Uniwersytet Warszawski
Wydzial Matematyki, Informatyki i Mechaniki

Jan Wroéblewski
Nr albumu: 277632

Konwersja Pythona do Lukrecji

Praca magisterska
na kierunku INFORMATYKA

Praca wykonana pod kierunkiem
dr hab. Aleksego Schuberta
Instytut Informatyki

Lipiec 2014

Oswiadczenie kierujacego praca

Potwierdzam, ze niniejsza praca zostata przygotowana pod moim kierunkiem i kwal-
ifikuje sie do przedstawienia jej w postepowaniu o nadanie tytulu zawodowego.

Data Podpis kierujacego praca

Oswiadczenie autora (autoréw) pracy

Swiadom odpowiedzialnosci prawnej o$wiadczam, ze niniejsza praca dyplomowa
zostala napisana przeze mnie samodzielnie i nie zawiera treSci uzyskanych w sposoéb
niezgodny z obowiazujacymi przepisami.

Oswiadczam rowniez, ze przedstawiona praca nie byta wczesniej przedmiotem pro-
cedur zwigzanych z uzyskaniem tytutu zawodowego w wyzszej uczelni.

Oswiadczam ponadto, ze niniejsza wersja pracy jest identyczna z zalaczong wersja
elektroniczna.

Data Podpis autora (autorow) pracy

Abstract

With increasing popularity of dynamic programming languages such as Python or JavaScript
the problem of statically typing them has become more important. As Python is a complex
language, creating type-checking rules for it requires much more effort than for simpler dy-
namic languages. Lucretia is such a simple dynamic language for which type checking rules
have been defined in a paper by Marcin Benke, Vivania Bono and Aleksy Schubert (see paper
[1]). If Python code would be fully conversible to Lucretia code, problem of typing Python
could be reduced to typing much less complex language. This work is about a software that
converts subset of Python 3 into Lucretia and interprets Lucretia language. It is a part of a
larger work with goal of statically typing sufficiently large subset of Python 3.

Supported subset of Python 3 is still not large enough for practical purposes, but most lan-
guage constructs such as variables, scopes, functions and while loops have been implemented.
Large part of this work is partial conversion of Python classes into Lucretia. This includes
mechanism of class inheritance along with method resolution (with implemented support for
single inheritance) and few core classes (such as object) that have to be implemented to be
able to use classes at all. Conversion was done with type checking in mind, therefore instead
of basing implementation on maps from strings into values (like in Python), approach to use
records with labels known at compile time was taken. That way extensive usage of dependent
types in type checker might be avoided.

Lucretia interpreter was completed along with small Lucretia library and mechanisms
allowing to write and import Lucretia modules. Few tools helpful in debugging were also
implemented in the interpreter, therefore it is possible to create larger Lucretia programs
and libraries. This framework was used to create a Lucretia module that simulates part of
Python’s builtins module, needed to use more advanced Python constructs (e.g. classes).

Stowa kluczowe

classes, language conversion, language interpreter, Lucretia, programming languages, Python

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.3 Informatyka

Klasyfikacja tematyczna

D.3 PROGRAMMING LANGUAGES
D.3.3 Language Constructs and Features
D.3.4 Processors

F.3.2 Semantics of Programming Languages
F.3.3 Studies of Program Constructs

Tytul pracy w jezyku angielskim

Conversion of Python to Lucretia

Contents

1. Introduction 5
1.1. Motivation)
1.2. Lucretia language description oo oL 5

1.2.1. Grammaro)
1.2.2. Evaluation. 5
1.2.3. Expression segments L L Lo 7

2. Interpreter L 9
2.1, Syntax SUZAT . .« .« . ot e e e e 9
2.2, Environment 9
2.3. Lucretia interactive interpreter oo Lo Lo 9

2.3.1. Constructing evaluated code oo oL L. 10
2.3.2. Reusing computed environment L. 10
2.4. Importing files 11
2.5, Lucretiamoduleo Lo 11
2.6. Lucretia libraryo 11
2.6.1. BST . . . e 11
2.6.2. TO e 12
2.6.3. Python builtins 12
2.6.4. Test tools 12

3. Converter 13
310 OVerview e 13
3.2. Sequencing operator (;) 13
3.3. Variables and scopeo 14
34. Module 15
3.5. Functions 15
3.6. Simulation of return and simplified exceptions 16
3.7. Function closures 18
3.8. Recursive functions oL 19
3.9. Thewhile loops 19
3.10. Short-circuit operators 22
A1 Classes - . v . o e 23

3AL1. Overviewo e 23
3.11.2. Thecoreclasses 24
3.11.3. Function objects 24
3.11.4. Function arguments L oo 25
3.11.5. Object tags 27

3.11.6. Implementation of normal classes and shortcuts 27

3.11.7. Implementation of classes object, type, tuple and function 28

3.11.8. Method and variable resolution 28

3.11.9. Bound methods oo 29
3.11.10Callables 30

4. Program development and usage L. 31
4.1, OVerview e e 31
4.2. Technology L 31
4.3. Architecture L. 32
4.3.1. Lucretia interpreter modules Lo 32

4.3.2. Python converter modules 32

4.3.3. Testing modules L oL 33

4.3.4. Utility moduleso 33

4.4, Automated tests L 33
4.5, Benchmarks e 34
4.5.1. Benchmarks of tests 34

4.5.2. Benchmarks of the Lucretia converter 35

4.5.3. Benchmarks of the Lucretia interpreter 37

4.6. Build instructions Lo 37
4.7. Usage instructions 38

5. Conclusion L 39
5.1. Accomplished goals 39
5.2. Production Python code support 39
5.3. Future work 40
Bibliography 41

Chapter 1

Introduction

1.1. Motivation

Lucretia is a dynamic, imperative, functional, object-based, reflective programming language
developed by Marcin Benke, Vivania Bono and Aleksy Schubert. Its main purpose is to
be a simple dynamic, object-based language that can be statically typed in most real-world
scenarios. The type-checking rules and further description of this language are defined in [1].
This paper will focus on translating Python—-a popular dynamic language—to Lucretia. The
main application of such transformation is to create a Python static type analyzer that would
first translate Python to Lucretia and then use Lucretia type-checking rules.

1.2. Lucretia language description

1.2.1. Grammar

For the purpose of this paper Lucretia grammar is defined in Figure 1.1. [X Y] denotes
Y-separated list of X. Starting nonterminal of this grammar is Expr, which is a Lucretia
program. Terminals are represented using monospaced font, either explicitly (like new) or
using their description in parentheses (like (escaped text)).

Grammar of Python is defined in |2] (version 2.7.6) and 3] (version 3.3.5).

1.2.2. Evaluation

Python has primitive types for integers, booleans, floats, complex floats, strings and None.
Remaining types are function types and object types. Object types are defined as records
containing mapping from labels into values (of type that can dynamically change). Types
and type checking are described in detail in paper [1]. As the topic of type checking or type
inference is not a subject of this paper, we will use Lucretia as dynamically typed language.

Variables are defined by let in clause and cannot be reassigned. let in evaluates its
variable and then its body in environment with that variable’s computed value.

Operators work exactly like functions (and can be implemented as built-in functions).
Semantics of most operators is standard. Logical operators &&, || do not exist, because their
usual semantics is short-circuit. They can be replaced by if expressions. Function and oper-
ator arguments are evaluated from left to right before evaluation of that function/operator.
Function call evaluates expression that is body of the function and returns its value. This
expression is evaluated in environment from function definition (function closure), but with

Expr = ConstInt | ConstBool | ConstFloat | ConstImaginary |
ConstString | ConstNone | Var | Op | New | Letln | Prop |
AssignProp | IfElse | Fun | Appl | Import | Paren

ConstInt t= .| -1]0|1]..

ConstBool = True | False

ConstFloat t= .. |-0.5]..]0.0|..]0.5]..
Constlmaginary == .. |-0.5j|..]0.0j|...]0.55]...
CounstString i= "(escaped text)"

ConstNone == DNone

Var n= Ident

Op = OpType (|[Expr ,])

LetIn == let Ident = Expr in Expr

New = new

Prop == Ident . Ident

AssignProp = Ident . Ident = Expr

IfElse == if Expr then Expr else Expr
I[fHasAttr = ifhasattr (Expr, Ident) then Expr else Expr
Fun = func ([Ident ,]|) { Expr }
Appl = FunExpr ([Expr ,|)

FunExpr = Var | Prop | Fun | Paren

Import == import (ConstString)

Paren = (Expr)

Ident = (identifiers)

OpType n=H =[x/ == =]

Figure 1.1: Grammar of Lucretia

current heap state. Function definition does not contain function names and is not recursive
by itself. Recursion can be achieved using closure and objects as described in the next chapter.

The expression new creates a new object onthe heap, with no attributes (an empty record).
Property assignment adds or updates value in a given attribute. There is no way to remove
an object or its property. There is also no way to iterate over all properties or make a copy
of an object aside from doing it manually using ifhasattr on each possible label. Objects
are passed by reference, i.e. only their location on heap is copied. The conditional ifhasattr
takes an expression returning an object and a label. It is evaluated to one of its branches
depending on whether object contains property with the given label. Passing a non-object
value to ifhasattr results in error. This will be important later on when we will be dealing
with objects.

When using operators or if, each type can be used as boolean. Objects and functions
are True, None is False, strings are True iff not empty and numeric values are True iff equal
to zero. Operators are polymorphic and can take different primitive types of the same kind.
Boolean values can be converted to numeric values (as 0 or 1) and numeric values can be
converted to more generic ones (bool — int — float — complez). Note that None, object and
function values cannot be used as numeric values in operators. Comparison operators can be
used on all types convertible to numeric and on strings (with lexicographical order). Equality
operators (== and !'=) can be used on any two objects of any kind, though comparison of
functions always yields False and two objects are considered equal iff they have the same
heap location. Equality operators also allow for conversion. Strong equality operators were

introduced (=== and !==) to allow for checking of equality without applying conversion.

Note that Lucretia has the following limitation: we cannot detect type of a variable, unless
it is None or boolean. Equality and strong equality are only operators that evaluate without
error with any argument types.

1.2.3. Expression segments

Notion of expression segments will appear in this work. Expression segments E.S are defined
as functions of type Expr — Expr of the following structure:

ES ={)Xelet v = F in e: v € Ident, £ € Expr}.

Expression segments form a semigroup with function composition. We can join sequences of
expression segments forming a larger one. We can apply a terminating expression to expression
segment. Terminating expression will be evaluated in environment with all v; variables visible
and state of heap after evaluating all E; expressions.

Chapter 2

Interpreter

2.1. Syntax sugar

To decrease amount of written code, the following syntax sugar was introduced in Lucretia
interpreter:

e A; B~ let _ = A in B-shortcut for sequencing operator (see section 3.2);
e let X = A; B~ let X = A in B-shortcut for defining a variable (see section 3.2);
e A.B.C ~» let ab = A.B in ab.C-shortcut for multiple dot operators.

Note that ; operator has lower priority than let in, so let in can be used together with it
for temporary variables with small scope.

2.2. Environment

Lucretia is an imperative language. It has order of evaluation of its expressions strictly defined.
Evaluation of Lucretia AST consists of evaluating expressions and changing the environment
according to that order. Environment consists of two properties:

e variables defined in the current scope—their identifiers and values;
e heap—mapping from locations of objects into mappings from labels to values.
In a real implementation two more properties are gathered:

e final state—a copy of environment in which last let in body was evaluated (without
previous final states). See section 2.3.2 for its usage;

e stack trace—for debugging purposes in case of an error.

2.3. Lucretia interactive interpreter

Default implementation of Lucretia file interpreter parses the whole file as a single expression
and computes its value. The same can be done in interactive interpreter. However, it is desired
to have a feature of passing defined variables and environment between evaluations of input.
Usually Lucretia program’s structure consists of a sequence of many let in expressions that

have simple expressions evaluated (and sometime discarded if only side effect was relevant)
in their binding and another let in nested in their body.

We can see that what we need a way to evaluate expression segments in Lucretia interactive
interpreter. Therefore we accept two types of expressions in Lucretia interactive interpreter:

e Expr-normal expression;
e let Ident = Expr—an expression segment in which we define a variable that will be
available from now on.
2.3.1. Constructing evaluated code

That means that we want to construct a sequence of nested let in expressions, such as:
Lucretia

let varl = inputl in

let var2 = input2 in

let = input3 in

let currentValue = input4 in
currentValue

At any point of time we want to hold an expression segment being a composition of all
evaluated expression segments. We also want to know what is the identifier of last computed
variable (currentValue in example above). After each input we want to compute new ex-
pression segment, compose current one with it and apply to it last computed variable. When
new input is an expression segment, we do just that. When input is just an expression E, we
translate it into the following expression segment:

Lucretia

let freshVariable = E

freshVariable is a fresh variable that will be used only to display value of computed ex-
pression. The example code above would be constructed in a following interactive interpreter
session:

> let varl = inputl
value of inputl=

> let var2 = input2
value of input2

> input3

value of input3

> inputé

value of inputédx

2.3.2. Reusing computed environment

Obviously, the whole constructed code should not be evaluated from scratch after every input.
In order to reuse previous computations, we want to save interpreter environment just before
displaying current value. Since evaluating a variable does not have any side effects, we can
safely replace it with new expression segment along with its variable and start evaluation
from this point. This is sound because let in has defined order of execution—first binding
expression then its body.

We do this by using final state saved in the environment (see section 2.2).

10

2.4. Importing files

Mechanism of importing files was added to Lucretia. The phrase import ("file/path.luc")
searches for a file file/path.luc and parses it into an AST. When evaluating Import expres-
sion, it simply starts evaluating parsed AST in current environment without currently defined
variables (but the same heap). The fact of evaluating a different file is also noted on the stack
trace.

In order to facilitate creation of Lucretia libraries, a special syntax was used for file paths.
If the system environment variable LUCRETIA_PATH is defined, paths prefixed with %/ search
for files in a directory specified by LUCRETIA_PATH.

2.5. Lucretia module

We can put any kind of expression into a Lucretia file, but usually imported files will contain
a module—a set of functions and variables to work with. Usual module file structure is as

follows:
Lucretia
let module = new in
let = module.pow2 = func(x) { *(x,x) } in
let = = module.var = 42 in
module

The result of interpreting such a file would be an object with fun and var properties,
which could be used later. To use them, one has to bind imported module to a variable.
Example usage of such a module is:

Lucretia

let module2 = new in
let module = import ("path/to/module.luc") in

let someVar = 44 in

let = module2.varToPow2 = module.pow2(module.var) in
let = module2.someVarToPow2 = module.pow2(someVar) in
module2

When using this technique, values assigned to a module object (such as module2.varToPow2
or module2.someVarToPow2) are effectively exported, while values that are only bound to a
variable are not exported (such as someVar). Note that values bound to a variable can be still
present in closure of functions defined in that module.

2.6. Lucretia library

There were 4 Lucretia library modules created in the process of developing Lucretia interpreter
and converter.

2.6.1. BST

Module %/bst . luc contains implementation of balance-bounded trees in form of a map. Their
implementation was based on paper |7]. Balance-bounded trees are binary trees with logarith-
mic complexity of most operations. They are used in implementation of Haskell’s maps and
sets. Tests of this module (along with usage examples) can be found in %/test/bstTest.luc.
The following functions were implemented (as properties of the module object): empty, null,

11

insert, findMin, deleteMin, delete, member, lookup, size, mapKeysMonotonic. Naming of
functions and their signatures are based on Haskell’s Data.Map.
2.6.2. 10

Pure Lucretia does not contain input/output functions. However, Lucretia interpreter al-
ways prints out computed value, so a mechanism to simulate printing was created. Module
%/1i0.luc contains implementation of print, println and printbool functions, which ap-
pend their arguments to string buffer. To create a program that "prints" some output, one
can simply use those functions and return the buffer at the end.

2.6.3. Python builtins

For some of converter’s functionality to work, Python’s __builtins__ module had to be
partially implemented. It had to be implemented in Lucretia, because it is impossible to
create classes such as object in Python without any library. The following was implemented
in %/builtins.luc module:

e framework for Python functions’ arguments (arguments are a linked list);

e shortcuts to call Python functions with 0-3 arguments;

e object, tuple, function, type, dict and list Python classes;

e mechanism of resolving class methods (using inheritance and __class__ property);
e mechanism of getting function out of a Python callable (e.g. a functor).

This Lucretia module is used extensively by converted Python code.

2.6.4. Test tools

For ease of testing, test tools were created in the module %/test/tools.luc. It contains
functions testSuite for starting a test suite, test being an assertion and testResults re-
turning aggregated test results along with information about success. For each assertion 0
(failure) or 1 (success) is present in the value returned by testResults.

12

Chapter 3

Converter

3.1. Overview

Let us describe conversion of Python to Lucretia. We take Python’s abstract syntax tree
as input and output Lucretia’s abstract syntax tree. This conversion is done by recursively
converting Python AST nodes with the exception of sequencing operator (see section 3.2).
This chapter will only contain informal description of techniques used to convert specific
Python AST nodes in the form of examples of original and converted Python code. Examples
of techniques will be usually isolated from other techniques. This is needed, because many
of them add large amount of Lucretia code, reducing its readability. Full specification of the
conversion is the converting program itself.

Python module will be converted to Lucretia module (see section 2.5). Property names
of Python objects will be preserved when possible, such as module properties (i.e. top-level
definitions), class methods and variables or names of local variables in current scope object
(viewable by locals()). To prevent collision of names between converted Python names,
including names with "private" naming (prefixed by _) or special naming (prefixed by __),
we prefix properties of Lucretia-specific internals with __luc_.

To implement more complicated functionality (especially classes), additional Lucretia code
is needed. It was extracted to %/builtins. luc file (see section 2.6.3 for short list of contents).
This file is imported to each converted Python module and is supposed to partially implement
Python’s __builtins__ module.

In the description of conversion below, names in the form of a a single capital letter
(e.g. X) mean any Python expression or statement, while names containing a capital let-
ter followed by apostrophe (e.g. X?) mean Lucretia expression or expression segment (de-
scribed in section 3.2) to which original Python statement was converted. Names in the form
<nameWithDescription> will also mean any expression that was converted to Lucretia.

3.2. Sequencing operator (;)

Python statements change the environment, so a way to pass it to subsequent statements
must be created, i.e. a sequencing operator. Sequencing operator can be implemented through
let in with a fresh variable, as shown in Figure 3.1.

Sequencing operator defined in this way modifies and passes environment to the second
statement. Taking into account that Lucretia program is a single expression, we can convert
a Python expressions to Lucretia expressions, but Python statements have to be converted to
functions of type Expr — Expr—expression segments described in section 1.2.3.

13

Python Lucretia

Y let =X in Y’

Figure 3.1: Sequencing operator

Subsequent expression segments can be connected by function composition, giving ex-
pression segment for two or more statements. Eventually an argument has to be applied to
expression segment. This argument depends on the context in which a sequence (block) of
statements was translated. It is the variable that is returned from Lucretia expression in envi-
ronment produced from executing all statements in the block. In case of translating a Python
module, this module’s object would be returned. For function body, it would be returned
value. However, most blocks of statements are not supposed to "return" any value. In those
cases, we will simply use None.

3.3. Variables and scope

First approach to converting Python variables could be implemented in the following way:
Lucretia

let varName = <varExpr> in S’

This solution has some problems though. Consider Python code shown in Figure 3.2.
Converted expression y = x would have to be in a body of appropriate let in operator to
have x bound accurately to 2 or 3. It cannot be in both let in expressions, so it would
have to be duplicated. The size of converted code would rise exponentially with number of
if statements.

To resolve this, object containing local variables is created for each scope and Python
local variables are converted to this object’s properties. Let’s call this object a scope object,
as it is a direct translation of how scopes and namespaces work in Python. At any point,
we have stack of scope objects, accessible through let in statements that define their range
and give access to variables. This method also removes problem with changing values of
variables. Scope object’s properties can have their values (or even types) changed. Another
advantage of scope objects is that location of a scope object on heap is constant and available
in environment, so they work well with naturally translated function closures. Basic usage of
scope objects is presented in Figure 3.2.

14

Python Lucretia

x =1 let locals = new in
if x = 1: let = locals.x =1 in
x = 2 let =
else: if ==(locals.x, 1) then
x = 3 locals .x = 2
y = X else
locals.x = 3 in
locals.y = locals .x

Figure 3.2: Scope object and variables

3.4. Module

A Python file consists of a module in form of a block of statements. When imported or ran,
it is executed and all global definitions become properties of the module object. In Lucretia,
such a module object would be a scope object. The module would be defined in a let in
expression returning its scope object. Also, Lucretia’s equivalent of __builtins__ module is
imported by default.

Python Lucretia
x = 42 let module = new in
let = = module. _ builtins =

import ("%/builtins .luc") in
let = module.x = 42 in
module

Figure 3.3: Module

This idea would work well also with basic importing of converted Python modules, as
they can be just assigned to a variable and their functions can be used in a similar fashion
as in Python with fully qualified names. However, implementing real importing would need
more work, since in Python modules are cached, there are many places in which a module is
searched and there are many mechanisms that are ran while importing a module.

3.5. Functions

In Lucretia, functions are created through func expression and are unnamed unless used
together with let in expression. Functions may take arguments and return a value computed
in their body. In Python, functions are named and when defined they become a local variable
in the current scope. Functions have their own scope for local variables.

If no value is returned explicitly with the return statement, the None value is returned.
Note that the return statement greatly modifies execution of statements—it effectively changes
all subsequently evaluated expressions into nops. Converting the return statement is a crucial
point of the conversion. One method to do it is by using Lucretia’s mechanism of returning

15

values—simply by applying converted returned expression to expression segment of the rest
of the function body. However, there are two main problems with that approach: dead code
after the return statement and conditional statements. Removing dead code is possible by
optimizing out subsequent calls. Conversion of conditional statements is simple in design-
—to implement them one has to duplicate all code following the conditional, append each
copy to statement blocks of each conditional branch and then translate the whole statement
block as Lucretia if else expression. As long as each branch either always returns or never
returns, result with optimized out dead code would be of linear size with respect to input size.
Otherwise, resulting code could grow exponentially with number of if statements, which is
unacceptable. This conversion, along with example showing exponential growth of output
code, is present in Figure 3.4. In this example the E statement had to be duplicated, because
E could be evaluated in two different contexts. Exponential growth would occur if E contained
more similar nested if statements.

Python Lucretia
def foo (): module. foo = func() {
if A: let locals = new in
if B: if A’ then
return if B’ then
else: None
C else
else: let = C’ in
D E’
E else
let =D’ in
B
}

Figure 3.4: Failed approach to implement return statements

Because of that, Python’s mechanism of returning values from functions cannot directly
translate to Lucretia’s. However, it can be simulated.

3.6. Simulation of return and simplified exceptions

The idea of simulating return is very similar to simulating exceptions (and also other mech-
anisms like break or continue in a loop), so we will describe those two mechanisms here
at once. In operational semantics, return and exceptions could be introduced by adding
operational semantics variable f determining control flow:

f € {Normal} U {Returned(v): v € Values} U {Raised(v): v € Values}.

Original operational semantics for Lucretia is in paper [1|. Following their notation, let o
denote the state of the heap and E(x) denote executing expression x in context E. To
introduce control flow mechanisms, all original Lucretia operational semantics rules could
be rewritten by adding variable f = Normal beside heap ¢ and context E. Semantics of

16

statements return and raise could be introduced in the following way:

o, f = Normal, E(return v) ~» o, f = Returned(v), E
o, f = Normal, E(raise v) ~ o, f = Raised(v), E
o,f # Normal,E(e) ~ o, f, E
o, f = Normal, E{e[xy := vy, ...]) ~ o, f = Returned(v), E' =

o, f = Normal, E(func(z1, ...){e}(v1,...)) ~ o, f = Normal, E'(v)
o, f = Normal, E(e1) ~ o, f = Raised(v), E' =

o, f = Normal, E(try {e1} except (z) {e2}) ~ o, f = Normal, E'(es[x := v])
o, f = Normal, E{e1) ~ o, f = Normal, E' =

o, f = Normal, E{try {e1} except (z) {e2}) ~ o, f = Normal, E')

Introducing those semantics would make typing rules more complex and less maintainable
as language evolves. Instead of doing this, we can simulate them by adding a variable that will
simulate f. Then we can translate return, function application, raise, try and simplified
except into setting appropriate values of f and adding if expressions to change subsequent
expressions into nops when f % Normal. In case of except statement, it still would not
be not equivalent to Python statement, because classes, BaseException class and matching
types would have to be introduced first.

Note that in case of return, the state of control flow must be kept only inside the function,
so it could be a local variable. In case of exceptions, it has to be a globally accessible
variable (for the whole program, not only a single module), because exceptions can be thrown
and never caught. In this work we will only introduce translation of return, break and
continue. Full translation of exceptions is more complicated and will be left for further
research. Examples are shown in Figures 3.5 for return and 3.6 for simplified try-except.
Adding this functionality enlarges code linearly by a constant factor, but it is still better than
exponential growth presented in the previous section. Note that not each instruction has to
be wrapped in if-it is enough to do this to each simple block, optimizing size of converted
code.

Python Lucretia
def abs(x): module. abs = func(x) {
if x >= 0: — function prologue
return x let locals = new in
return —x let = locals.returned = False in
default value returned by functions in
—— Python 14is None
let = locals.returnValue = None in
— function body
let =
if x >= 0 then
let — result.returned — True
let = locals.returnValue = x in
None
else
None in
let =

17

performing instruction only when
— function has mot returned yet

if !result.returned then

let = locals.returned = True
let = locals.returnValue = —(x) in
None
else
None in

— function epilogue

locals .returnValue

Figure 3.5: Implementing return through a flag

Simplified Python Lucretia
try: let ex — new in
x = 42 let = ex.thrown = False in
raise 42 let module = new in
y = let =
except e: if l!ex.thrown then
y — ¢ let = module.x = 42 in
let _ = ex.thrown = True in
let = ex.thrownValue = 42 in
None
else
None
let =
if lex.thrown then
let = locals.y = 0 in
None
else
None in
let =
if ex.thrown then
let = = ex.thrown = False in
let e — ex.thrownValue in
module.y = e

Figure 3.6: Implementing simplified exceptions through a global flag

3.7. Function closures

Function closures are defined naturally, since they exist in Lucretia and all objects visible
at function definition scope are in function environment. Values of non-local variables (e.g.
locations of scope objects) remain constant. Figure 3.7 illustrates a function that returns a
function closure which counts the number of its evaluations.

18

Python 3

Lucretia

def makeCounter ():

i =20

def counter ():
nonlocal 1
newl = 1 + 1
1 = newl
return i

return counter

let locals = new in

module . makeCounter = func() {

let = locals.i = 0 in

let = locals.counter = func() {

let internalLocals = new in

let = internalLocals.newl =

+(locals.i, 1) in

let = locals.i
locals .1
} in

locals .counter

3.8. Recursive functions

As written in "Examples" section of paper [1], let in is not recursive, but a function can be
made recursive by accessing itself from its closure. That means it has to be a property of an
object. In Python all functions are potentially recursive. Because all named Python variables
(including functions) are translated into properties of a scope object in Lucretia, they are also

internalLocals .newl in

Figure 3.7: Conversion of function closure

potentially recursive. Example of a recursive function is in Figure 3.8.

Python Lucretia
def fib(n): let module = new in
if n <= 2: module. fib = func(n) {
return 1 if <=(n, 2) then
else: 1
return \ else
fib (n—1) + \ +(module. fib(—(n, 1)), module.fib(—(n, 2)))
fib (n—2)

3.9. The while loops

The while loops can be converted to Lucretia by creating and evaluating a recursive function.
Because local variables have to stay accessible and assignable, original scope object should
be used in that function instead of creating a new one. Crucial part of implementing while
(and while-else) is proper handling of break, continue and return. Thebreak statement
should stop evaluation of subsequent expressions, stop recursion and prevent invocation of
the else statements block. The continue statement should stop evaluation of subsequent
expressions, but invoke the function recursively at the end. The return statement should

19

Figure 3.8: Translation of a recursive function

stop evaluation of all subsequent expressions, stop recursion, set returned flag and prevent
evaluation of the else statements block. If break and return are not executed inside the
loop, the else statements block should be evaluated. In order to keep the state of control
flow, we allow variable f (see section 3.6) to have the following values:

f € {Normal, Break,Continue} U { Returned(v): v € Values}.

In order to implement this behavior, we create a recursive function that evaluates condition
expression and while body. Just like with return, we create a new local variable for keeping
the state of loop and check if f = Normal before evaluating each statement (i.e. that both
returned is False and the state of the loop is normal). We make this recursive function
return a boolean that is True when else statements block should be executed. Note that
while loops may be nested, so we might have to keep track of multiple unique flags at the
same time. Figures 3.9 and 3.10 show this conversion for while with continue and with else
and for while with return respectively.

Python Lucretia
X 1 let module = new in
while x > 0: let = module.x = 1 in
x =x + 1 let = = module.whileFun = func() {
if x < 3: if >(module.x, 0) then
continue — creating while state wvariable
X =x — b initialized with "normal” (0)
else: let whileState — new in
x =x + 1 let = whileState.state = 0 in
let = = module.x = +(module.x, 1) in
let =

if <(module.x, 3) then
— setting wvariable to "continue” (2)
let = whileState.state = 2 in
None
else
None in
— checking if state is normal before
— executing assignment
let =
if ==(whileState.state, 0) then
let = module.x = —(module.x, 5) in
None
else
None in
—— checking if "break" (1) occured
if ==(whileState.state, 1) then
False
else
module . whileFun ()
else
True

} in

20

let =
if module.whileFun () then
let = module.x = +(module.x, 1) in
None
else
None in
module

Figure 3.9: Conversion of the while statement with continue and else statements

Python Lucretia
def foo (): let module = new in
x =1 let ~ = module.foo = func() {
while True: let locals = new in
X =X * 2 let = locals.returned = False in
if x > 42: let = locals.returnValue = None in
return x let = locals.x =1 in
x =x +1 let = locals.whileFun = func() {
else: if ==(locals.returned, False) then
return 1 if True then
return 0 — creating while state wvariable
— initialized with "normal” (0)
let whileState = new in
let whileState.state = 0 in
let locals.x = x(locals.x, 2) in
let
if >(locals.x, 42) then
— returning from function
let = locals.returned = True in
let = locals.returnValue =
locals.x in
None
else
None in
— checking if state is mnormal and
— function has not returned before
— executing assignment
let =
if ==(locals.returned, False) then
if ==(whileState.state, 0) then
let = locals.x =
+(locals.x, 1) in
None
else
None
else
None in

21

3.10.

checking if "break” (1) or return

— occurred

if ==(whileState.state, 1) then
False

else
locals . whileFun ()

"else

else
True
else
None
} in
let whileResult = locals.whileFun() in
— after invoking "while", check if function
has returned before proceeding with
let =
if ==(locals .returned, False) then
if whileResult then
let = locals.returned = True in
let = locals.returnValue = 1 in
None
else
None
else
None in
let =
if ==(locals .returned , False) then
let = locals.returned = True in
let = locals.returnValue = 0 in
None
else
None in

locals .returnValue
} in

module

Figure 3.10: Conversion of the while statement with the return statement

Short-circuit operators

Short-circuited Python operators and and or are implemented through if expression.

Python those operators have special semantics. The and operator returns first argument if
it converts to boolean False, second otherwise. The or operator returns first argument if
it converts to boolean True, second otherwise. Those operators behave as usual for boolean

values, but also allow special constructions like the following:
Python

"

In

tryToGetData() or defaultValue
doSomeOperation () or exit (1)

22

Conversion of those operators is shown in Figures 3.11 and 3.12.

Python Lucretia
A and B let a = A’ in
if a then
B’
else
a

Figure 3.11: Conversion of the and expression

Python Lucretia
A or B let a = A’ in
if a then
a
else
B’

Figure 3.12: Conversion of the or expression

3.11. Classes

3.11.1. Overview

Following Python’s idea, a class is just a named scope object (class objects) and a block of
code that is executed inside it. While executing this block of code, local variables are created.
Those variables are later accessible by using a dot operator on a class object. However, there
are differences between class objects and just any dictionary-like objects. For purpose of this
work, those are:

Class objects are callables, i.e. objects that can be invoked using () construction. Invok-
ing a class object will construct an instance of this class using __new__ and __init__

functions. An instance of a class has its __class__ property set to that class;
Class instances can resolve methods and variables of their __class__;

Methods resolved through __class__ property have object instance prepended to their
list of arguments;

Classes have a mechanism of multiple inheritance and implement a method resolution on
it. For the purpose of this work, only a single inheritance was implemented, although
extending it is a matter of rewriting a single Lucretia function. This mechanism is
explained in section 3.11.8;

Classes can define semantics of most operators used on their instances. In this work,
only __call__ operator was implemented, as it contained one of the most complex and
generic semantics of all operators. Its semantics is described in detail in section 3.11.10.

23

Python to Lucretia converter implements those functionalities. Most of Lucretia code con-
nected to converted classes is contained in %/builtins.luc module, while directly converted
code contains mostly usage of shortcut functions. In subsequent sections we will describe
changes to converter that classes have brought.

3.11.2. The core classes
To start doing anything with Python classes, one has to have at least few other classes defined:

e object—it is a class that usually lies in the root of the inheritance tree. Amongst
other methods, it contains implementation of __new__ (producing an instance of a given
subclass) and __init__ (so that __init__ would always resolve to something). Both
of those methods are called in a constructor;

e type—a metaclass that is a class of most classes. It is its own instance. It manages some
internals connected with classes;

e tuple-it is the class of __bases__ property of every class;

e function—each class that does anything useful contains a function, and functions are
objects. Note that functions may be objects of different classes in CPython, e.g. function,
bound method or built-in function.

Those 4 classes cannot be defined in pure Python (at least without hacks), as they form a
cycle. Most classes are based on object. Each class has __bases__ property of type tuple
and type property usually equal to type class. All classes that do something useful contain
functions of function or similar class. In other words, most classes depend on those 4 classes
and those 4 classes depend on each other.

Those classes can be created directly in underlying language, which is Lucretia in our case.
The key is to implement them at once without using functionality that was not evaluated yet.
It can be done by defining the objects without their properties first and using them safely
as long as referencing their properties is not needed. This was done in the implementation
of the __builtins__ module. List of implemented __builtins__ classes with their Python
interfaces (being subsets of their original Python interfaces) is shown in Figure 3.13.

In current implementation, the whole mechanism of metaclasses was ignored and definition
of class creates a class object directly, instead of invoking type constructor. The object’s
__new__ method is the one that can actually create new objects (and set their class and other
metadata). The type class is a class without any real functionality. The tuple, dict and list
classes are container classes based on the balanced BST from the module %/bst.luc. In the
dict class implementation, BST is used directly, while in tuple and list implementations
it is used with consecutive integers as keys and only because tables with constant access
time and arbitrary number of items have not been introduced to Lucretia. As tuples are
not mutable structures in Python, __luc_append internal Lucretia function was introduced
to initialize them. The function class had to be created, because __call__ method (that
allows for instances of a class to be used as a functor) is supported by the current converter.
There had to be a way to distinguish between normal functions and functors. The only way
to do that would be by ifhasattr, but then ifhasattr works only for objects.

3.11.3. Function objects

With introduction of classes, functions were changed into function objects. Function objects
are instances of the function class. The underlying Lucretia function is present in their

24

object type function
__bases__ : tuple __bases__ : tuple || __bases__ : tuple
=() = (object,) (object,)
__class__ : type __class__ : type __class__ : type
= type — type = type
__new__ : function
__init__ : function
tuple list dict
__bases__ : tuple __bases__ : tuple __bases__ : tuple
= (object,) = (object,) = (object,)
__class__ : type __class__ : type __class__ : type
= type = type = type
__init__ : function __init__ : function __init__ : function
__getitem__ : function || __getitem__ : function || __getitem__ : function
__len__ : function __setitem__ : function || __setitem__ : function
__luc_append : special || __delitem__ : function || __delitem__ : function
__len__ : function __len__ : function
append : function

Figure 3.13: Implemented Python classes

__luc_call property. Those functions use the method of passing arguments described in
Section 3.11.4.

The shortcut to create a function object is __luc_mkFunction. It returns object passed
in the argument for the purpose of assigning it to a variable. It can be used in the way shown
in Figure 3.14 to add an identity function id to scope object scope in a concise way and at
the same time create the id variable with it (to be used in manually written Lucretia code).

Lucretia

let scope = new in

let builtins = import("%/builtins.luc") in

let id = builtins. luc_mkFunction(scope.id = new, func(args) {
let firstArg = builtins. luc_takeFirstArg(args) in
firstArg

}) in

scope
Figure 3.14: Usage pattern of __luc_mkFunction

This code both assigns a new object to the scope object property and initializes it with a
function object.

3.11.4. Function arguments

Lucretia has only functions with the constant number of arguments, known also statically at
the point of call. In Python, there are different constructions that allow for changing number
of arguments, out of which the most important one is self added to class methods. When a
method is called on an object and this method is a function belonging to object’s class, not
the object itself, the object is prepended to the list of arguments, commonly known as self

25

argument. The problem is that when an object contains a function property directly (i.e. not
just in its class), the self argument is not prepended. That means that without knowl-
edge about object properties at compile time, we cannot even compute number of function
arguments. Therefore, we cannot use Lucretia functions directly.

To solve this problem, converted Python functions take a single argument instead. It
contains an unidirectional linked list of arguments. More specifically, this argument contains
properties first and last pointing at argument nodes and used for fast prepending and
appending to the list. Each node contains value and next properties. None works as the null
pointer.

Amount of code to construct argument object is large, so there were library functions
created to reduce it. The first one consists of functions in %/builtins.luc module that help
in creation and usage of this list:

e __luc_mkArgs-creating new list for a specific function (and prepending self in some

situations);

e __luc_appendArg-appending a single argument;

e __luc_appendArgs—appending a whole arguments list;

e __luc_hasArg-checking if a list is not empty;
e __luc_takeFirstArg—removing and returning first argument from the list.

For manual usage this was still a lot of code, so there were shortcut functions created for in-
voking converted Python functions with small number of arguments: __luc_callWithNoArgs,
__luc_callWithlArg, __luc_callWith2Args and __luc_callWith3Args. Example usage is
shown in Figure 3.15.

Lucretia
let scope = new in
let builtins = import("%/builtins.luc") in
let _ = builtins. luc_mkFunction(scope.mul — new, func(args) {
if builtins. luc_hasArg(args) then
let arg = builtins. luc_takeFirstArg(args) in
let scopemul = scope.mul in
x(arg, scopemul. luc call(args))
else
1
1) in
let num42 = builtins. luc_callWith3Args(scope.mul, 2, 3, 7) in
let args = builtins._ _luc_mkArgs(scope.mul) in
let = builtins. luc_ appendArg(args, 2) in
let ~ = builtins. _luc_appendArg(args, 22) in
let scopemul = scope.mul in
let num44 = scopemul. luc_call(args) in
+(num42, num44) = 86

Figure 3.15: Usage of the function arguments object
Note that this way we created a function working with variable number of arguments. Also

note that to invoke scope.mul.__luc_call in pure Lucretia we had to extract scope.mul
first, as dot operator works only on variables (see Lucretia grammar in section 1.2.1). This

26

became a problem as more objects were used in Lucretia, so syntax sugar for multiple dot
sequences was created (described in section 2.1).

3.11.5. Object tags

Three kinds of objects are callable: normal functions, functors (class instances with __call__
class method defined) and class objects (as constructor). Also, semantics of the dot operator
on a class (with its __bases__) and instance (with only __class__ defined) are different. To
help Lucretia’s builtins library to distinguish between those cases, the following tags were
added to some objects:

e __luc_functionTag-a tag for normal function objects created by executing their Python

definition;

e __luc_boundMethodTag—a tag for bound methods, i.e. methods returned by the dot
operator with some of their arguments already set (e.g. self);

e __luc_classTag-a tag for class objects.

Tags are simply properties of an object with the None value that are checked for existence with
ifhasattr when needed. This could have been done by simply creating appropriate classes
and looking up object’s __class__ property, but this way gives some basic information about
object without even executing builtins module and might be better for a future type checker
(as it can simply look up a tag instead of analyzing the heap and classes defined there, such

as type).

3.11.6. Implementation of normal classes and shortcuts

Classes are created in the following way:

1. A Lucretia object is created (new) and has its properties set: __class__ to type,
__luc_classTag to None, __bases__ to an empty tuple object and __luc_call to
constructor definition (calling __new__ and __init__);

2. Each base class expression is evaluated (from left to right and with possible side effects)
and appended to the list of base classes (__bases__);

3. With bare class object as the current scope object, the class statements block is executed.

The first step is initialization of a new Lucretia object. It is done by the shortcut func-
tion __luc_mkClass in a concise way, similarly to __luc_mkFunction. This is an impor-
tant step and needs tuple class to be functional, since __bases__ tuple is created (using
object.__new__ and tuple.__init__) and filled in second step. Also, since not all classes
have __init__ and __new__ defined, the constructor uses method resolution described in
Section 3.11.8. Method resolution requires for all 4 core classes (object, tuple, type and
function) to be fully functional. This is one of reasons why 4 core classes have to have their
own initializer.

In the second step base class expressions are evaluated. They use tuple’s internal method
__luc_append to fill __bases__ tuple. This is because tuple does not have a public interface
to modify it. Note that base class expression can be anything, not only a class name or fully
qualified name. If nothing is passed, this defaults to the object class from the builtins
module.

27

Third step consists of evaluating the body of a class using the same mechanisms as every-
where, only that scope object is a class object now. The class object is a scope object that is a
named property of another scope object that class is within, e.g. module object. When body
of a class is converted, variables and functions are handled as usual-by assigning a property
with their name to scope (class) object. For everything to work, each function has to use the
arguments objects and be wrapped in __luc_mkFunction.

3.11.7. Implementation of classes object, type, tuple and function

Implementation of those 4 classes is special. They are defined at the same time. First,
their class objects are created. Only then can __luc_mkFunction shortcut be defined (since
class function exists, so we can set function object’s __class__ now). Then, methods of
those classes are created using __luc_mkFunction. Next step is to initialize each class—
including __bases__ tuple, so it has to be working. The tuple class must initialize its own
__bases__ property. The function __luc_mkInternalClass is a function that can initialize
those 4 classes. Its difference from the __luc_mkClass function is that it does not resolve

new__ and __init _init__ directly

__, but instead assumes that created class contains
and __new__ only through its object base class. This is the case for all internally defined
classes. Also, both of those functions create the constructor before initializing __bases__
property. Creating __bases__ means using tuple’s constructor, which invokes the __init__
method from the tuple class and the __new__ function from the object class. Both of
invoked methods are of type function. That’s why object, tuple and function had to be
defined first. The __class__ property of initialized functions is set to type, so it had to
be at least created before. Since __bases__ are created after constructor, it is safe to use
__luc_mkInternalClass on the tuple class. After initializing the tuple class, other classes

can be initialized the same way.

3.11.8. Method and variable resolution

Resolution is a Python mechanism that is part of the inheritance mechanism. In languages
with multiple inheritance such a mechanism is not trivial. There has to be a way to choose
correct method implementation when two or more base classes (or their base classes) define a
method with signature we are searching for. In Python, since version 2.3, a C3 MRO (Method
Resolution Order) algorithm is used (see [4]).

Besides finding which class a method is from, MRO algorithm has one more basic task:
to find this inheritance tree first. Let us describe default behavior in Python. When this
algorithm gets an object, it first tries to find searched property in the object him directly (i.e.
in its underlying dictionary). If the property is not found and the object is not a class, it
searches (i.e. invokes search function recursively) for it in object’s __class__, modifying value
returned by dot operator in some cases (see section 3.11.9). If object is a class and property
is not found, the property is searched for in the inheritance tree of classes, i.e. by recursively
searching in __bases__ properties of classes using C3 MRO algorithm. That means that in
the recursive call the property is first searched for in the object itself, then its __class__ or
base class then in class’ class (usually type) until search hits bottom (usually type).

The MRO algorithm is used when dot operator is invoked. The approach to MRO in this
work was simplified compared to what Python uses:

e In Python, even semantics of dot operator can be changed (see [5]) through special
methods such as __getattr__. In this work, only default behavior was implemented;

28

e Python MRO algorithm produces linearization of the base classes tree in mro class
method or __mro__ attribute. In this work, a special function is called each time dot

operator is used;

e Python implements full C3 MRO algorithm, while this work only implements basic
MRO algorithm that only resolves attributes from first base class. This can be easily
changed by modifying __luc_resolveProp Lucretia function form builtins module;

e There are usually maximum 3 levels of objects: an instance, its class and its class’ class
(which is usually equal to type). Though practically not used, Python allows for more
levels. In this work, we assume a maximum of 3 levels and that type class is always at
deepest level. In other words, we stop search for the property at object’s class level.

Implementation of the dot operator is contained in the builtins module in the Lucretia
function __luc_dot. It takes left-hand side the dot operator and property as argument and
returns the resolved object or None if it was not found. The problem with implementing this
function in a generic way is that Lucretia does not allow passing property labels as function
arguments or any other kind of parameter. One way to solve this problem would be to create
MRO function for each property label used in the program. This would needlessly produce
very large amount of code. Approach taken in this work was to create two special functions,
property checker and property getter and passing them to functions that need a property
label.

A property checker is a function that takes an object as argument and returns True
when that property exists inside the object, False otherwise. A property getter returns that
property. For property named X, those functions are defined and used as follows:

Lucretia

func(obj) {
let XChecker = func(obj) { ifhasattr (obj, X) then True else False } in
let XGetter = func(obj) { obj.X } in
if XChecker(obj) then
doSomethingWithProperty (XGetter (obj))
else
doSomethingElse ()

Note that a single function could be implemented for both checking and getting a property,
but it would have to return some special variable if it was not found. Also, it would have to be
distinguishable by Lucretia from other types and not possible to create through conversion.
To remove unnecessary complexity, two functions are used.

Besides resolving an object, the dot operator has one more function when class method was
resolved-returning method bound to an object instead of the function itself. It is explained
in Section 3.11.9

3.11.9. Bound methods

When Python’s dot operator resolves a function and it does not find that function in an object
directly, but in its __class__ instead, it binds the left-hand side object of the dot operator
as the first argument of that function. It is commonly known as self and a class function
with bound argument is called a bound method. It is worth noting that binding happens in
the dot operator, not in the call itself. That way we can assign a result of a bound method
to a variable and call it somewhere else with first argument still being bound.

29

The whole mechanism in which the arguments object is passed to a function (described
in Section 3.11.4) was created for this purpose—to allow for prepending self to the list of
arguments, while not knowing the number of function arguments at compile time at the point
of call. Bound method is a Lucretia object that has three attributes:

e __luc_self—-the bound object;

e __luc_call-the underlaying Lucretia function, taken from the original function’s object
_luc_call property;

e __luc_boundMethodTag—a tag to distinguish bound method from other callable objects.

3.11.10. Callables

There are four types of objects that can be called, i.e. call operator () can be used on them:
functions, bound methods, classes (as constructors) and functors (instances of classes with
__call__ method defined). First three kinds of those objects have their own tag (see section
3.11.5), therefore can be distinguished by ifhasattr. Functors can be distinguished by having
__call__ property and not having any of previously mentioned tags.

Calling functions and class constructors is simple-the code lies in their __luc_call prop-
erty. For bound methods, additionally self argument has to be prepended. This is done
automatically in __luc_mkArgs function that takes one of those callables as argument.

Calling functors is a bit more complicated. Their __call__ function is called instead and
first argument is set to the functor object itself, followed by arguments from call invocation.
This behavior works intuitively as long as we use functors as functions. When we use functors
as class methods, self argument is not prepended—it is set to the functor object instead. In
other words, resolved value is treated as an object, not as a method that would be auto-
matically bound by the dot operator. The same behavior can be observed when creating a
functor with the __call__ property set to another functor-the first argument is set to the
deepest functor object and the rest of arguments is taken from the call invocation. This
can be confusing, as semantics of bound methods and functors is not about prepending an
object to the list of arguments, but rather about prepending up to one argument. For clarity,
Python’s documentation (see [5]) describes usage of functor x in call x(argl, arg2, ...)
as a shorthand for x.__call__(argl, arg2, ...), which interpreted textually for nested
functors means that in fact only the last functor object should be prepended to the list of
arguments (using only bound method semantics).

30

Chapter 4

Program development and usage

4.1. Overview

This work resulted in creating a program lucretia with the command-line interface, which
has the following functionalities:

e interpreter of Lucretia files (.1luc);

Lucretia interactive interpreter with additional debug commands;
e conversion of Python file into Lucretia;

e interpreter of Python files through Lucretia converter;

o self-test.

It also supports importing Lucretia files from Lucretia library directory. Basic Lucretia library
was implemented.

4.2. Technology

The lucretia program was written in Haskell (using ghc 7.6.3 compiler). The project is in
the form of cabal package and depends on the following packages (from the Hackage package
archive):

e language-python-the Python 2 and Python 3 parser;
e parsec—the generic parser package used to parse Lucretia;
e HUnit-the testing framework based on unit tests;

e QuickCheck-the testing framework based on generating multiple data sets and checking
if given properties hold;

e options-the package providing parsing of command-line options;

e placeholders—the package used to mark unimplemented fragments of the program,
while allowing for execution of its implemented part;

e base—the base ghc package;

31

containers—the package providing various data structures;
directory—the package used for listing directory contents;
filepath-the package used for constructing file paths in a cross-platform way;

mt1l-the package providing various monads.

Project was written and tested mainly on Windows 7 with The Haskell Platform. IDE
used to write it was Leksah 0.12.0.3. The Leksah IDE is also available for Linux. The project
was also tested on a Debian 7 with the ghc compiler and the cabal program from Debian’s
repository.

4.3.

Architecture

The lucretia cabal package is split into modules. The modules could be categorized the-
matically into Lucretia interpreter, Python converter, testing and utility.

4.3.1. Lucretia interpreter modules

AST—defines Lucretia AST and structures like parsed Lucretia module with names. For
optimization purposes variable and property label identifiers are saved in AST as num-
bers and mappings from variable and property label numbers into their names are held
separately;

ASTFunctions—contains functions connected to AST, such as traversing AST or updat-
ing Lucretia module group structure;

Interpreter—contains implementation of Lucretia AST interpreter;
LucretiaParser—parsing Lucretia into AST;

ParserCommon—common parser functions, mainly fixing annotations about position in
the source code;

RunEnvironment—contains definition of Lucretia runtime state (with such data as heap
and mapping from variables to values);

InteractiveInterpreter—implementation of Lucretia interactive interpreter;
RuntimeError—definitions of possible runtime errors;

FileInterpreter—uses LucretiaParser and Interpreter to interpret and pretty print
the result of evaluation of a Lucretia file.

4.3.2. Python converter modules

ConvertEnvironment—contains definition of the Python converter state (with such data
as the stack of scopes and the mapping of variable names) and functions operating on
it;

PythonFileInterpreter—uses PythonTestInterpreter on a file and prints the test
top-level variable;

32

e PythonTestInterpreter—contains function that convert a Python file, extract the test
top-level variable and interprets the result with the Lucretia interpreter;

e PythonFileConverter—uses PythonConverter to parse a Python file, convert it to Lu-
cretia and pretty print the AST;

e PythonConverter-parses and converts Python files and code (as string) to Lucretia
AST.

4.3.3. Testing modules

e ASTArbitrary—defines classes to produce an arbitrary AST for testing purposes;
e TestTools—contains modification of quickCheckAll from QuickCheck;
e Test—QuickCheck and HUnit Lucretia tests, iterating over test files and testing result
and some test tools.
4.3.4. Utility modules
e Common—contains a few constants and very short generic functions;
e CmdLineOptions—parses command line options;

e Main-contains the program main function that uses command line options to delegate
work to an appropriate module;

e PrettyAST-pretty printing AST to readable Lucretia code with indentation;

e PrettyError-pretty printing errors;

e PrettyValue—pretty printing values, also recursive printing of object values;

e ImportFileIO0-reading files with specified path, possibly prefixed by library prefix %/;
e StringEscape—functions to escape strings;

e PrettyCommon—common pretty printing functions.

4.4. Automated tests

In order to reduce the number of bugs, many tests were written for lucretia, focusing mainly
on Lucretia interpreter and Python converter. There were three types of tests used in this
work: HUnit unit tests, QuickCheck property assertion tests and file-based tests.

HUnit is unit testing framework that takes in a list of tests, evaluates them and checks
assertions. HUnit tests can be grouped into categories, which was done in this work. Written
unit tests took Lucretia AST, Lucretia code or Python code as input, evaluated, parsed and
converted it as needed and then checked if evaluation was successful (or in some cases—if
it failed as expected) and the evaluated value was compared with the expected one. The
evaluated value was either value of the interpreted Lucretia AST, code or a value of the top-
level test variable of a Python module. Tests were written so that only simple values were
computed, i.e. not functional or object values, which would be hard or impossible to compare.
Those tests checked if Lucretia and converted Python language constructs were evaluated

33

correctly. This checked either Lucretia interpreter, interpreter with parser or Python converter
with Lucretia interpreter. At first, interpreter was tested directly with Lucretia AST, but tests
of Lucretia code were proven to be much more efficient to write and maintain. There were also
a few tests written for the Lucretia parser itself, using function haveSameStructure described
at the end of this section.

QuickCheck is a testing framework that asserts properties of a given model using random
data. QuickCheck tests are definitions of properties that should hold (i.e. evaluate to True)
for variables of given type. Generator for such variables has to be supplied each time. An
example of such a test is testing commutativity of multiplication operator by checking if for
all integers x and y the followingholds: x * y == y * x. Such a test would generate a large
number of pairs of integers and test this property. Functions that operate on metadata of
parsed files and checking Lucretia AST pretty printer were tested this way. Lucretia AST
pretty printer was supposed to produce parsable Lucretia code that would parse to equivalent
Lucretia AST.

Testing of language constructs was done mainly in the Haskell module. However, unit tests
with code snippets contained in Haskell module were inappropriate for larger tests, especially
for tests of the Lucretia library. There were file-based tests implemented that traversed the
test directory of the Lucretia library directory and tested all files with names ending on
Test.luc or Test.py. Testing a file was done by parsing it, in case of Python converting to
Lucretia, evaluating and checking if result was correct (i.e. was a string in the correct format).
For Lucretia code, evaluated value of Lucretia AST was taken directly, while for Python files
test top-level variable was checked.

There were also various helper functions written to remove redundant code from written
tests. Many of them were taking Lucretia AST or Lucretia code or Python code, parsed,
converted and evaluated it as needed and checked if evaluation succeeded with the expected
value (or sometimes if evaluation failed as expected). Particularly interesting helper function
was haveSameStructure—it took two Lucretia ASTs and checked them for equivalence modulo
numbering of identifiers, code annotations and small differences between floats. It was used
for checking correctness of the Lucretia parser and the Lucretia AST pretty printer. Another
interesting set of functions was ASTArbitrary module, which recursively generated random
Lucretia AST (often incorrect) that was often large enough, but finite with probability 1.

4.5. Benchmarks

There were a few benchmarks made in order to check what optimizations are required in
the future. All benchmarks were run on a Windows 7 laptop with MinGW bash, lucretia
compiled with ghc 7.6.3, on a machine with Intel i7 2GHz processor (tests were using a single
core) and 8GB RAM.

4.5.1. Benchmarks of tests

In order to use tests in such a programming development process as Test-Driven Development,
they have to be quick enough to run them between implementations of very small function-
alities. As described in Section 4.4, there were four types of tests run: QuickCheck invariant
tests, HUnit unit tests, file-based Lucretia library tests and file-based Python conversion tests.
Speed of those tests was measured by using time program and an average time length from
10 runs was taken. The results are visible in Figure 4.1.

Because the tests were run separately, there is an overhead of creating a process and run-
ning a short bash script contained in each of those results. The final result yielded that HUnit

34

Test Time

All tests 1.93s, varies greatly
QuickCheck 0.92s, varies greatly
HUnit 0.364s

Lucretia library tests 0.69s
Python conversion tests | 0.31s

Figure 4.1: Benchmarks of lucretia tests

unit tests were indeed fast enough, even though they contained the largest amount of tests.
QuickCheck tests were slow, although they tested more complicated and generic functional-
ities. The problem with QuickCheck tests was that they were producing nondeterministic
output. This can be perceived as a feature—different sets of data are tested each time—but
because of this they were sometimes taking more time than average. This is because ran-
domly generated test ASTs were sometimes too big. Both file-based tests were fairly slow,
even though they contained small amount of tests. Most probably large amount of file-based
tests would not be useful for quick testing. Appropriate method of using those tests would be
selecting a small part to run while developing the program (i.e. the one developer is working
on).

4.5.2. Benchmarks of the Lucretia converter

Benchmarks of the Lucretia converter were made for two purposes:

e To assess whether the current implementation of interpreter can handle computationally
intensive tasks;

e To check that the output size of converted code with some problematic constructs was
linear with respect to the Python code size.

There were four test suites run and statistics about time length of conversion and the number
of lines of code were taken (KLOC means thousand lines of code). Each test was run 10 times
and average time length was taken.

The first test suite (Figure 4.2) contained N functions computing Fibonacci numbers
iteratively with fully unrolled loop. Python code length increased with rate O(N?). We can
observe that size of converted code is roughly 6 time as large as input Python code and this
proportion stays linear with increasing N.

The second test suite (Figure 4.3) contained N + 1 classes Ai for i = 0..N, where class
A(i-1) was a base class of Ai class. Class AO additionally contained a method. An instance
of each class was created and this method was invoked (with full usage of method resolution
algorithm). Python code length increased with rate O(N). Again, we could observe linearity
of conversion and roughly 9 times increase in the number of converted code lines.

The third test suite (Figure 4.4) contained N nested while loops with if else and return
statements in-between. Python code length increased with rate O(N?), but the number of
lines increased with rate O(N), since indents were the factor that caused O(N?) increase. We
could once again observe linear increase in the number of converted code lines.

The fourth test suite (Figure 4.5) was special-it contained constant number of Python
lines in which an object x had property x.p, which referenced back to x, allowing for chain-
ing the dot operator N times in the following way: x.p.p.p.p...p. This test was chosen,
because conversion of the dot operator is one of the most expensive translations in terms of

35

amount of produced code. Since translated code had many nested let in expressions, it was
automatically indented, producing code with O(N?) size. However, this is only a result of
pretty printing. To properly measure increase in amount of produced code, the number of
bytes of Python code was compared with the number of non-space bytes of Lucretia code.
This proportion was growing, but was slowly starting to stabilize after around 80.0 ratio. Note
that this number is increasing, because a fair amount of Python code bytes was used on the
construction of the object. However, this ratio should keep growing with rate O(log N), be-
cause the names of unique temporary variables in 1et in were getting longer. This overhead
could be removed by reusing temporary variable names or by simply counting AST nodes

instead.
N | Conversion time t tN:twO (1]\]@)2 Python KLOC | Lucretia KLOC %
50 | 0.391s 1.31 3.9 23.4 6.00
100 | 1.19s 1.00 15.3 91.7 5.99
150 | 2.53s 0.94 34.1 205.0 6.01
200 | 4.45s 0.93 60.5 363.4 6.02
300 | 9.83s 0.92 135.8 815.1 6.00
400 | 17.3s 0.91 241.0 1446.8 6.00
Figure 4.2: Benchmarks of the Lucretia converter—Fibonacci numbers
N | Conversion time ¢ | —— (1) | Python KLOC | Lucretia KLOC | ieetia 8BLOC
100 | 0.370s 1.29 0.4 3.6 9.00
500 | 1.43s 1.00 2.0 18.0 9.00
1000 | 2.87s 1.00 4.0 36.0 9.00
2000 | 5.71s 0.99 8.0 72.0 9.00
5000 | 14.39s 1.00 20.0 180.0 9.00
Figure 4.3: Benchmarks of the Lucretia converter—large inheritance tree
N | Conversion time ¢ @ (20) | Python LOC | Lucretia LOC I%#gg
10 | 0.178s 0.50 82 889 10.8
20 | 0.706s 1.00 162 1759 10.8
30 | 1.88s 1.33 242 2629 10.9
40 | 4.20s 2.97 322 3499 10.9
50 | 7.97s 4.52 402 4369 10.9
100 | - - 802 8719 10.9

Figure 4.4: Benchmarks of the Lucretia converter-nested while loops

N Python bytes | Lucretia non-space bytes Lwe;;&%ﬁfg’yﬁi‘; bytes
10 70 2333 33.3
100 | 250 16733 66.9
500 | 1050 85321 81.3
1000 | 2050 171321 83.6
2000 | 4050 352409 87.0

Figure 4.5: Benchmarks of the Lucretia converter—sequence of properties

36

Tests have shown that increase in output code size is linear or at most linear-logarithmic
in most sane conditions and that quadratic increase happens only because of pretty printer
indents.

4.5.3. Benchmarks of the Lucretia interpreter

There were also tests made to compare the speed of the Python interpreter with the Lucretia
interpreter using converted Python code. The results were that current implementation of
Lucretia interpreter is not able to handle any larger tasks. It is slow, does not have a garbage
collector and runs out of stack and heap memory for large computations. For some tests the
decrease in speed is hard to compare, because Lucretia interpreter runs out of memory before
Python code’s running time stops being dominated by overhead of creating a new process and
a Python interpreter instance.

There were four tests made. The first one computed 26" Fibonacci number recursively.
The second one computed 50,000"" Fibonacci number iteratively. The third one implemented
a Counter class, created its object and incremented the counter 50,000 times. The fourth
one contained large tree of 1000 inherited classes (the same tree as in Section 4.5.2), created
an object of the class that was the furthest from the root of inheritance tree and resolved a
method from the class at the root 100 times. All tests were run 10 times and average time
length was taken. Results are shown in Figure 4.6.

Task Lucretia | Python
Fibonacci recursively 24.39s 0.21s
Fibonacci iteratively 2.43s 0.16s
Counter class 5.81s 0.13s
Deep inheritance with method resolution | 12.37s 1.32s

Figure 4.6: Benchmarks of the Lucretia interpreter

4.6. Build instructions

To build lucretia, one has to have installed ghc and cabal programs and run the following
commands in the Lucretia project directory:

cabal install --only-dependencies
cabal configure --enable-tests
cabal build

This will install dependencies, configure the project to build together with tests and build it.
To install lucretia as command-line utility, one has to additionally run:

cabal install
For those commands to work, ghc and cabal have to be in the PATH environment variable. Ad-
ditionally, to build the language-python package, which is a dependency of lucretia, happy

and alex parser programs have to be installed and accessible through the PATH environment
variable.

37

4.7.

Usage instructions

Name of program executable implemented in this project is lucretia. It is a command-line
program. To run it correctly, the LUCRETIA_PATH environment variable has to be set first to
the path of Lucretia library directory. If the variable is not set, importing library files and
evaluating converted Python code will not work. For a list of possible command-line options,
lucretia --help can be run. Possible options are:

lucretia --mode interactive or lucretia-run Lucretia interactive interpreter;

lucretia --mode interpreted fileName.luc or lucretia fileName.luc—evaluate Lu-
cretia file and pretty print its value;

lucretia --mode python fileName.py or lucretia fileName.py-parse, convert to
Lucretia and pretty print the test top-level variable of a module in the given Python
file;

lucretia --mode convert fileName.py or lucretia -m c¢ fileName.py—parse a Py-
thon file, convert it to Lucretia and pretty print Lucretia code;

lucretia --mode test—run lucretia tests.

38

Chapter 5

Conclusion

5.1. Accomplished goals

The Lucretia interpreter along with a few debugging tools was finished and it is usable enough
to write larger Lucretia programs with it. Thanks to displaying stacktrace and exact point of
failure on errors, it is usually easy to fix bugs. However, Lucretia Parser should be improved,
as its current parse error messages are confusing when for example operator is used in infix
notation.

The Python to Lucretia converter is still incomplete. Framework for handling scopes,
basic constructions such as functions and while loop were completed. The largest amount
of work was spent on classes. The Python classes are still only partially supported, however
most important mechanisms have been implemented (inheritance, method resolution, part
of builtins library). Classes are central functionality in Python. They are required to
implement many other features, including:

e iterables (along with for loop);

e exceptions (all exceptions should derive from Exception class in Python 3, see 6] for
details);

e The with statement;

e importing and using fully qualified names, unless we give special semantics to dot op-
erator;

e xargs and **kwargs constructions, where args is an iterable and kwargs is of the dict
class;

e primitives (e.g. integers, strings) being objects and having their own methods.

5.2. Production Python code support

Tests of the converter on the production code were not performed, because some very popular
language constructs are not implemented, mainly exceptions (which can be thrown in many
places in Python), import mechanism (most Python libraries and programs import something)
and constructs for iterables, such as for loop or the subscript ([1) operator.

39

5.3. Future work

The lucretia program and the Lucretia language will be still developed in future. The goal
is to be able to convert most production Python code into Lucretia and then try to statically
type it. In order to do this, more Python language features have to be converted. This
includes features for which classes were needed listed in section 5.1, but also:

e the importing system;

e the conversion of part of the Python standard library (partially manual);

e metaclasses;

e the rest of Python language constructs (e.g. for, yield and many operators).

Note that this list is still not full and complete Python implementation, including the Python
standard library, will probably never be accomplished. Some language features are virtually
never used (such as substituting the type class or class inherited from it as class’ class). There
are also language constructs which are impossible to type in general (such as exec and eval),
s0, aside from some special cases, converting them will not be of any benefit for type checker.

Another feature that will be desirable with introduction of the type checker is parsing
Python-compatible type annotations that do not affect code execution. That way part of
Python code could be typed when type inference algorithm is still not complete or cannot
solve a specific case.

The intermediate goal is to implement enough Python support, so that a few chosen li-
braries will successfully convert into Lucretia and then start working on a basic type checker
and a type inference algorithm for Lucretia to type those libraries. In the paper [1] type-
checking rules for Lucretia are proposed. However they will have to be extended to support
more complicated Python types (such as linked list of variable length). Type inference algo-
rithm for Lucretia has not been designed yet.

There is also a decision to make about supported Python versions. Obviously Python 3
should be supported, as the current version of the Python language. Python 2 is still widely
used, but the number of libraries ported to Python 3 is increasing. Supporting Python 2
would mean implementing old-style Python classes and other constructs that were removed
from Python 3 and are deprecated in new Python 2 versions. However, those constructs are
still present in old Python 2 libraries.

40

Bibliography

1]

2]

3]

4]

[5]

[6]

7]

Marcin Benke, Viviana Bono, Aleksy Schubert, Lucretia—ad-hoc polymorphism for script-
ing languages (extended version).

Full Grammar specification-Python v2.7.6 documentation, http://docs.python.org/
2.7/reference/grammar .html?highlight=grammar.

Full Grammar specification-Python 3.3.5 documentation, http://docs.python.org/3.
3/reference/grammar.html?highlight=grammar.

The Python 2.3 Method Resolution Order, https://www.python.org/download/
releases/2.3/mro.

Data Model-Python 3.3.5 documentation, https://docs.python.org/3.3/reference/
datamodel.html.

Errors and Exceptions-Python 3.3.5 documentation, https://docs.python.org/3.3/
tutorial/errors.html.

Stephen Adams, Implementing Sets Efficiently in a Functional Language, CSTR 92-10,
University of Southampton.

41

http://docs.python.org/2.7/reference/grammar.html?highlight=grammar
http://docs.python.org/2.7/reference/grammar.html?highlight=grammar
http://docs.python.org/3.3/reference/grammar.html?highlight=grammar
http://docs.python.org/3.3/reference/grammar.html?highlight=grammar
https://www.python.org/download/releases/2.3/mro
https://www.python.org/download/releases/2.3/mro
https://docs.python.org/3.3/reference/datamodel.html
https://docs.python.org/3.3/reference/datamodel.html
https://docs.python.org/3.3/tutorial/errors.html
https://docs.python.org/3.3/tutorial/errors.html

	Introduction
	Motivation
	Lucretia language description
	Grammar
	Evaluation
	Expression segments

	Interpreter
	Syntax sugar
	Environment
	Lucretia interactive interpreter
	Constructing evaluated code
	Reusing computed environment

	Importing files
	Lucretia module
	Lucretia library
	BST
	IO
	Python builtins
	Test tools

	Converter
	Overview
	Sequencing operator (;)
	Variables and scope
	Module
	Functions
	Simulation of return and simplified exceptions
	Function closures
	Recursive functions
	The while loops
	Short-circuit operators
	Classes
	Overview
	The core classes
	Function objects
	Function arguments
	Object tags
	Implementation of normal classes and shortcuts
	Implementation of classes object, type, tuple and function
	Method and variable resolution
	Bound methods
	Callables

	Program development and usage
	Overview
	Technology
	Architecture
	Lucretia interpreter modules
	Python converter modules
	Testing modules
	Utility modules

	Automated tests
	Benchmarks
	Benchmarks of tests
	Benchmarks of the Lucretia converter
	Benchmarks of the Lucretia interpreter

	Build instructions
	Usage instructions

	Conclusion
	Accomplished goals
	Production Python code support
	Future work

	Bibliography

