'. The key notion is the notion of a legal set of atoms, defined below. Suppose that

* Supported by ERC Starting Grant “Sosna”.
! Formally speaking, sets with atoms are defined by induction on their rank, which is an ordinal number.
Sets of a given rank can contain atoms and sets of lower rank.

@@@@ © M. Bojanczyk, S. Toruriczyk;
O™ licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 4-15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.4
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Bojanczyk and S. Torunczyk

X is a set with atoms. If 7 is an automorphism of atoms, then 7 can be applied to X, by
renaming all atoms that appear in X, and appear in elements of X, and so on. We say that
a set S of atoms is a support of the set X if X is invariant under every automorphism of
atoms which is the identity on S. (For instance, the set of all atoms is supported by the
empty set, because every automorphism maps the set to itself.) A set with atoms is called
legal if it has some finite support, each of its elements has some finite support, and so on
recursively.

Sets with atoms were introduced in set theory by Fraenkel in 1922. Fraenkel gave a set
of axioms for set theory, call it Zermelo-Fraenkel with Atoms (ZFA), which is similar but
not identical to the standard axioms of Zermelo-Fraenkel (ZF). One difference is that ZFA
does not have the extensionality axiom: two objects (think of different atoms) might have
the same elements, but not be equal. Fraenkel gave two models of ZFA: one which has the
axiom of choice, and one which does not. The first model contains all sets with atoms, while
the second model restricts to the legal ones. Legal sets with atoms were further developed
by Mostowski, which is why they are sometimes called Fraenkel-Mostowski sets.

In this paper, we are exclusively interested in sets with atoms that are legal. Therefore,
from now on all sets with atoms are assumed to be legal.

Sets with atoms (as remarked above, we implicitly restrict to legal ones) were redis-
covered for the computer science community, by Gabbay and Pitts [7]. In this application
area, atoms have no structure, and therefore automorphisms are arbitrary permutations of
atoms. It turns out that atoms are a good way of describing variable names in programs or
logical formulas, and the automorphisms of atoms are a good way of describing renaming of
variables. Sets with atoms are now widely studied in the semantics community, under the
name of nominal sets (the name is so chosen because atoms describe variables names).

Sets with atoms turn out to be a good framework for other applications in computer
science. These other applications have roots in database theory, but touch other fields, such
as verification or automata theory. The motivation in database theory is that atoms can
be used as an abstraction for data values, which can appear in a relational database or
in an XML document. Atoms can also be used to model sources of infinite data in other
applications, such as software verification, where an atom can represent a pointer or the
contents of an array cell.

Sets with atoms are a good abstraction for infinite systems because they have a different,
more relaxed, notion of finiteness. A set with atoms is considered finite if it has finitely many
elements, up to automorphisms of atoms. (The formal definition is given later in the paper.)
We call such a set orbit-finite. Consider for example sets with atoms where the atoms have
no structure, and therefore automorphisms are arbitrary permutations. The set of atoms
itself is orbit-finite, actually has only one orbit, because every atom can be mapped to every
other atom by a permutation. Likewise, the set of pairs of atoms has two elements up to
permutation, namely (a,a) and (a, b) for @ # b. Another example is the set of A-terms which
represents the identity, with variables being atoms:

{A\a.a : a is an atom};

this set has one orbit. Yet another example concerns automata with registers for storing
atoms, as introduced by Francez and Kaminski in [10]: up to permutation, there are finitely
many configurations of every such automaton.

The language of sets with atoms is so robust that one can meaningfully restate all
definitions and theorems of discrete mathematics replacing sets by (legal) sets with atoms
and finite sets by orbit-finite sets, see [3, 5] for examples in automata theory. Some of the

FSTTCS 2012

Imperative Programming in Sets with Atoms

restated theorems are true, some are not. Results that fail after adding atoms include all
results which depend on the subset construction, such as determinisation of finite automata,
or equivalence of two-way and one-way finite automata. Results that work after adding
atoms include the Myhill-Nerode theorem, or the equivalence of pushdown automata with
context free grammars (under certain assumptions on the structure of atoms, which will be
described below).

The papers [3, 5] were concerned with generalisations of finite state machines, like finite
monoids and finite automata. But what about general computer programs? Is there are
notion of computability for sets with atoms? One attempt at answering this question was [4],
which described a functional programming language equipped with types for storing orbit-
finite sets. The present paper gives an alternative answer: an imperative programming
language, called while programs with atoms?.

What is the advantage of having a programming language which can handle sets with
atoms, be it functional or imperative? Consider the following algorithmic tasks coming from
automata theory:

1. Given a nondeterministic finite automaton, decide if it is nonempty.

2. Given a deterministic finite automaton, compute the minimal automaton.

3. Given a finite monoid, decide if it is aperiodic.

4. Given a context-free grammar, compute an equivalent pushdown automaton.

Each of these tasks can be studied in the presence of atoms. (Finite automata with atoms
are defined in [5], finite monoids with atoms are defined in [3], context-free grammars and
pushdown automata can be defined in the same spirit.) Without a computation model
of some sort, it is not clear what it means that the above tasks are decidable. In the
papers [3, 5], the computational model depended on coding: a finite automaton with atoms
was encoded as a normal string over the alphabet {0,1}, and then the remainder of the
algorithm used a standard Turing machine. Such coding is not a satisfactory solution, since
algorithms and correctness proofs that involve coding are tedious and error-prone.

The picture becomes much simpler when using a language that manipulates directly
objects with atoms. The coding issues have to be dealt with only once; when designing
the language and proving that its programs can be simulated by usual computers. What is
also interesting, if the syntax of the programming language is based on a classical syntax
without atoms (in this paper, we add atoms to while programs), then one can easily com-
pare programs for the same task with and without atoms. For instance, in the four tasks
described above, one can write a program with atoms that actually has the same code as the
corresponding program without atoms, only the interpreter used to execute it has different
semantics.

1 Orbit-finite sets with atoms

In this section, we define orbit-finite sets with atoms. The definition of an orbit-finite set
can be stated for any notion of atoms (modelled as a relational structure). However, without
additional assumptions on the atoms, the notion of orbit-finite set might not be well behaved,
e.g. orbit-finite sets might not be closed under products or finitely supported subsets. An
assumption that guarantees good behaviour of orbit-finite sets is called homogeneity, and is
defined below.

2 We believe that the two programming languages are equivalent, under a suitable encoding, but we do
not prove this in the paper.

M. Bojanczyk and S. Toruniczyk

Homogeneous structures

Recall that the notion of a set with atoms is parametrized by a relational structure for the
atoms. Examples of atoms are:

(N, =) natural numbers (or any countably infinite set) with equality

(Q, <) the rational numbers with their order

The two kinds of atoms listed above will be called, respectively, the equality atoms and
the total order atoms. In this paper, we require the atoms to be a homogeneous relational
structure, i.e. one which satisfies the following property:

Any isomorphism between two finite substructures of the atoms extends to an auto-
morphism of the atoms.

Moreover, we assume that the atoms are countable, and the vocabulary of the relational
structure is finite. The programming language we describe in this paper will work with
any atoms satisfying the conditions above, plus an additional decidability condition to be
defined below?.

The equality and total order atoms are countable, homogeneous and have a finite vocab-
ulary. An example of a structure which is not homogenous is (Z, <), the set of integers with
their order. Indeed, the subsets {1,2} and {1, 3} induce isomorphic substructures of (Z, <);
however, there is no automorphism of Z which maps 1 to 1 and 2 to 3. In the rest of the
paper, we always assume that the atoms are a countable homogeneous structure.

An interesting example of a homogeneous structure is the random (undirected) graph,
also called the Rado graph.

» Example 1 (Random graph). The universe of this structure — representing the vertices of
the graph — is the set of natural numbers. There is one binary relation, representing the
edges of the graph; it is symmetric and irreflexive. The edges are constructed as follows:
independently for each pair of vertices v, w, with probability 1/2 we declare that v and w are
connected by an edge. One can prove that two graphs constructed as above are isomorphic
with probability 1; which is why we talk about the random graph and not some random
graph. Moreover, the random graph is homogeneous.

An important property of homogeneous structures is that finitely supported relations
coincide with sets of atoms definable by quantifier-free formulas which can use constants
from the atoms. More precisely, we have the following.

» Proposition 1. Assume that the atoms are a homogeneous structure over a finite vocabu-
lary. Let S be a finite set of atoms, and R a set of n-tuples of atoms. Then, R is S-supported
if and only if it is defined by a quantifier-free formula over the vocabulary of the atoms, ex-
tended by constant names for elements of .S.

For a given S and n, there are finitely many quantifier-free formulas over n-variables
which use the (finite) vocabulary and constants from S. From the above proposition it
follows that there are finitely many S-supported sets of n-tuples of atoms, for any given S
and n.

3 With slightly more work, the programming language would also work for the more general notion of
atoms that are oligomorphic or, equivalently, w-categorical.

FSTTCS 2012

Imperative Programming in Sets with Atoms

Hereditarily orbit-finite sets

The reason why we are interested in sets with atoms is that there is an interesting new
notion of finiteness, which is described below. Recall that for each legal set X there is a
finite support 5, i.e. the set X is invariant under the action of automorphisms which are the
identity over S. We call such automorphisms S-automorphisms. Stated equivalently, X is a
union of S-orbits, i.e. equivalence classes of the following relation ~g:

T ~g Y if m-x =y for some S-automorphism .

We say that X is orbit-finite if the union is finite, i.e. X is union of finitely many S-orbits
for some finite set of atoms S. One of the important properties of homogeneous atoms is
that the definition of orbit-finiteness does not depend on the choice of support S:

» Lemma 2. Let X be a (legal) set, which is supported by sets S and T. Then X has finitely
many S-orbits if and only if it has finitely many T-orbits.

Other advantages of homogeneous atoms include:
For every n € N, every finitely supported subset of n-tuples of atoms is orbit-finite;
Orbit-finite sets are closed under products and finitely supported subsets.

In our programming language, we deal with sets that are hereditarily orbit-finite, i.e. sets
which are orbit-finite, whose elements are orbit-finite, and so on recursively until an atom or
empty set is reached. (One can show that for every hereditarily orbit-finite the nesting of set
brackets is a natural number, as opposed to other sets, where the nesting may be an ordinal
number.) As we will show, such sets can be presented in a finite way, and manipulated using
algorithms.

Decidable homogeneous structures

By the theorem of Fraissé [6], a homogenous structure is determined uniquely (up to iso-
morphism) by its age, which is the class of structures that embed into it. To permit com-
putation, we will require an effective representation of this family.

» Definition 3 (Decidable homogeneous structure). A homogeneous structure 2 is called
decidable if its vocabulary is finite and its age is decidable, i.e. one can decide whether a
given finite structure embeds into .

The equality atoms and the total order atoms are decidable: the age of the equality atoms
is all finite structures over an empty vocabulary, while the age of the total order atoms is
all finite total orders. By Fraissé’s theorem, an algorithm deciding the age defines uniquely
(up to isomorphism) the structure of Atoms. It follows that there are, up to isomorphism,
countably many decidable homogenous structures. By [8], there are uncountably many non-
isomorphic homogeneous structures over the signature containing one binary symbol, so
some of them are undecidable.

The point of considering hereditarily orbit-finite sets in decidable homogeneous structures
is that they can be represented without atoms, and these representations can be manipulated
by algorithms.

» Theorem 4. Suppose that the atoms are a decidable homogeneous structure over a finite
vocabulary. Then there are data structures for representing atoms and hereditarily orbit-
finite sets, which admit the following operations:

M. Bojanczyk and S. Toruniczyk

1. Given atoms ay,...,a, and a n-ary relation R from the vocabulary of the atom structure,
decide if R(aq,...,ay,) holds;

Given hereditarily orbit-finite sets X,Y , decide if X =Y ;

Given X, which is a hereditarily orbit-finite set or an atom, compute {X};

Given hereditarily orbit-finite sets X,Y, compute X UY;

Given a hereditarily orbit-finite set X, compute some finite support; *

S &G~

Given a hereditarily orbit-finite set X and a finite set S of atoms, produce all S-orbits
that intersect X ; °

7. Decide if a hereditarily orbit-finite set X is empty. If it is nonempty, produce an element.

For instance, under the equality atoms, an atom can be represented as a natural number,
encoded as its binary representation. The total order atoms are rational numbers, so they
can also be represented, and the order relation can be computed. The representation for
hereditarily orbit-finite sets is more involved.

2 Imperative programming with atoms

In this section, we present the contribution of the paper, an imperative programming lan-
guage with atoms. The language extends while programs with two types: one for storing
atoms and one for storing hereditarily orbit-finite sets. To deal with an orbit-finite set, the
language has a loop construction, which is executed in parallel for all elements of an orbit-
finite set. We end the paper with examples of programs in this language, e.g. a program for
minimising deterministic orbit-finite automata.

2.1 Definition of the imperative language

The language is called while programs with atoms. The definition of the language depends
on the choice of atoms (but not too much). We assume that the atoms are a decidable ho-
mogeneous relational structure over a finite vocabulary, as in the assumptions of Theorem 4.

The datatype.

We only have two datatypes in our language: atom and set. A variable of type atom stores
an atom or is undefined. A variable of type set stores a hereditarily orbit-finite set. To
have a minimal language, we encode other types inside set, using standard set-theoretic
encodings. For example, the boolean true is encoded by {f}, and the boolean false is
encoded by 0.

Syntax.

The language contains the following constructions:

4 This finite support is represented as a list of atoms.

5 The S-orbits that intersect X are given as a list of sets. We claim that this list is finite. Indeed, the set
X has some support, say 1. Without loss of generality, we may assume that S C T, because supports
are closed under adding elements. By assumption that X is orbit-finite and by Lemma 2, X is a finite
union of T-orbits. Since S C T, every S-orbit is a union of T-orbits. It follows that X intersects at
most finitely many S-orbits.

FSTTCS 2012

10

Imperative Programming in Sets with Atoms

Constants. There are infinitely many constants of type atom: one constant for every
atom. (These constants depend on the choice of atom structure, e.g. there will be different
constants for the equality atoms and different constants for the total order atoms.) There
are constants () and Atoms of type set, representing the empty set and the set of all atoms.
Expressions. Expressions (which have values in the type atom or set), can be built
out of variables and constants, using the following operations:

1. Variables and constants are expressions. We assume that the types of the variables are
declared in a designated preamble to the program; variables of type atom are initially
undefined, while variables of type set are initially set to ().

2. For every symbol o in the vocabulary of the atom structure, if o has arity n and
e, eq,...,e, are expressions of type atom, then

o(er,e9,...,6ep)

is an expression which evaluates to true or false (such an expression is of type set).
For instance, when the atom structure is the total order atoms, and x and y are
variables of type atom, then x < y is an expression (we write < using infix style).

3. Comparisons e € f and e = £, which evaluate to true or false. In these comparisons,
e and f can be either of type atom or set.

4. Union e U £, intersection e N £ and set difference e — £, for e and £ of type set.

5. A unary singleton operation which adds one set bracket {e}. Here, e can be either of
type atom or set.

6. An operation which extracts the unique atom from a set:

) f when e = {f} for some £ of type atom
theunique(e) =
undefined otherwise.

Values of expressions can be assigned to variables using the instruction x := e, provided
that the types match.

Programming constructions.

1. A conditional if e then I else J. If the value of expression e is true &f {0}, then

program I is executed, otherwise program J is executed.

2. A while loop while e do I, which executes the program I, while the value of expression
e is true.

3. A parallel for loop for x in X do I. Here X is an expression of type set and x is
a variable of either type. The general idea is that the instruction I is executed, in
parallel, with one thread for every element x (of appropriate type) of the set X. The
question is: how are the results of the threads combined? We answer this question in
more detail below.

Semantics.

We now sketch a semantics (operational style) for the language. In a given program, a
finite number of variables is used. A state of the program is a valuation v which assigns
atoms (or the undefined value) to variables of type atom and hereditarily orbit-finite sets to
variables of type set. Essentially, a valuation is a (finite length) tuple containing atoms and
hereditarily orbit-finite sets, and therefore the set of all valuations is a legal set with atoms
(but not orbit-finite). A state of the program can be represented in a finite way using the
data structures from Theorem 4.

M. Bojanczyk and S. Toruniczyk

The semantics of a program is a partial function, which maps one valuation to another
valuation. (The function is partial, because for some valuations, the program might not
terminate.) We will say that ezecuting the program P on the valuation v results in a
valuation p if the semantics of the program transforms the valuation v to the valuation pu.

We only explain the semantics for programs of the form

for x in X do I,

the other semantics are defined in the standard way. Suppose that we want to execute the
program on a valuation v. Two cases need be considered: when x is a variable of type set
or when x is variable of type atom. The set v(X) might store elements of both types set
and atom. We say that an element x € v(X) is appropriate if it matches the type of the
variable x. We define the valuation resulting from executing the above instruction on the
valuation v as follows. For every appropriate = € v(X), we execute the instruction I on the
valuation v, which is obtained from the valuation v by putting value = in the variable x. If
for some appropriate x the program I does not terminate, then the whole for program does
not terminate. Otherwise, for each appropriate € v(X), we get a valuation u, obtained
from v, by executing I. We now want to aggregate the valuations u, into a single valuation
w, which will be the result of executing the for program. If y is a variable of type atom,
then in order for p(y) to be defined, we require that all valuations agree on the value of y:
def | @ if for all appropriate x € v(X), p(y) = a
p(y) = { (1)

undefined otherwise

Set variables are aggregated using set union, i.e. every variable y of type set gets set to

p(y) = U e (¥)- (2)

appropriate z€v(X)

The definition of the language is now complete.

Results

One can show that our semantics is well-defined, i.e. executing instructions of our program-
ming language does not cause a set variable to be assigned a set that is not hereditarily
orbit-finite. We also prove that the programs can be simulated without atoms, in the follow-
ing way. Thanks to Theorem 4 the code of a program, as well as a valuation of the variables,
can be represented in a finite way without atoms.

» Theorem 5. There is a normal program (without) atoms P, which inputs:
a while program with atoms I;
a valuation v of the variables that appear in I;
represented using the data structures of Theorem 4, and does the following:
if I does not terminate when starting in v, then also P does not terminate;
if T terminates when starting in v, reaching valuation u, then also P terminates, and
produces a representation of valuation p.

Since the representations do not use atoms, they can be seen as standard bit strings,
i.e. words over the alphabet {0,1}. Therefore P can be modelled as a Turing machine, which
inputs two bit strings and outputs a single bit string (and possibly does not terminate). In
the proof of the above theorem we use the properties of the representations which are listed
in Theorem 4.

The rest of the paper is devoted to example programs.

11

FSTTCS 2012

12

Imperative Programming in Sets with Atoms

2.2 Example programs

Before writing example programs, we introduce some syntactic sugar which makes program-
ming easier.

Notational conventions

Like in Python, we use indentation to distinguish blocks in programs. We write {x,y}
instead of {{x}U{y}}. We extend the syntax with functions (with the usual semantics); the
syntax of functions is illustrated on the Kuratowski pairing function

function pair(x,y)
return {{x},{x,y}}

We write (a,b) instead of pair(a,b). Here is the function which projects a Kuratowski
pair of sets into its first coordinate, and returns {) if its argument is not a Kuratowski pair
of sets. All the variables are assumed to be of type set.

function first(p)
for a in p do
for b in p do
for x in a do
for y in b do
if p = {{x},{x,y}} then ret:=x;
return ret

The second coordinate of a pair is extracted the same way. Similarly, we could write functions
for projections of pairs storing atoms, or pairs storing one atom and one set. Using the
projections, we can extend the language with a pattern-matching construction

for (x,y) in X do I

which ranges over all elements of X that are pairs of elements of appropriate types. We use
a similar convention for tuples of length greater than two.

» Example 2 (The diagonal). As a warmup, we write a program that produces a specific set,
namely

{(a,a) : a € Atoms}.
The following program calculates this set in variable X.
for x in Atoms do X := X U {(x,x)}
The same effect would be achieved by the following program.
for x in Atoms do X := {(x,x)}

» Example 3 (Programs that use order on atoms). In the same spirit, we can produce sets
that refer to some structure on the atoms.

Consider the total order atoms. Recall that there is an expression x < y that says if
the atom stored in variable x is smaller than the atom stored in variable y. For instance,
the following program generates the growing triples of atoms.

M. Bojanczyk and S. Toruniczyk

for x in Atoms do
for y in Atoms do
for z in Atoms do
if (x < y) and (y < 2z) then X := {(x,y,2)}

» Example 4. Consider the total order atoms. The following program produces in variable
Y the family of all closed intervals.

for (x,y) in Atoms do
for z in Atoms do
if (x < z) and (z < y) then X := X U {z}
Y :=Y U {X}

Actually, for every atom structure and for every hereditarily orbit-finite set X there
exists a program which produces the set X.

» Example 5 (Reachability). We write a program which inputs a binary relation R and a
set of source elements S, and returns all elements reachable (in zero or more steps) from
elements in S via the relation R. The program is written using until, which is implemented
by while in the obvious way.

function reach (R,S)
New := S
repeat
0ld := New
for (x,y) in R do
if x € 01d then New := 01d U {y}
until 01d = New

The program above is the standard one for reachability, without any modifications for the
setting with atoms. Why is the program still correct in the presence of atoms?

Suppose that S is a finite set of atoms that supports both the relation R and the source
set S. Let X be the set that contains S and every element that appears on either the first
or second coordinate of a pair from R. The set X is easily seen to be supported by S and to
have finitely many S-orbits. Let X3, X5, ..., X denote the S-orbits of X. Therefore,

X=X uUuXoU---UXj. (3)

It is easy to see that after every iteration of the repeat loop, the values of both variables New
and 01d are subsets of X that are supported by S. Therefore the values of these variables
are obtained by selecting some of the orbits listed in (3). In each iteration of the repeat we
add some orbits, and therefore the loop can be iterated at most k times.

» Example 6 (Automaton emptiness). Following [5], we define an orbit-finite nondeterministic
automaton the same way as a nondeterministic automaton, with the difference that all of the
components (input alphabet, states, initial states, final states, transitions) are required to be
hereditarily orbit-finite sets. Using reachability, it is straightforward to write an emptiness
check for nondeterministic orbit-finite automata:

function emptyautomaton(A,Q,I,F,delta)
for (p,a,q) in delta do
R :=R U {(p,9}
return) = (reach(R,I) N F)

13

FSTTCS 2012

14

Imperative Programming in Sets with Atoms

» Example 7 (Monoid aperiodicity). An orbit-finite monoid is a monoid where the carrier is
a hereditarily orbit-finite set, and the graph of the monoid operation is a finitely supported.
(It follows that the graph of the monoid operation is a hereditarily orbit-finite set, because
hereditarily orbit-finite sets are closed under finitely supported subsets.) Such a monoid is
called aperiodic if for every element m of the monoid, there is a natural number n such that

m" =m" Tt (4)

In [3] it was shown that an orbit-finite monoid is aperiodic if and only if all of the languages
it recognises are definable in first-order logic. The following program inputs a monoid (its
carrier and the graph of the monoid operation) and returns true if and only if the monoid
is aperiodic. The program simply tests the identity (4) for every element in the carrier.

function aperiodic (Carrier,Monop)
for m in Carrier do

X:=0
new:=m
repeat
old:=new
X:=X U {old}
new := Monop(old,m)
until new € X
if new = old then ret := true else ret := false

return ret

In the program above, the line new := mult(old,m) is actually syntactic sugar for a
subroutine, which examines the graph of the multiplication operation mult, and finds the
unique element new which satisfies (old,m,new) € mult.

In the program, the set X is used to collect consecutive powers m,m?,m3,.... To prove
termination, one needs to show that this set is always finite, even if the monoid in question
is not aperiodic. This is shown in [3].

Finally, the program relies on the particular encoding of the booleans: true is the
nonempty set {0}, while false is (). If the for loop sets ret to true for some m in the carrier
of the monoid, then the whole program will return true, since the aggregation operation is
union, which behaves like V for booleans.

» Example 8 (Automaton minimisation). The programs for automaton emptiness and monoid
aperiodicity were for yes/no questions. We now present a program that transforms one
automaton into another. An orbit-finite deterministic automaton is the special case of the
nondeterministic one where there is one initial state, and the transition relation is a function.
As shown in [5], such automata can be minimised. We describe the minimisation procedure
using a program in our language, i.e. a function

function minimize(A,Q,q0,F,delta)

which inputs an orbit-finite deterministic automaton and returns the minimal automaton®.
We assume that all states are reachable, the non-reachable states can be discarded using

5 This program is particularly interesting when comparing the imperative programming language from
this paper with the functional programming language from [4]. In [4], we were unable to correctly type
a program for minimisation.

M. Bojanczyk and S. Torunczyk

the emptiness procedure described above. We will also assume that all states are sets (and
not atoms), so all variables in the code below are declared as set. The code is a standard
implementation of Moore’s minimisation algorithm. The only point of writing it down here
is that the reader can follow the code and see that it works with atoms.

In a first step, we compute in the variable equiv the equivalence relation, which identifies

states that recognise the same languages.

for p in Q do

for

q in Q do

for a in A do

base

R := R U {((delta(p,a),deltal(qg,a)),(p,q))}

:= (F x (Q-F)) U ((Q-F) x F)

equiv := (Q X Q) - reach(R,base)
return () = reach(R,q0) N F

(The

code above uses X, which is implemented using for.) For the states of the minimal

automaton, we need the equivalence classes of the relation equiv, which are produced by
the following code.

function classes (equiv)
for (a,b) in equiv do

for (c,d) in equiv do

if a=c then class := class U {c}

ret := ret U {class}

return ret

The remaining part of the minimisation program goes as expected: the states are the equi-

valence classes, and the remaining components of the automaton are defined as usual.

1

10

References

Jon Barwise. Admissible sets and structures. Springer-Verlag, Berlin, 1975. An approach
to definability theory, Perspectives in Mathematical Logic.

Jon Barwise, editor. Handbook of Mathematical Logic. Number 90 in Studies in Logic and
the Foundations of Mathematics. North-Holland, 1977.

Mikolaj Bojanczyk. Data monoids. In STACS, pages 105-116, 2011.

Mikolaj Bojanczyk, Laurent Braud, Bartek Klin, and Slawomir Lasota. Towards nominal
computation. In POPL, pages 401-412, 2012.

Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata with group actions. In
LICS, pages 355-364, 2011.

Roland Fraissé. Theory of relations, volume 145 of Studies in Logic and the Foundations
of Mathematics. North-Holland Publishing Co., Amsterdam, revised edition, 2000. With
an appendix by Norbert Sauer.

Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable
binding. Formal Asp. Comput., 13(3-5):341-363, 2002.

C. Ward Henson. A family of countable homogeneous graphs. Pacific J. Math., 38:69-83,
1971.

Thomas Jech. The Axiom of Choice. North-Holland, 1973.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329-363, 1994.

15

FSTTCS 2012

	Orbit-finite sets with atoms
	Imperative programming with atoms
	Definition of the imperative language
	Example programs

