THE MALLIAVIN-STEIN APPROACH

3rd Warsaw Summer School in Probability
June 24-28, 2019
Ivan Nourdin
University of Luxembourg

Overview

Overview of the lectures

- Introduction to Malliavin calculus: dimension one
- Introduction to Malliavin calculus: any dimension
- Malliavin calculus and absolute continuity: dimension one
- Malliavin calculus and absolute continuity: any dimension
- The Malliavin-Stein approach: dimension one
- The Malliavin-Stein approach: any dimension
- Some applications

Overview

To go further, some references:

- I. Nourdin (2012): Lectures on Gaussian approximations with Malliavin calculus. Sém. Probab. XLV, pp. 3-89.
- I. Nourdin and G. Peccati (2012): Normal Approximations with Malliavin Calculus: from Stein's Method to Universality. Cambridge Tracts in Mathematics. Cambridge University Press.
- L. Chen, L. Goldstein, Q.-M. Shao (2010): Normal Approximation by Stein's Method. Probability and Its Applications. Springer

Introduction to Malliavin calculus: dimension one

Preliminaries on Hermite polynomials

We first recall some useful properties of Hermite polynomials.

Preliminaries on Hermite polynomials

- We write $d \gamma(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x, x \in \mathbb{R}$.
- Proposition. The family $\left(H_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{R}[X]$ of Hermite polynomials ($H_{0}=1, H_{1}=X, H_{2}=X^{2}-1, H_{3}=X^{3}-3 X$, etc.) has the following properties.
(a) $\mathrm{XH}_{p}=H_{p+1}+p H_{p-1}$
(b) $H_{p}^{\prime}=p H_{p-1}$
(c) $H_{p}(x)=(-1)^{p} e^{\frac{x^{2}}{2}} \frac{d p}{d x^{p}}\left\{e^{-\frac{x^{2}}{2}}\right\}$
(d) $\left(\frac{1}{\sqrt{p!}} H_{p}\right)_{p \in \mathbb{N}}$ is an orthonormal basis of $L^{2}(\gamma)$, that is, each $\varphi \in L^{2}(\gamma)$ can always be expanded as $\varphi=\sum_{p=0}^{\infty} a_{p} H_{p}$ with $\sum_{p=0}^{\infty} p!a_{p}^{2}<\infty$ and $\left\langle H_{p}, H_{q}\right\rangle_{L^{2}(\gamma)}=p!\delta_{p q}$ (Kronecker symbol).

The Malliavin derivative operator D

- Let $\varphi \in L^{2}(\gamma)$.
- We have $\varphi=\sum_{p=0}^{\infty} a_{p} H_{p}$ where

$$
a_{p}=\frac{1}{p!}\left\langle\varphi, H_{p}\right\rangle_{L^{2}(\gamma)}=\frac{1}{p!} \mathbb{E}\left[\varphi(N) H_{p}(N)\right], N \sim N(0,1) .
$$

- We have $\mathbb{E}\left[\varphi(N)^{2}\right]=\sum_{p=0}^{\infty} a_{p}^{2} p!<\infty$.
- For $k \in \mathbb{N}$, we set $\mathbb{D}^{k, 2}(\gamma)=\left\{\varphi \in L^{2}(\gamma): \sum_{p=0}^{\infty} p^{k} p!a_{p}^{2}<\infty\right\}$.
- (Remark: $\left.\mathbb{D}^{0,2}(\gamma)=L^{2}(\gamma).\right)$

The Malliavin derivative operator D

- For $\varphi=\sum_{p=0}^{\infty} a_{p} H_{p} \in \mathbb{D}^{1,2}(\gamma)$, we set

$$
D \varphi=\sum_{p=0}^{\infty} p a_{p} H_{p-1} .
$$

- Remarks:
(i) if $\varphi \in \mathbb{D}^{1,2}(\gamma) \cap C^{1}(\mathbb{R})$, then $D \varphi=\varphi^{\prime}$;
(ii) D can be thought as the Malliavin derivative operator in dimension 1.

THE DIVERGENCE OPERATOR δ

- We define Dom δ as the set

$$
\left\{\varphi \in L^{2}(\gamma): \exists c>0, \forall \psi \in C_{c^{\prime}}^{1}\left|\int \varphi \psi^{\prime} d \gamma\right| \leq c\|\psi\|_{L^{2}(\gamma)}\right\} .
$$

- If $\varphi \in \operatorname{Dom} \delta$, then $\psi \mapsto \int \varphi \psi^{\prime} d \gamma$ is linear and continuous from C_{c}^{1} (viewed as a dense subset of $\left.L^{2}(\gamma)\right)$ to \mathbb{R}.
- As such, it can be extended to a linear form of $L^{2}(\gamma)$.
- By the Riesz representation theorem, there exists a unique element of $L^{2}(\gamma)$, written $\delta \varphi$, such that

$$
\int \varphi \psi^{\prime} d \gamma=\int(\delta \varphi) \psi d \gamma \quad \text { for all } \psi \in C_{c}^{1}
$$

THE DIVERGENCE OPERATOR δ

- Definition. The previous operator $\delta: \operatorname{Dom} \delta \rightarrow L^{2}(\gamma)$ is called the divergence operator.

THE DIVERGENCE OPERATOR δ

Proposition.

1. We have $\mathbb{D}^{1,2}(\gamma) \subset \operatorname{Dom} \delta$.
2. Moreover, if $\varphi \in \mathbb{D}^{1,2}(\gamma)$, then

$$
(\delta \varphi)(x)=x \varphi(x)-(D \varphi)(x)
$$

Proof.

- If $\varphi=\sum_{p=0}^{\infty} a_{p} H_{p} \in \mathbb{D}^{1,2}(\gamma)$, then

$$
-D \varphi+x \varphi=\sum_{p=0}^{\infty}\left\{-p a_{p} H_{p-1}+a_{p}\left(H_{p+1}+p H_{p-1}\right)\right\}=\sum_{p=1}^{\infty} a_{p-1} H_{p}
$$

- Let $\psi \in C_{c}^{1}$. We have $\psi=\sum_{p=0}^{\infty} b_{p} H_{p}$ and $\psi^{\prime}=\sum_{p=1}^{\infty} p b_{p} H_{p-1}=$ $\sum_{p=0}^{\infty}(p+1) b_{p+1} H_{p}$.

The divergence operator δ

Proposition.

1. We have $\mathbb{D}^{1,2}(\gamma) \subset \operatorname{Dom} \delta$.
2. Moreover, if $\varphi \in \mathbb{D}^{1,2}(\gamma)$, then

$$
(\delta \varphi)(x)=x \varphi(x)-(D \varphi)(x)
$$

Proof (continued). Hence

$$
\begin{aligned}
\left\langle\varphi, \psi^{\prime}\right\rangle_{L^{2}(\gamma)} & =\sum_{p=0}^{\infty} p!(p+1) a_{p} b_{p+1} \\
\langle x \varphi-D \varphi, \psi\rangle_{L^{2}(\gamma)} & =\sum_{p=1}^{\infty} a_{p-1} b_{p} p!=\sum_{p=0}^{\infty} a_{p} b_{p+1}(p+1)!.
\end{aligned}
$$

That is, these two quantities are the same. Moreover,

$$
\begin{aligned}
\left|\left\langle\varphi, \psi^{\prime}\right\rangle_{L^{2}(\gamma)}\right| & \leq \sqrt{\sum_{p=0}^{\infty}(p+1)!a_{p}^{2}} \sqrt{\sum_{p=0}(p+1)!b_{p+1}^{2}} \\
& \leq \operatorname{cst}(\varphi) \times\|\psi\|_{L^{2}(\gamma)}
\end{aligned}
$$

EXAMPLE

Example.

- We have, for any $p \in \mathbb{N}$:

$$
\delta H_{p}=x H_{p}-H_{p}^{\prime}=x H_{p}-p H_{p-1}=H_{p+1} .
$$

- By induction, $H_{p}=\delta^{p} 1$ for all $p \in \mathbb{N}$.

AN EXPRESSION FOR THE ENTRIES

A useful expression for the entries.

- If $\varphi=\sum_{p=0}^{\infty} a_{p} H_{p} \in \mathbb{D}^{k, 2}(\gamma)$, then

$$
\begin{aligned}
k!a_{k} & =\left\langle\varphi, H_{k}\right\rangle_{L^{2}(\gamma)}=\left\langle\varphi, \delta H_{k-1}\right\rangle_{L^{2}(\gamma)} \\
& =\left\langle\varphi^{\prime}, H_{k-1}\right\rangle_{L^{2}(\gamma)} \quad \text { (duality) } \\
& =\cdots \\
& =\left\langle\varphi^{(k)}, 1\right\rangle_{L^{2}(\gamma)} .
\end{aligned}
$$

That is,

$$
a_{k}=\frac{1}{k!} \mathbb{E}\left[\varphi^{(k)}(N)\right], \quad N \sim N(0,1) .
$$

- In particular, $a_{0}=\mathbb{E}[\varphi(N)]$.
- Moreover, $\mathbb{E}\left[H_{k}(N)\right]=0$ for all $k \geq 1$.

An Application

- We have

$$
\begin{aligned}
e^{c x} & =\sum_{k=0}^{\infty} \frac{1}{k!} \mathbb{E}\left(\left.\frac{d^{k}}{d x^{k}} e^{c x}\right|_{x=N}\right) H_{k}(x) \\
& =\sum_{k=0}^{\infty} \frac{c^{k}}{k!} \mathbb{E}\left[e^{c N}\right] H_{k}(x)=e^{c^{2}} \sum_{k=0}^{\infty} \frac{c^{k}}{k!} H_{k}(x) .
\end{aligned}
$$

(Compare with $e^{c x}=\sum_{k=0}^{\infty} \frac{c^{k}}{k!} x^{k}$.)

- Corollary. If $U, V \sim N(0,1)$ are jointly Gaussian and if $k, l \in \mathbb{N}$ then

$$
\mathbb{E}\left[H_{k}(U) H_{l}(V)\right]= \begin{cases}k!\mathbb{E}[U V]^{k} & \text { if } k=l \\ 0 & \text { otherwise }\end{cases}
$$

Proof of the corollary

Proof.

- We have, on one hand

$$
\mathbb{E}\left[e^{x U+y V}\right]=e^{\frac{x^{2}+y^{2}}{2}} \sum_{k, l=0}^{\infty} \frac{x^{k} y^{l}}{k!l!} \mathbb{E}\left[H_{k}(U) H_{l}(V)\right]
$$

- On the other hand,

$$
\begin{aligned}
\mathbb{E}\left[e^{x U+y V}\right] & =e^{\frac{1}{2} \operatorname{Var}(x U+y V)}=e^{\frac{1}{2}\left\{x^{2}+y^{2}+2 x y \mathbb{E}[U V]\right\}} \\
& =e^{\frac{x^{2}+y^{2}}{2}} e^{x y \mathbb{E}[U V]}=e^{\frac{x^{2}+y^{2}}{2}} \sum_{k=0}^{\infty} \frac{x^{k} y^{k}}{k!} \mathbb{E}[U V]^{k}
\end{aligned}
$$

- By identification,

$$
\mathbb{E}\left[H_{k}(U) H_{l}(V)\right]=\left\{\begin{array}{ll}
k!\mathbb{E}[U V]^{k} & \text { if } k=l \\
0 & \text { otherwise }
\end{array} \square\right.
$$

The Ornstein-Uhlenbeck semigroup $\left(P_{t}\right)_{t \geq 0}$

- Definition. For $t \geq 0$ and $\varphi=\sum_{p=0}^{\infty} a_{p} H_{p} \in L^{2}(\gamma)$, we set

$$
P_{t} \varphi=\sum_{p=0}^{\infty} e^{-p t} a_{p} H_{p} .
$$

This defines the Ornstein-Uhlenbeck semigroup.

The Ornstein-Uhlenbeck semigroup $\left(P_{t}\right)_{t \geq 0}$

Proposition.

(a) $P_{s} P_{t}=P_{s+t}$
(b) P_{0} is the identity operator, that is, $P_{0} \varphi=\varphi$
(c) P_{∞} is the expectation operator, that is, $P_{\infty} \varphi=\mathbb{E}[\varphi(N)]$
(d) [contractivity] $\left\|P_{t} \varphi\right\|_{L^{2}(\gamma)} \leq\|\varphi\|_{L^{2}(\gamma)}$ for any $\varphi \in L^{2}(\gamma)$.
(e) [Mehler formula] one has

$$
\left(P_{t} \varphi\right)(x)=\mathbb{E}\left[\varphi\left(e^{-t} x+\sqrt{1-e^{-2 t}} N\right)\right]
$$

for $N \sim N(0,1)$ and any $\varphi \in L^{2}(\gamma)$.
(f) $D P_{t} \varphi=e^{-t} P_{t} \varphi^{\prime}$ for any $\varphi \in \mathbb{D}^{1,2}(\gamma)$.
${ }^{1}$ We have actually much better: $\left\|P_{t} \varphi\right\|_{L^{1+e^{2 t}}(\gamma)} \leq\|\varphi\|_{L^{2}(\gamma)}$.

ExERCISE

Exercise. Prove the points (a) to (f) of the previous proposition.

THE GENERATOR L OF $\left(P_{t}\right)_{t \geq 0}$

- For any $\varphi \in \mathbb{D}^{2,2}(\gamma)$, we can write

$$
\begin{aligned}
\frac{d}{d t}\left(P_{t} \varphi\right)(x)= & -x e^{-t} \mathbb{E}\left[\varphi^{\prime}\left(e^{-t} x+\sqrt{1-e^{-2 t}} N\right)\right] \\
& +\frac{e^{-2 t}}{\sqrt{1-e^{-2 t}}} \mathbb{E}\left[\varphi^{\prime}\left(e^{-t} x+\sqrt{1-e^{-2 t}} N\right) N\right] \\
= & -x e^{-t} P_{t} \varphi^{\prime}(x)+e^{-2 t} P_{t} \varphi^{\prime \prime}(x)
\end{aligned}
$$

where in the last line we have used that $\mathbb{E}[N g(N)]=\mathbb{E}\left[g^{\prime}(N)\right]$.

- Now, set $L=-\delta D$ and let us compute $L P_{t} \varphi$.

THE GENERATOR L OF $\left(P_{t}\right)_{t \geq 0}$

- We can write

$$
\begin{aligned}
\left(L P_{t} \varphi\right)(x) & =-\delta\left(D P_{t} \varphi\right)(x)=-e^{-t} \delta\left(P_{t} \varphi^{\prime}\right)(x) \\
& =-x e^{-t} P_{t} \varphi^{\prime}(x)+e^{-2 t} P_{t} \varphi^{\prime \prime}(x) \\
& =\frac{d}{d t}\left(P_{t} \varphi\right)(x)
\end{aligned}
$$

- That is, L is the generator of $\left(P_{t}\right)_{t \geq 0}$.

EXPANSION OF THE VARIANCE

- Let us show how, using the previously introduced operators, one can derive useful expansions for the variance in $L^{2}(\gamma)$.
- Let $\varphi \in \mathbb{D}^{\infty, 2}(\gamma)$ of the form $\varphi=\sum_{p=0}^{\infty} a_{p} H_{p}$.
- We have

$$
\mathbb{E}\left[\varphi(N)^{2}\right]=\sum_{p=0}^{\infty} p!a_{p}^{2}=\mathbb{E}[\varphi(N)]^{2}+\sum_{p=1}^{\infty} \frac{1}{p!} \mathbb{E}\left[\varphi^{(p)}(N)\right]^{2}
$$

- That is,

$$
\operatorname{Var}(\varphi(N))=\sum_{p=1}^{\infty} \frac{1}{p!} \mathbb{E}\left[\varphi^{(p)}(N)\right]^{2}
$$

EXPANSION OF THE VARIANCE

- Now, let us introduce, for $0<t \leq 1$,

$$
g(t)=\mathbb{E}\left[\left(P_{\log \frac{1}{\sqrt{t}}} \varphi(N)\right)^{2}\right]
$$

- We have $g(1)=\mathbb{E}\left[\varphi(N)^{2}\right]$ and $g(0)=\mathbb{E}[\varphi(N)]^{2}$, so that

$$
\operatorname{Var}(\varphi(N))=g(1)-g(0)=\int_{0}^{1} g^{\prime}(t) d t
$$

Expansion of The variance

- We compute

$$
\begin{aligned}
g^{\prime}(t) & =-\frac{1}{t} \mathbb{E}\left[P_{\log \frac{1}{\sqrt{t}}} \varphi(N) \times L P_{\log \frac{1}{\sqrt{t}}} \varphi(N)\right] \\
& =\frac{1}{t} \mathbb{E}\left[\left(D P_{\log \frac{1}{\sqrt{t}}} \varphi(N)\right)^{2}\right] \\
& =\mathbb{E}\left[\left(P_{\log \frac{1}{\sqrt{t}}} \varphi^{\prime}(N)\right)^{2}\right]
\end{aligned}
$$

- Clearly, by iterating:

$$
g^{(k)}(t)=\mathbb{E}\left[\left(P_{\log \frac{1}{\sqrt{t}}} \varphi^{(k)}(N)\right)^{2}\right]
$$

EXPANSION OF THE VARIANCE

- Now, we use Taylor:

$$
g(0)=g(1)+\sum_{k=1}^{m} g^{(k)}(1) \frac{(-1)^{k}}{k!}+\frac{1}{m!} \int_{1}^{0}(-t)^{m} g^{(m+1)}(t) d t
$$

- We deduce

$$
\operatorname{Var}(\varphi(N))=\sum_{k=1}^{m} \frac{(-1)^{k+1}}{k!} \mathbb{E}\left[\varphi^{(k)}(N)^{2}\right]+\frac{(-1)^{m}}{m!} \int_{0}^{1} t^{m} g^{(m+1)}(t) d t
$$

with $\int_{0}^{1} t^{m} g^{(m+1)}(t) d t \geq 0$.

EXPANSION OF THE VARIANCE

- If $m=1$, we recover the classical Poincaré inequality:

$$
\operatorname{Var}(\varphi(N)) \leq \mathbb{E}\left[\varphi^{\prime}(N)^{2}\right]
$$

- If $m=2$, one obtains

$$
\operatorname{Var}(\varphi(N)) \geq \mathbb{E}\left[\varphi^{\prime}(N)^{2}\right]-\frac{1}{2} \mathbb{E}\left[\varphi^{\prime \prime}(N)^{2}\right]
$$

- If $m=3$, one obtains

$$
\operatorname{Var}(\varphi(N)) \leq \mathbb{E}\left[\varphi^{\prime}(N)^{2}\right]-\frac{1}{2} \mathbb{E}\left[\varphi^{\prime \prime}(N)^{2}\right]+\frac{1}{6} \mathbb{E}\left[\varphi^{\prime \prime \prime}(N)^{2}\right]
$$

- Etc.

Introduction to Malliavin calculus: any dimension

Preamble

- For the sake of simplicity and to avoid technicalities, in this series of lectures we will only consider the case where the underlying Gaussian process is a classical Brownian motion $B=\left(B_{t}\right)_{t \geq 0}$ defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- It will also be always implicitely assumed that the σ-field \mathcal{F} is generated by B, that is, $\mathcal{F}=\sigma\left\{B_{t}: t \geq 0\right\}$.
- That is, each time we speak about a random variable, it is implicit that it is measurable with respect to B.

CHAOTIC EXPANSION

- Theorem. Any $F \in L^{2}(\Omega)$ can be uniquely expanded as

$$
\begin{equation*}
F=\mathbb{E}[F]+\sum_{p=1}^{\infty} I_{p}\left(f_{p}\right) \tag{1}
\end{equation*}
$$

where each $f_{p}: \mathbb{R}_{+}^{p} \rightarrow \mathbb{R}$ is symmetric ${ }^{2}$ and square integrable, and where

$$
I_{p}\left(f_{p}\right)=p!\int_{0}^{\infty} d B_{t_{1}} \ldots \int_{0}^{t_{p-2}} d B_{t_{p-1}} \int_{0}^{t_{p-1}} d B_{t_{p}} f_{p}\left(t_{1}, \ldots, t_{p}\right) .
$$

- (1) is called the chaotic expansion of F.

[^0]
LINK WITH DIMENSION 1

Theorem. If $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is such that $\int_{0}^{\infty} h^{2}(t) d t=1$ then, for any integer $p \geq 1$:

$$
H_{p}\left(\int_{0}^{\infty} h(t) d B_{t}\right)=I_{p}\left(h^{\otimes p}\right)
$$

where $h^{\otimes p}\left(t_{1}, \ldots, t_{p}\right)=h\left(t_{1}\right) \ldots h\left(t_{p}\right)$ is symmetric and square integrable.
Proof. We make use of Itô's formula.

- Let $t \in \mathbb{R}$ and, for any $x \in \mathbb{R}$ and $a \geq 0$, set

$$
\widetilde{H}_{p}(x, a)=\left\{\begin{array}{ll}
a^{p / 2} H_{p}(x / \sqrt{a}) & \text { if } a \neq 0 \\
x^{p} & \text { if } a=0
\end{array} .\right.
$$

- Using the properties of Hermite polynomials, it is readily checked that $\left(\frac{1}{2} \frac{\partial^{2}}{\partial^{2} x}-\frac{\partial}{\partial a}\right) \widetilde{H}_{p}=0$ and $\frac{\partial}{\partial x} \widetilde{H}_{p}=p \widetilde{H}_{p-1}$.

LINK WITH DIMENSION 1

- Proof (continued). Itô's formula implies

$$
\begin{aligned}
& \widetilde{H}_{p}\left(\int_{0}^{t} h(u) d B_{u}, \int_{0}^{t} h^{2}(u) d u\right) \\
= & p \int_{0}^{t} d B_{t_{1}} h\left(t_{1}\right) \widetilde{H}_{p-1}\left(\int_{0}^{t_{1}} h(u) d B_{u}, \int_{0}^{t_{1}} h^{2}(u) d u\right) \\
= & \cdots \\
= & p!\int_{0}^{t} d B_{t_{1}} h\left(t_{1}\right) \int_{0}^{t_{1}} d B_{t_{2}} h\left(t_{2}\right) \ldots \int_{0}^{t_{p-2}} d B_{t_{p-1}} h\left(t_{p-1}\right) \\
& \times \widetilde{H}_{1}\left(\int_{0}^{t_{p-1}} h(u) d B_{u}, \int_{0}^{t_{p-1}} h^{2}(u) d u\right) \\
= & p!\int_{0}^{t} d B_{t_{1}} h\left(t_{1}\right) \int_{0}^{t_{1}} d B_{t_{2}} h\left(t_{2}\right) \ldots \int_{0}^{t_{p-1}} d B_{t_{p}} h\left(t_{p}\right) .
\end{aligned}
$$

- The conclusion follows by letting $t \rightarrow \infty$ and by observing that $\widetilde{H}_{p}(x, 1)=H_{p}(x)$.

CONTINUOUS QUADRATIC VARIATION OF BROWNIAN MOTION

Example: continuous quadratic variation of Brownian motion

- Let $F=\int_{0}^{T}\left(B_{u+1}-B_{u}\right)^{2} d u$ be the continuous quadratic variation of the Brownian motion B over the time interval $[0, T]$.
- We have, since $B_{u+1}-B_{u}=\int_{0}^{\infty} \mathbf{1}_{[u, u+1]}(t) d B_{t} \sim N(0,1)$,

$$
\begin{aligned}
F & =\mathbb{E}[F]+\int_{0}^{T} H_{2}\left(B_{u+1}-B_{u}\right) d u \\
& =\mathbb{E}[F]+\int_{0}^{T} I_{2}\left(\mathbf{1}_{[u, u+1]^{2}}\right) d u \\
& =\mathbb{E}[F]+I_{2}\left(f_{2}\right),
\end{aligned}
$$

where $f_{2}(s, t)=\int_{0}^{T} \mathbf{1}_{[u, u+1]^{2}}(s, t) d u$.

- This is the chaotic expansion of F.

ExERCISE

Exercise. Let $T>0$. For each of the following expressions of F, compute its chaotic expansion.

1. $F=\left(B_{T}\right)^{n}$ with $n \in \mathbb{N}^{*}$.
2. $F=e^{B_{T}}$.
3. $F=\int_{0}^{T} B_{u} d u$.
4. $F=\int_{0}^{T}\left(B_{u+1}-B_{u}\right)^{3} d u$.

ISOMETRY-ORTHOGONALITY FOR MULTIPLE INTEGRALS

- Theorem. For any $p, q \geq 1$ and any $f \in L_{s}^{2}\left(\mathbb{R}_{+}^{p}\right)$ and $g \in$ $L_{s}^{2}\left(\mathbb{R}_{+}^{q}\right):$

$$
\mathbb{E}\left[I_{p}(f) I_{q}(g)\right]=\left\{\begin{array}{cc}
0 & \text { if } p \neq q \\
p!\langle f, g\rangle_{L^{2}\left(\mathbb{R}_{+}^{p}\right)} & \text { if } p=q
\end{array}\right.
$$

ISOMETRY-ORTHOGONALITY FOR MULTIPLE INTEGRALS

- Let $U, V \sim N(0,1)$ be jointly Gaussian. Without loss of generality, we can assume that $U=\int_{0}^{\infty} u(t) d B_{t}$ and $V=$ $\int_{0}^{\infty} v(t) d B_{t}$ with $\|u\|_{L^{2}\left(\mathbb{R}_{+}\right)}=\|v\|_{L^{2}\left(\mathbb{R}_{+}\right)}=1$ and $\langle u, v\rangle_{L^{2}\left(\mathbb{R}_{+}\right)}=$ $\mathbb{E}[U V]$.
- If $p, q \geq 1$, we can write

$$
\mathbb{E}\left[H_{p}(U) H_{q}(V)\right]=\mathbb{E}\left[I_{p}\left(u^{\otimes p}\right) I_{q}\left(v^{\otimes q}\right)\right] .
$$

- As a result, if $p \neq q$ then $\mathbb{E}\left[H_{p}(U) H_{q}(V)\right]=0$.
- If $p=q$, then

$$
\begin{aligned}
\mathbb{E}\left[H_{p}(U) H_{q}(V)\right] & =p!\left\langle u^{\otimes p}, v^{\otimes p}\right\rangle_{L^{2}\left(\mathbb{R}^{p}\right)}=p!\langle u, v\rangle_{L^{2}(\mathbb{R})}^{p} \\
& =p!\mathbb{E}[U V]^{p} .
\end{aligned}
$$

MULTIPLICATION FORMULA FOR MULTIPLE INTEGRALS

- Theorem (Multiplication formula): If $f \in L_{s}^{2}\left(\mathbb{R}_{+}^{p}\right)$ and $g \in$ $L_{s}^{2}\left(\mathbb{R}_{+}^{q}\right)$ then

$$
I_{p}(f) I_{q}(g)=\sum_{r=0}^{p \wedge q} r!\binom{p}{r}\binom{q}{r} I_{p+q-2 r}\left(f \widetilde{\otimes}_{r} g\right),
$$

where

$$
\begin{aligned}
& f \otimes_{r} g\left(x_{1}, \ldots, x_{p+q-2 r}\right) \\
&= \int f\left(x_{1}, \ldots, x_{p-r}, u_{1}, \ldots, u_{r}\right) g\left(x_{p-r+1}, \ldots, x_{p+q-2 r}, u_{1}, \ldots, u_{r}\right) \\
& d u_{1} \ldots d u_{r}
\end{aligned}
$$

and ${ }^{\sim}$ stands for symetrization:

$$
\widetilde{h}\left(x_{1}, \ldots, x_{a}\right)=\frac{1}{a!} \sum_{\sigma \in \mathfrak{S}_{a}} h\left(x_{\sigma(1)}, \ldots, x_{\sigma(a)}\right) .
$$

MALLIAVIN DERIVATIVE

- If $F=\sum_{p=0}^{\infty} I_{p}\left(f_{p}\right) \in L^{2}(\Omega)$ then

$$
\mathbb{E}\left[F^{2}\right]=\sum_{p=0}^{\infty} p!\left\|f_{p}\right\|^{2}<\infty .
$$

- Definition. We set

$$
\mathbb{D}^{k, 2}(\Omega)=\left\{F \in L^{2}(\Omega): \sum_{p=0}^{\infty} p^{k} p!\left\|f_{p}\right\|^{2}<\infty\right\}
$$

- Definition (Malliavin derivative). If $F \in \mathbb{D}^{1,2}(\Omega)$, we set

$$
D_{x} F=\sum_{p=1}^{\infty} p I_{p-1}\left(f_{p}(\cdot, x)\right), \quad x \in \mathbb{R}_{+}
$$

MALLIAVIN DERIVATIVE

- As a particular case, $D_{x}\left(\int_{0}^{\infty} h(t) d B_{t}\right)=h(x)$.
- The process $D F=\left(D_{x} F\right)_{x \geq 0}$ belongs to $L^{2}\left(\Omega \times \mathbb{R}_{+}\right)$:

$$
\begin{aligned}
\mathbb{E}\left[\|D F\|_{L^{2}\left(\mathbb{R}_{+}\right)}^{2}\right] & =\sum_{p=1}^{\infty} p^{2} \int_{0}^{\infty} \mathbb{E}\left[I_{p-1}\left(f_{p}(\cdot, x)\right)^{2}\right] d x \\
& =\sum_{p=1}^{\infty} p^{2}(p-1)!\int_{0}^{\infty}\left\|f_{p}(\cdot, x)\right\|^{2} d x \\
& =\sum_{p=1}^{\infty} p p!\left\|f_{p}\right\|^{2}<\infty
\end{aligned}
$$

MALLIAVIN DERIVATIVE: CHAIN RULE

- Theorem (chain rule for D). If $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is C^{1} and Lipschitz and if $F_{1}, \ldots, F_{d} \in \mathbb{D}^{1,2}(\Omega)$, then $\phi\left(F_{1}, \ldots, F_{d}\right)$ belongs to $\mathbb{D}^{1,2}(\Omega)$ with

$$
D_{x} \phi\left(F_{1}, \ldots, F_{d}\right)=\sum_{k=1}^{d} \frac{\partial \phi}{\partial x_{k}}\left(F_{1}, \ldots, F_{d}\right) D_{x} F_{k}
$$

- Particularly important case:

$$
D_{x} \phi(F)=\phi^{\prime}(F) D_{x} F
$$

if $F \in \mathbb{D}^{1,2}(\Omega)$ and $\phi \in C^{1} \cap$ Lip.

ExERCISE

Exercise. Let $T>0$. For each of the following expressions of F, compute its Malliavin derivative.

1. $F=B_{T}^{n}$ with $n \in \mathbb{N}^{*}$.
2. $F=e^{B_{T}}$.
3. $F=\int_{0}^{T} B_{u} d u$.
4. $F=\int_{0}^{T}\left(B_{u+1}-B_{u}\right)^{n} d u$ with $n \in \mathbb{N}^{*}$.

EXERCISE

Exercise. Let $x_{0} \in \mathbb{R}$ and let $\sigma, b: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} and (globally) Lipschitz. Consider the strong solution $X=\left(X_{t}\right)_{t \geq 0}$ of the stochastic differential equation (or, more correctly, stochastic integral equation):

$$
X_{t}=x_{0}+\int_{0}^{t} b\left(X_{u}\right) d u+\int_{0}^{t} \sigma\left(X_{u}\right) d B_{u}
$$

The goal of this exercise is to compute the Malliavin derivative of X_{t} when $t>0$ is fixed.

EXERCISE (CONTINUED)

1. Let $z=\left(z_{u}\right)_{u \in[0, T]}$ be a simple adapted process, that is of the form

$$
z_{u}=\sum_{i=1}^{k} \xi_{i} \mathbf{1}_{\left(t_{i}, t_{i+1}\right]}(u)
$$

for an integer k, a finite sequence
$t_{0}=0<t_{1}<\ldots<t_{k+1}=T$, and random variables
ξ_{1}, \ldots, ξ_{k} such that ξ_{i} is $\mathcal{F}_{t_{i}}$-measurable. Assume further that $\xi_{i} \in \mathbb{D}^{1,2}(\Omega)$ for each i. For any $s \in[0, T]$, show that

$$
\begin{align*}
D_{s}\left(\int_{0}^{T} z_{u} d u\right) & =\int_{0}^{T} D_{s} z_{u} d u \tag{2}\\
D_{s}\left(\int_{0}^{T} z_{u} d B_{u}\right) & =z_{s}+\int_{0}^{T} D_{s} z_{u} d B_{u} \tag{3}
\end{align*}
$$

By approximation, one can show that (2)-(3) extend to any adapted process z (not necessarily simple) such that $z_{u} \in \mathbb{D}^{1,2}(\Omega)$ for $u \in[0, T]$ and $\int_{0}^{T} \mathbb{E}\left[\left(D_{s} z_{u}\right)^{2}\right] d u<\infty$.

EXERCISE (CONTINUED)

2. For any $s, t>0$, show that $D_{s} X_{t}=0$ if $s>t$ whereas, for $s \leq t$,

$$
D_{s} X_{t}=\sigma\left(X_{s}\right) \exp \left\{\int_{s}^{t}\left[b^{\prime}\left(X_{u}\right)-\frac{1}{2} \sigma^{\prime 2}\left(X_{u}\right)\right] d u+\int_{s}^{t} \sigma^{\prime}\left(X_{u}\right) d B_{u}\right\}
$$

DIVERGENCE OPERATOR

- Definition (divergence operator δ). We have

$$
\begin{aligned}
\operatorname{Dom} \delta=\{ & u \in L^{2}\left(\mathbb{R}_{+} \times \Omega\right): \exists c>0 \\
& \left.\left|\mathbb{E}\langle D F, u\rangle_{L^{2}\left(\mathbb{R}_{+}\right)}\right| \leq c\|F\|_{L^{2}(\Omega)} \forall F \in \mathbb{D}^{1,2}(\Omega)\right\} .
\end{aligned}
$$

- If $u \in \operatorname{Dom} \delta$ then $\delta(u)$ is characterized by

$$
\mathbb{E}[F \delta(u)]=\mathbb{E}\left(\langle D F, u\rangle_{L^{2}\left(\mathbb{R}_{+}\right)}\right) \quad \forall F \in \mathbb{D}^{1,2}(\Omega)
$$

ORNSTEIN-UHLENBECK SEMIGROUP

- Definition (Ornstein-Uhlenbeck semigroup). If $F=\sum_{p=0}^{\infty} I_{p}\left(f_{p}\right) \in$ $L^{2}(\Omega)$ and $t \geq 0$, we set

$$
P_{t} F=\sum_{p=0}^{\infty} e^{-p t} I_{p}\left(f_{p}\right)
$$

- Definition (generator). If $F=\sum_{p=0}^{\infty} I_{p}\left(f_{p}\right) \in \mathbb{D}^{2,2}(\Omega)$, we set

$$
L F=-\sum_{p=0}^{\infty} p I_{p}\left(f_{p}\right)
$$

- Proposition: $L=\frac{d}{d t}{ }_{\mid t=0} P_{t}$ and $L=-\delta D$.

ORNSTEIN-UHLENBECK SEMIGROUP

- Definition (pseudo-inverse of the generator). If $F=\sum_{p=0}^{\infty} I_{p}\left(f_{p}\right) \in$ $L^{2}(\Omega)$, we set

$$
L^{-1} F=-\sum_{p=1}^{\infty} \frac{1}{p} I_{p}\left(f_{p}\right)
$$

- Theorem: for all $F \in L^{2}(\Omega)$, we have

$$
F=\mathbb{E}[F]-\delta D L^{-1} F
$$

- Proof. $F=\mathbb{E}[F]+L L^{-1} F=\mathbb{E}[F]-\delta D L^{-1} F$.

EXERCISE

Exercise. Let $F \in \mathbb{D}^{1,2}(\Omega)$. The goal of this exercise is to check that

$$
\operatorname{Var}(F)=\int_{0}^{\infty} e^{-t} \mathbb{E}\left[\left\langle D F, P_{t}(D F)\right\rangle_{L^{2}\left(\mathbb{R}_{+}\right)} d t\right.
$$

We recall that $P_{t} F=\sum_{p=0}^{\infty} e^{-p t} I_{p}\left(f_{p}\right)$ if $F=\sum_{p=0}^{\infty} I_{p}\left(f_{p}\right)$ is the chaotic expansion of F, that $\frac{d}{d t} P_{t}=L P_{t}$, and that $L=-\delta D$ (as operators).

1. Show that $\operatorname{Var}(F)=\mathbb{E}\left[F\left(P_{0} F-P_{\infty} F\right)\right]$.
2. Deduce that $\operatorname{Var}(F)=\int_{0}^{\infty} \mathbb{E}\left[F \times \delta\left(D P_{t} F\right)\right] d t$.
3. Show that $D_{x} P_{t} F=e^{-t} P_{t} D_{x} F$ for all $x, t \geq 0$.
4. Conclude.

EXERCISE

Exercise. For any $T>0$ and $v \in \mathbb{R}$, we set
$F_{T}=\int_{0}^{T}\left(B_{u+1}-B_{u}\right)^{2} d u$ and $\rho(v)=(1-|v|)_{+}($with
$y_{+}=\max (y, 0)$ the positive part of $\left.y\right)$.

1. Compute $\mathbb{E}\left[F_{T}\right]$.
2. Show that $\mathbb{E}\left[\left(B_{u+1}-B_{u}\right)\left(B_{v+1}-B_{v}\right)\right]=\rho(u-v)$ for all $u, v \geq 0$.
3. Show that $\int_{0}^{\infty} \mathbf{1}_{[u, u+1]}(x) \mathbf{1}_{[v, v+1]}(x) d x=\rho(u-v)$ for all $u, v \geq 0$.
4. Show that $F_{T}-\mathbb{E}\left[F_{T}\right]$ belongs to the second Wiener chaos.
5. Show that $\operatorname{Var}\left(F_{T}\right)=2 \int_{-T}^{T} \rho(y)^{2}(T-|y|) d y$.

Hint: Use that $\operatorname{Var}(F)=\mathbb{E}\left[(F-\mathbb{E}[F))^{2}\right]$ and that
$\mathbb{E}\left[H_{2}(U) H_{2}(V)\right]=2(\mathbb{E}[U V])^{2}$ if $U, V \sim N(0,1)$ are jointly Gaussian.
6. Deduce that $\operatorname{Var}\left(F_{T}\right) \sim 4 T / 3$ as $T \rightarrow \infty$.

Malliavin calculus and absolute continuity: dimension one

AbsOLUTE CONTINUITY IN DIMENSION ONE

- Theorem. Let $F \in \mathbb{D}^{2,2}(\Omega)$ be such that

$$
\|D F\|^{2}=\int_{0}^{\infty}\left(D_{x} F\right)^{2} d x>0 \text { almost surely }
$$

Then F has a density.

- Before proving this theorem, let us first see a nice application.
- Shigekawa's theorem. Let F have the form $F=I_{p}(f)$, with $f \neq 0$. Then F has a density.

AbsOLUTE CONTINUITY IN DIMENSION ONE

Proof of Shigekawa's theorem. We will proceed by induction on p.

- $p=1$: one has $F=I_{1}(f)=\int_{0}^{\infty} f(t) d B_{t} \sim N\left(0, \int_{0}^{\infty} f^{2}(t) d t\right)$ with $\int_{0}^{\infty} f^{2}(t) d t>0 \rightarrow$ this is then OK!
- $\frac{p-1 \rightarrow p}{}$: Let $F=I_{p}(f)$ with $f \neq 0$. We need to check that $\overline{\int_{0}^{\infty}\left(D_{x} F\right)^{2}} d x>0$ almost surely.
- We have $D_{x} F=p I_{p-1}(f(\cdot, x))$.
- Since $f \neq 0$, there exists $h \in L^{2}\left(\mathbb{R}_{+}\right)$such that $\mathbf{y} \in \mathbb{R}_{+}^{p-1} \mapsto$ $\int_{0}^{\infty} f(\mathbf{y}, x) h(x) d x$ is a non-zero element of $L_{s}^{2}\left(\mathbb{R}_{+}^{p-1}\right)$.
- We then have that $\int_{0}^{\infty} D_{x} F h(x) d x=p I_{p-1}\left(\int_{0}^{\infty} f(\cdot, x) h(x) d x\right)$ has a density (induction assumption).
- As a result, using first Cauchy-Schwarz,

$$
\mathbb{P}\left(\int_{0}^{\infty}\left(D_{x} F\right)^{2} d x=0\right) \leq \mathbb{P}\left(\int_{0}^{\infty} D_{x} F h(x) d x=0\right)=0
$$

- That is, $\int_{0}^{\infty}\left(D_{x} F\right)^{2} d x>0$ a.s. and F has a density.

AbsOLUTE CONTINUITY IN DIMENSION ONE

Proof of the absolute continuity theorem.

- Goal: According to the Radon-Nikodym criterion, we must show that if, $A \in \mathcal{B}(\mathbb{R})$ satisfies $\lambda(A)=0$ (with λ the Lebesgue measure) then $\mathbb{P}(F \in A)=0$.
- Let $B \in \mathcal{B}(\mathbb{R})$ be a bounded Borel set. We claim that

$$
\mathbb{E}\left[\mathbf{1}_{\{F \in B\}}\|D F\|^{2}\right]=\mathbb{E}\left[\int_{-\infty}^{F} \mathbf{1}_{B}(x) d x \times(-L F)\right]
$$

AbsOLUTE CONTINUITY IN DIMENSION ONE

Proof of the absolute continuity theorem (continued).

- Indeed, let $h: \mathbb{R} \rightarrow[0,1]$ be continuous with compact support.
- Then $x \mapsto \int_{-\infty}^{x} h(t) d t$ is C^{1} and Lipschitz.
- We deduce, using $L=-\delta D$ and the duality formula (first equality) as well as the chain rule for D (second equality),

$$
\begin{aligned}
\mathbb{E}\left[\int_{-\infty}^{F} h(x) d x \times(-L F)\right] & =\mathbb{E}\left[\left\langle D\left(\int_{-\infty}^{F} h(x) d x\right), D F\right\rangle\right] \\
& =\mathbb{E}\left[h(F)\|D F\|^{2}\right]
\end{aligned}
$$

- Thus, the claim is satisfied with h instead of $\mathbf{1}_{B}$.
- We deduce the claim by approximation (Lusin's theorem and dominated convergence).

Absolute continuity in dimension one

Proof of the absolute continuity theorem (continued).

- We now apply the claim to $B=A \cap[-n, n]$, where $n \in \mathbb{N}$ and $A \in \mathcal{B}(\mathbb{R})$ satisfies $\lambda(A)=0$:
$\mathbb{E}\left[\mathbf{1}_{\{F \in A \cap[-n, n]\}}\|D F\|^{2}\right]=\mathbb{E}\left[\int_{-\infty}^{F} \mathbf{1}_{A \cap[-n, n]}(x) d x \times(-L F)\right]$.
- Since $\int_{-\infty} \mathbf{1}_{A \cap[-n, n]}(x) d x=0$ a.e., one obtains that

$$
\mathbb{E}\left[\mathbf{1}_{\{F \in A \cap[-n, n]\}}\|D F\|^{2}\right]=0
$$

for all $n \in \mathbb{N}$.

- By monotone convergence $(n \rightarrow \infty)$, it comes that

$$
\mathbb{E}\left[\mathbf{1}_{\{F \in A\}}\|D F\|^{2}\right]=0
$$

- The desired conclusion follows since $\|D F\|^{2}>0$ a.s.

EXERCISE

Exercise.

- Let $x_{0} \in \mathbb{R}$ and let $\sigma, b: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} and (globally) Lipschitz.
- Consider the strong solution $X=\left(X_{t}\right)_{t \geq 0}$ of the stochastic differential equation (or, more correctly, stochastic integral equation):

$$
X_{t}=x_{0}+\int_{0}^{t} b\left(X_{u}\right) d u+\int_{0}^{t} \sigma\left(X_{u}\right) d B_{u}
$$

- If $\sigma\left(x_{0}\right) \neq 0$, show that X_{t} has a density for any $t>0$.

EXERCISE

Exercise. Let $F \in \mathbb{D}^{1,2}(\Omega)$ be such that $\mathbb{E}[F]=0$, and let us consider the function $g_{F}: \mathbb{R} \rightarrow \mathbb{R}$ defined through the following identity:

$$
g_{F}(F)=\mathbb{E}\left[\left\langle D F,-D L^{-1} F\right\rangle_{L^{2}\left(\mathbb{R}_{+}\right)} \mid F\right] .
$$

1. Let C be a Borel set of \mathbb{R}, and set $\phi_{C}(x)=\int_{0}^{x} \mathbf{1}_{C}(t) d t$ (with the usual convention $\int_{0}^{x}=-\int_{x}^{0}$ for negative x).
1.1 Show that $x \phi_{C}(x) \geq 0$ for all $x \in \mathbb{R}$.
1.2 Deduce that $\mathbb{E}\left[g_{F}(F) \mathbf{1}_{\{F \in C\}}\right] \geq 0$.
1.3 Conclude that $g_{F}(F) \geq 0$ a.s.
2. If $g_{F}(F)>0$ a.s., show that F has a density.
3. Assume conversely that F has a density, say ρ. Show that $g_{F}(F)=\frac{\int_{F}^{\infty} y \rho(y) d y}{\rho(F)}$ and deduce that $g_{F}(F)>0$ a.s.

Malliavin calculus and absolute continuity: any dimension

AbsOLUTE CONTINUITY IN ANY DIMENSION

Theorem (Malliavin)

- Let $F=\left(F_{1}, \ldots, F_{d}\right)$ be such that $F_{i} \in \mathbb{D}^{\infty}(\Omega)$ for all $i=$ $1, \ldots, d$.
- Let $\Gamma=\left(\left\langle D F_{i}, D F_{j}\right\rangle\right)_{1 \leq i, j \leq d}$ be the Malliavin matrix of F.
- If $\operatorname{det} \Gamma>0$ almost surely, then F has a density.

Three remarks:
(a) If $d=1$, then Γ reduces to $\|D F\|^{2}$, and one recovers the result in dimension one.
(b) The Malliavin matrix is a Gram matrix; as such, it is symmetric and positive, meaning that $\operatorname{det} \Gamma \geq 0$ a.s..
(c) The imposed regularity assumption (namely, $F_{i} \in \mathbb{D}^{\infty}$) is too much demanding (actually: $F_{i} \in \mathbb{D}^{1,2}$ is enough).

Proof of Malliavin's theorem

- Goal: According to the Radon-Nikodym criterion, and like in dimension 1, we must and will show that $\mathbb{P}(F \in A)=0$ for each Borelian set $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ of Lebesgue measure zero.
- Fix $i=1, \ldots, d$ as well as a test function $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
- Using the chain rule, one can write

$$
\begin{aligned}
\left(\begin{array}{c}
\left\langle D \phi(F), D F_{1}\right\rangle \\
\vdots \\
\left\langle D \phi(F), D F_{d}\right\rangle
\end{array}\right) & =\left(\begin{array}{c}
\sum_{k=1}^{d} \frac{\partial \phi}{\partial x_{k}}(F)\left\langle D F_{k}, D F_{1}\right\rangle \\
\vdots \\
\sum_{k=1}^{d} \frac{\partial \phi}{\partial x_{k}}(F)\left\langle D F_{k}, D F_{d}\right\rangle
\end{array}\right) \\
& =\Gamma\left(\begin{array}{c}
\frac{\partial \phi}{\partial x_{1}}(F) \\
\vdots \\
\frac{\partial \phi}{\partial x_{d}}(F)
\end{array}\right)
\end{aligned}
$$

Proof of Malliavin's theorem

- Thanks to the identity $\operatorname{Adj} \Gamma \times \Gamma=\operatorname{det} \Gamma \mathrm{Id}$ (where $\operatorname{Adj} \Gamma$ refers to the adjugate of Γ), one deduces from

$$
\left(\begin{array}{c}
\left\langle D \phi(F), D F_{1}\right\rangle \\
\vdots \\
\left\langle D \phi(F), D F_{d}\right\rangle
\end{array}\right)=\Gamma\left(\begin{array}{c}
\frac{\partial \phi}{\partial x_{1}}(F) \\
\vdots \\
\frac{\partial \phi}{\partial x_{d}}(F)
\end{array}\right) .
$$

that

$$
\operatorname{det} \Gamma \frac{\partial \phi}{\partial x_{i}}(F)=\sum_{j=1}^{d}(\operatorname{Adj} \Gamma)_{j, i}\left\langle D \phi(F), D F_{j}\right\rangle .
$$

Proof of Malliavin's theorem

- For any $\phi \in C_{c}(\mathbb{R})$, one has

$$
\phi(x)=\int_{-\infty}^{x} \phi^{\prime}(y) d y=\int_{-\infty}^{\infty} \phi^{\prime}(y) \mathbf{1}_{[0, \infty)}(x-y) d y=\left(\phi^{\prime} * \mathbf{1}_{[0, \infty)}\right)(x)
$$

- Assume $d \geq 2$ and let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ be a test function.
- A multivariate extension of the identity $\phi=\phi^{\prime} * \mathbf{1}_{[0, \infty)}$ is

$$
\phi=\sum_{i=1}^{d} \frac{\partial \phi}{\partial x_{i}} * \frac{\partial Q_{d}}{\partial x_{i}},
$$

where Q_{d} denotes the Poisson kernel on \mathbb{R}^{d}, defined as

$$
Q_{d}(x)=c_{d}\left\{\begin{array}{cl}
\mathbf{1}_{[0, \infty}\left(x_{1}\right) & \text { if } d=1 \\
\log \left(x_{1}^{2}+x_{2}^{2}\right) & \text { if } d=2 \\
\left(x_{1}^{2}+\ldots+x_{d}^{2}\right)^{\frac{d}{2}-1} & \text { if } d \geq 3
\end{array}\right.
$$

with c_{d} a universal constant whose exact value is useless here.

Proof of Malliavin's theorem

- One can write

$$
\begin{aligned}
& \mathbb{E}[\operatorname{det} \Gamma \times \phi(F)] \\
= & \sum_{i=1}^{d} \int_{\mathbb{R}^{d}} \frac{\partial Q_{d}}{\partial x_{i}}(y) \mathbb{E}\left[\operatorname{det} \Gamma \frac{\partial \phi}{\partial x_{i}}(F-y)\right] d y \\
= & \sum_{i=1}^{d} \int_{\mathbb{R}^{d}} \frac{\partial Q_{d}}{\partial x_{i}}(y) \mathbb{E}\left[\sum_{j=1}^{d}(\operatorname{Adj} \Gamma)_{j, i}\left\langle D \phi(F-y), D F_{j}\right\rangle\right] d y \\
= & \sum_{i, j=1}^{d} \int_{\mathbb{R}^{d}} \frac{\partial Q_{d}}{\partial x_{i}}(y) \mathbb{E}\left[\delta\left((\operatorname{Adj} \Gamma)_{j, i} D F_{j}\right) \phi(F-y)\right] d y \\
= & \sum_{i, j=1}^{d} \int_{\mathbb{R}^{d}} \phi(y) \mathbb{E}\left[\delta\left((\operatorname{Adj} \Gamma)_{j, i} D F_{j}\right) \frac{\partial Q_{d}}{\partial x_{i}}(F-y)\right] d y .
\end{aligned}
$$

Proof of Malliavin's theorem

- Let B be a bounded Borel set.
- By a standard approximation argument (e.g. based on Lusin's theorem), one can extend the previous formula, a priori only valid for smooth ϕ, to $\phi=\mathbf{1}_{B}$:

$$
\mathbb{E}\left[\operatorname{det} \Gamma \mathbf{1}_{B}(F)\right]=\sum_{i, j=1}^{d} \int_{B} \mathbb{E}\left[\delta\left((\operatorname{Adj} \Gamma)_{j, i} D F_{j}\right) \frac{\partial Q_{d}}{\partial x_{i}}(F-y)\right] d y .
$$

- Now, let A be a Borel set of Lebesgue measure zero.
- From the framed formula with $B=A \cap[-n, n]$, one deduces

$$
\mathbb{E}\left[\operatorname{det} \Gamma \times \mathbf{1}_{A \cap[-n, n]}(F)\right]=0 \quad \text { for all } n \geq 1
$$

- The desired conclusion follows by letting $n \rightarrow \infty$ and because $\operatorname{det} \Gamma>0$ a.s.

The Malliavin-Stein approach: dimension one

MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

- Theorem (Charles Stein).
- Let $N \sim N(0,1)$.
- Let F be any random variable such that $\mathbb{E}\left[F^{2}\right]<\infty$.
- Then

$$
d_{T V}(F, N) \leq \sup _{\substack{\phi \in C^{1} \\\left\|\phi^{\prime}\right\|_{\infty} \leq 2}}\left|\mathbb{E}\left[\phi^{\prime}(F)\right]-\mathbb{E}[F \phi(F)]\right|
$$

- We recall that the total variation distance between (the laws of) F and N means the following quantity:

$$
d_{T V}(F, N)=\sup _{A \in \mathcal{B}(\mathbb{R})}|P(F \in A)-P(N \in A)|
$$

MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

- Proof of Stein's theorem. First, one observes that

$$
\begin{aligned}
d_{T V}(F, N) & \leq \sup _{h: \mathbb{R} \rightarrow[0,1]}|\mathbb{E}[h(F)]-\mathbb{E}[h(N)]| \\
& =\sup _{\substack{h: \mathbb{R} \rightarrow[0,1] \\
h \in C^{0}}}|\mathbb{E}[h(F)]-\mathbb{E}[h(N)]| \quad \text { (by Lusin). }
\end{aligned}
$$

- Now, fix $h: \mathbb{R} \rightarrow[0,1]$ continuous, and set

$$
\phi(x)=e^{\frac{x^{2}}{2}} \int_{-\infty}^{x}(h(a)-\mathbb{E}[h(N)]) e^{-\frac{a^{2}}{2}} d a .
$$

- One easily observes that, equivalently:

$$
\phi(x)=-e^{\frac{x^{2}}{2}} \int_{x}^{\infty}(h(a)-\mathbb{E}[h(N)]) e^{-\frac{a^{2}}{2}} d a
$$

MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

- Since $h: \mathbb{R} \rightarrow[0,1]$ is continuous, it is immediate that

$$
\begin{aligned}
\phi(x) & =e^{\frac{x^{2}}{2}} \int_{-\infty}^{x}(h(a)-\mathbb{E}[h(N)]) e^{-\frac{a^{2}}{2}} d a \\
& =-e^{\frac{x^{2}}{2}} \int_{x}^{\infty}(h(a)-\mathbb{E}[h(N)]) e^{-\frac{a^{2}}{2}} d a
\end{aligned}
$$

is C^{1}, and satisfies

$$
\phi^{\prime}(x)=x \phi(x)+h(x)-\mathbb{E}[h(N)] .
$$

- Moreover, we claim that $\left|\phi^{\prime}(x)\right| \leq 2$ for all $x \in \mathbb{R}$.

MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

- Since $\phi^{\prime}(x)=x \phi(x)+h(x)-\mathbb{E}[h(N)]$, the claim will be checked if we show that $|x \phi(x)| \leq 1$.
- If $x \geq 0$, using that $\phi(x)=-e^{\frac{x^{2}}{2}} \int_{x}^{\infty}(h(a)-\mathbb{E}[h(N)]) e^{-\frac{a^{2}}{2}} d a$:

$$
|x \phi(x)| \leq x e^{\frac{x^{2}}{2}} \int_{x}^{\infty} e^{-\frac{a^{2}}{2}} d a \leq e^{\frac{x^{2}}{2}} \int_{x}^{\infty} a e^{-\frac{a^{2}}{2}} d a=1
$$

- If $x<0$, this time with $\phi(x)=e^{\frac{x^{2}}{2}} \int_{-\infty}^{x}(h(a)-\mathbb{E}[h(N)]) e^{-\frac{a^{2}}{2}} d a$:

$$
|x \phi(x)| \leq|x| e^{\frac{x^{2}}{2}} \int_{-\infty}^{x} e^{-\frac{a^{2}}{2}} d a \leq e^{\frac{x^{2}}{2}} \int_{-\infty}^{x}|a| e^{-\frac{a^{2}}{2}} d a=1
$$

MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

- To conclude the proof of Stein's theorem, we fix a continuous $h: \mathbb{R} \rightarrow[0,1]$, and we let ϕ be defined as before.
- Since $\phi^{\prime}(x)=x \phi(x)+h(x)-\mathbb{E}[h(N)]$, we have

$$
|\mathbb{E}[h(F)]-\mathbb{E}[h(N)]|=\left|\mathbb{E}\left[\phi^{\prime}(F)\right]-\mathbb{E}[F \phi(F)]\right|
$$

- Since ϕ belongs to C^{1}, and is such that $\left|\phi^{\prime}(x)\right| \leq 2$ for all $x \in \mathbb{R}$, we deduce that

$$
|\mathbb{E}[h(F)]-\mathbb{E}[h(N)]| \leq \sup _{\substack{\phi \in C^{1} \\\left\|\phi^{\prime}\right\|_{\infty} \leq 2}}\left|\mathbb{E}\left[\phi^{\prime}(F)\right]-\mathbb{E}[F \phi(F)]\right|,
$$

from which the desired conclusion follows.

MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

Theorem (Nourdin-Peccati).

- Let $F \in \mathbb{D}^{1,2}(\Omega)$ with $\mathbb{E}[F]=0$.
- Let $N \sim N(0,1)$.
- Then

$$
d_{T V}(F, N) \leq 2 \mathbb{E}\left|1-\left\langle D F,-D L^{-1} F\right\rangle_{L^{2}\left(\mathbb{R}_{+}\right)}\right|
$$

MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

Proof.

- We use Stein's theorem to bound $d_{T V}(F, N)$ by

$$
\sup _{\substack{\phi \in C^{1} \\\left\|\phi^{\prime}\right\|_{\infty} \leq 2}}\left|\mathbb{E}\left[\phi^{\prime}(F)\right]-\mathbb{E}[F \phi(F)]\right| .
$$

- Now, let $\phi \in C^{1}$ be such that $\left\|\phi^{\prime}\right\|_{\infty} \leq 2$.
- We have, using $F=L L^{-1} F$ (since $\mathbb{E}[F]=0$) and $L=-\delta D$,

$$
\mathbb{E}[F \phi(F)]=\mathbb{E}\left[\delta\left(-D L^{-1} F\right) \phi(F)\right]
$$

- By duality, one deduces $\mathbb{E}[F \phi(F)]=\mathbb{E}\left[\left\langle D \phi(F),-D L^{-1} F\right\rangle\right]$.
- Eventually, using the chain rule:

$$
\mathbb{E}[F \phi(F)]=\mathbb{E}\left[\phi^{\prime}(F)\left\langle D F,-D L^{-1} F\right\rangle\right] .
$$

MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

Proof (continued).

- By plugging into Stein's bound, we get

$$
\begin{aligned}
& \sup _{\substack{\phi \in C^{1} \\
\left\|\phi^{\prime}\right\|_{\infty} \leq 2}}\left|\mathbb{E}\left[\phi^{\prime}(F)\right]-\mathbb{E}[F \phi(F)]\right| \\
= & \sup _{\substack{\phi \in C^{1} \\
\left\|\phi^{\prime}\right\|_{\infty} \leq 2}}\left|\mathbb{E}\left[\phi^{\prime}(F)\right]\left(1-\left\langle D F,-D L^{-1} F\right\rangle\right)\right| \\
\leq & 2 \mathbb{E}\left|1-\left\langle D F,-D L^{-1} F\right\rangle_{L^{2}\left(\mathbb{R}_{+}\right)}\right| .
\end{aligned}
$$

Fourth moment theorem

FOURTH MOMENT THEOREM

- The goal of this section is to prove the following result:
- Theorem (Nourdin-Peccati).
- Let $F=I_{p}(f)$ with $f \in L_{s}^{2}\left(\mathbb{R}_{+}\right)$such that $\mathbb{E}\left[F^{2}\right]=p!\|f\|^{2}=1$.
- Then

$$
d_{T V}(F, N) \leq \frac{2}{\sqrt{3}} \sqrt{\left|\mathbb{E}\left[F^{4}\right]-3\right|} .
$$

- We recover the celebrated and surprising fourth moment theorem of Nualart and Peccati (2005): if $F_{n}=I_{p}\left(f_{n}\right)$ is a sequence of p th multiple Wiener-Itô integrals normalized so that $\mathbb{E}\left[I_{p}\left(f_{n}\right)^{2}\right] \rightarrow 1$, then $I_{p}\left(f_{n}\right) \rightarrow N(0,1)$ if and only if $\mathbb{E}\left[I_{p}\left(f_{n}\right)^{4}\right] \rightarrow 3$.

FOURTH MOMENT THEOREM

The proof relies on the followin lemma.
Lemma. If $F=I_{p}(f)$ with $\mathbb{E}\left[F^{2}\right]=1$, then

$$
\mathbb{E}\left[\left(1-\frac{1}{p}\|D F\|^{2}\right)^{2}\right] \leq \frac{1}{3}\left(\mathbb{E}\left[F^{4}\right]-3\right)
$$

Proof of the FMT. Let $F=I_{p}(f)$ with $\mathbb{E}\left[F^{2}\right]=1$.

- We have $d_{T V}(F, N) \leq 2 \mathbb{E}\left|1-\left\langle D F,-D L^{-1} F\right\rangle\right|$.
- But $\left\langle D F,-D L^{-1} F\right\rangle=\frac{1}{p}\|D F\|^{2}$ since $L^{-1} F=-\frac{1}{p} F$.
- Hence $\mathbb{E}\left|1-\left\langle D F,-D L^{-1} F\right\rangle\right| \leq \sqrt{\mathbb{E}\left[\left(1-\frac{1}{p}\|D F\|^{2}\right)^{2}\right]}$.
- We conclude thanks to Lemma B.

FOURTH MOMENT THEOREM

Proof of the lemma. Let $F=I_{p}(f)$ with $\mathbb{E}\left[F^{2}\right]=1$.

- First step. Since $D_{x} F=p I_{p-1}(f(\cdot, x))$,

$$
\begin{aligned}
\frac{1}{p}\|D F\|^{2} & =\frac{1}{p} \int_{0}^{\infty}\left(D_{x} F\right)^{2} d x=p \int_{0}^{\infty} I_{p-1}(f(\cdot, x))^{2} d x \\
& =p \sum_{r=0}^{p-1} r!\binom{p-1}{r}^{2} I_{2 p-2-2 r}\left(\int_{0}^{\infty} f(\cdot, x) \widetilde{\otimes}_{r} f(\cdot, x) d x\right) \\
& =p \sum_{r=1}^{p}(r-1)!\binom{p-1}{r-1}^{2} I_{2 p-2 r}\left(f \widetilde{\otimes}_{r} f\right) .
\end{aligned}
$$

- Using that $(r-1)!\binom{p-1}{r-1}^{2}=\frac{r r!}{p^{2}}\binom{p}{r}^{2}$, we deduce

$$
\frac{1}{p}\|D F\|^{2}=1+\sum_{r=1}^{p-1} \frac{r r!}{p}\binom{p}{r}^{2} I_{2 p-2 r}\left(f \widetilde{\otimes}_{r} f\right)
$$

FOURTH MOMENT THEOREM

Proof of Lemma B (continued).

- As a result,

$$
\mathbb{E}\left[\left(\frac{1}{p}\|D F\|^{2}-1\right)^{2}\right]=\sum_{r=1}^{p-1} \frac{r^{2} r!^{2}}{p^{2}}\binom{p}{r}^{4}(2 p-2 r)!\left\|f \widetilde{\otimes}_{r} f\right\|^{2} .
$$

- Second step. One has

$$
\begin{aligned}
\mathbb{E}\left[F^{4}\right] & =\mathbb{E}\left[F \times F^{3}\right]=\mathbb{E}\left[L L^{-1} F \times F^{3}\right] \\
& =\frac{1}{p} \mathbb{E}\left[\delta(D F) \times F^{3}\right] \quad \text { (using } L^{-1} F=-\frac{1}{p} F \text { and } L=-\delta D \text {) } \\
& =\frac{1}{p} \mathbb{E}\left[\left\langle D F, D\left(F^{3}\right)\right\rangle\right]=\frac{3}{p} \mathbb{E}\left[F^{2}\|D F\|^{2}\right] \quad \text { (by the chain rule } \\
& =3 \mathbb{E}\left[F^{2}\left(\frac{1}{p}\|D F\|^{2}-1\right)\right]+3 .
\end{aligned}
$$

FOURTH MOMENT THEOREM

Proof of Lemma B (continued).

- But $F^{2}=\sum_{r=0}^{p} r!\left(\begin{array}{r}p\end{array}\right)^{2} I_{2 p-2 r}\left(f \widetilde{\otimes}_{r} f\right)$ by the multiplication formula, whereas

$$
\frac{1}{p}\|D F\|^{2}-1=\sum_{r=1}^{p-1} \frac{r r!}{p}\binom{p}{r}^{2} I_{2 p-2 r}\left(f \widetilde{\otimes}_{r} f\right)
$$

as shown in the first step.

- As a result, using that $\mathbb{E}\left[F^{4}\right]-3=3 \mathbb{E}\left[F^{2}\left(\frac{1}{p}\|D F\|^{2}-1\right)\right]$

$$
\mathbb{E}\left[F^{4}\right]-3=3 \sum_{r=1}^{p-1} \frac{r}{p} r!^{2}\binom{p}{r}^{4}(2 p-2 r)!\left\|f \widetilde{\otimes}_{r} f\right\|^{2}
$$

FOURTH MOMENT THEOREM

Proof of Lemma B (continued).

- Comparing the two formulas

$$
\mathbb{E}\left[\left(\frac{1}{p}\|D F\|^{2}-1\right)^{2}\right]=\sum_{r=1}^{p-1} \frac{r^{2} r!^{2}}{p^{2}}\binom{p}{r}^{4}(2 p-2 r)!\left\|f \widetilde{\otimes}_{r} f\right\|^{2} .
$$

and

$$
\mathbb{E}\left[F^{4}\right]-3=3 \sum_{r=1}^{p-1} \frac{r}{p} r!^{2}\binom{p}{r}^{4}(2 p-2 r)!\left\|f \widetilde{\otimes}_{r} f\right\|^{2}
$$

we deduce

$$
\mathbb{E}\left[F^{4}\right]-3 \geq 3 \mathbb{E}\left[\left(1-\frac{1}{p}\|D F\|^{2}\right)^{2}\right]
$$

Application to
 fractional Brownian motion

Application to fractional Brownian motion

- Let B^{H} be a fractional Brownian motion of index $H \in(0,1)$.
- That is, B^{H} is a centered Gaussian process with covariance

$$
\mathbb{E}\left[B_{t}^{H} B_{s}^{H}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

- Set

$$
F_{n}=\frac{1}{\sigma_{n}} \sum_{k=0}^{n-1}\left[\left(B_{k+1}^{H}-B_{k}^{H}\right)^{2}-1\right]
$$

where $\sigma_{n}>0$ is chosen so that $\mathbb{E}\left[F_{n}^{2}\right]=1$.

Application to fractional Brownian motion

Theorem.

- If $0<H \leq \frac{3}{4}$, then (Breuer-Major '83):

$$
F_{n} \xrightarrow{\text { law }} F_{\infty} \sim N(0,1) .
$$

- If $\frac{3}{4}<H<1$, then (Taqqu '75):

$$
F_{n} \xrightarrow{\text { law }} F_{\infty} \sim \text { Rosenblatt. } .
$$

- More precisely,

$$
d_{T V}\left(F_{n}, F_{\infty}\right)=0\left\{\begin{array}{cl}
n^{-\frac{1}{2}} & \text { if } 0<H<\frac{5}{8} \\
n^{-\frac{1}{2}}(\log n)^{\frac{3}{2}} & \text { if } H=\frac{5}{8} \\
n^{4 H-3} & \text { if } \frac{5}{8}<H<\frac{3}{4} \\
(\log n)^{-1} & \text { if } H=\frac{3}{4} \\
n^{\frac{3}{2}-2 H} & \text { if } \frac{3}{4}<H<1
\end{array} .\right.
$$

Application to fractional Brownian motion

Proof of the normal approximation.

- $\overline{\mathcal{H}}$ is a real separable Hilbert space, so there exists an isometric bijection $\phi: \mathcal{H} \rightarrow L^{2}\left(\mathbb{R}_{+}\right)$.
- Set $e_{k}=\phi\left(B_{k+1}^{H}-B_{k}^{H}\right)$.
- Claim: $\left\{I_{1}\left(e_{k}\right): k \in \mathbb{N}\right\} \stackrel{\text { law }}{=}\left\{B_{k+1}^{H}-B_{k}^{H}: k \in \mathbb{N}\right\}$
- Hence

$$
\begin{aligned}
F_{n} & \stackrel{\text { law }}{=} \frac{1}{\sigma_{n}} \sum_{k=0}^{n-1}\left(I_{1}\left(e_{k}\right)^{2}-1\right) \\
& =\frac{1}{\sigma_{n}} \sum_{k=0}^{n-1} I_{2}\left(e_{k} \otimes e_{k}\right) \\
& =I_{2}\left(f_{n}\right), \quad \text { with } f_{n}=\frac{1}{\sigma_{n}} \sum_{k=0}^{n-1} e_{k} \otimes e_{k}
\end{aligned}
$$

Application to fractional Brownian motion

Proof of the normal approximation (continued).

- Second step. We set

$$
\rho(r)=\frac{1}{2}\left(|r+1|^{2 H}+|r-1|^{2 H}-2|r|^{2 H}\right), \quad r \in \mathbb{Z}
$$

- Exercise:

$$
\sigma_{n}^{2}=2 \sum_{k, l=0}^{n-1} \rho^{2}(k-l)=2 n \sum_{|r|<n} \rho^{2}(r)\left(1-\frac{|r|}{n}\right)
$$

Application to fractional Brownian motion

Proof of the normal approximation (continued).
Exercise:

1. If $H<\frac{3}{4}$ then $\sum_{r \in \mathbb{Z}} \rho^{2}(r)<\infty$ and

$$
\sigma_{n} \sim \sqrt{2 \sum_{r \in \mathbb{Z}} \rho^{2}(r)} \sqrt{n}
$$

2. If $H=\frac{3}{4}$ then $\sum_{r \in \mathbb{Z}} \rho^{2}(r)=\infty$ and

$$
\sigma_{n} \sim \frac{3}{4} \sqrt{n \log n}
$$

Application to fractional Brownian motion

Proof of the normal approximation (continued).
Exercise:

1. We have $\mathbb{E}\left[\left(1-\frac{1}{2}\left\|D F_{n}\right\|^{2}\right)^{2}\right]=8\left\|f_{n} \otimes_{1} f_{n}\right\|^{2}$.
2. Using Young inequality ${ }^{3}$, shows that

$$
\left\|f_{n} \otimes_{1} f_{n}\right\|^{2} \leq \frac{n}{\sigma_{n}^{4}}\left(\sum_{|k|<n}|\rho(k)|^{\frac{4}{3}}\right)^{3}
$$

3. Conclude by using that $d_{T V}\left(F_{n}, N\right) \leq 2 \mathbb{E}\left|1-\frac{1}{2}\left\|D F_{n}\right\|^{2}\right|$.
${ }^{3}$ Young inequality: if $s, p, q \geq 1$ are such that $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{s}$, then

$$
\|u * v\|_{\ell^{s}(\mathbb{Z})} \leq\|u\|_{\ell^{p}(\mathbb{Z})}\|v\|_{\ell^{q}(\mathbb{Z})}
$$

The Malliavin-Stein approach: any dimension

FOURTH MOMENT THEOREM

Fourth Moment Theorem (Nualart-Peccati). Fix an integer $p \geq 2$, and let $\left\{f_{n}\right\}_{n \geq 1} \subset L_{s}^{2}\left(\mathbb{R}_{+}^{p}\right)$. Assume further that $\mathbb{E}\left[I_{p}\left(f_{n}\right)^{2}\right] \rightarrow \sigma^{2}$ as $n \rightarrow \infty$ for some $\sigma>0$. Then, the following three assertions are equivalent as $n \rightarrow \infty$:
(1) $I_{p}\left(f_{n}\right) \xrightarrow{\text { law }} N\left(0, \sigma^{2}\right)$;
(2) $\mathbb{E}\left[I_{p}\left(f_{n}\right)^{4}\right] \rightarrow 3 \sigma^{4}$;
(3) $\left\|f_{n} \otimes_{r} f_{n}\right\| \rightarrow 0$ for each $r=1, \ldots, p-1$.

Multivariate case

- Theorem (Peccati-Tudor). Consider d integers $p_{1}, \ldots, p_{d} \geq 1$, with $d \geq 2$. Assume that all the p_{i} 's are pairwise different ${ }^{4}$. For each $i=1, \ldots, d$, let $\left\{f_{n}^{i}\right\}_{n \geq 1} \subset L_{s}^{2}\left(\mathbb{R}_{+}^{p_{i}}\right)$ satisfying $\mathbb{E}\left[I_{p_{i}}\left(f_{n}^{i}\right)^{2}\right] \rightarrow \sigma_{i}^{2}$ as $n \rightarrow \infty$ for some $\sigma_{i}>0$. Then, the following two assertions are equivalent as $n \rightarrow \infty$:
(1) $I_{p_{i}}\left(f_{n}^{i}\right) \xrightarrow{\text { law }} N\left(0, \sigma_{i}^{2}\right)$ for all $i=1, \ldots, d$;
(2) $\left(I_{p_{1}}\left(f_{n}^{1}\right), \ldots, I_{p_{d}}\left(f_{n}^{d}\right)\right) \xrightarrow{\text { law }} N_{d}\left(0, \operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{d}^{2}\right)\right)$.
- In other words, for sequences of vectors of multiple WienerItô integrals, componentwise convergence to Gaussian always implies joint convergence.
- Using multivariate Stein's method, one can associate a rate to this convergence.

Two SITUATIONS

- Very often, second order results for $F_{n}=\mathbb{E}\left[F_{n}\right]+\sum_{p=1}^{\infty} I_{p}\left(f_{p, n}\right)$ can be deduced from the behaviour of its chaotic projections (in case of asymptotic gaussianity or not).
- Situation 1: F_{n} is dominated by one of its projection, and it inherits the rigid asymptotic structure of sequences inside a Wiener chaos (see next slide).
- Situation 2: no single projection dominates, and interactions have to be dealt with (see Breuer-Major theorem).

A RIGID STRUCTURE

Fix $p \geq 2$, and let $F_{n}=I_{p}\left(f_{n}\right), n \geq 1$ with variance 1 (say).

- Nourdin and Poly (2013): If $F_{n} \xrightarrow{\text { law }} Z$, then Z has a density.
- Nualart and Peccati (2005): $F_{n} \xrightarrow{\text { law }} N(0,1)$ iff $\mathbb{E} F_{n}^{4} \rightarrow 3(=$ $\mathbb{E Z}^{4}$).
- Peccati and Tudor (2005): componentwise convergence towards Gaussian implies joint convergence.
- Nourdin and Peccati (2009): $F_{n} \xrightarrow{\text { law }}\left(Z^{2}-1\right) / \sqrt{2}$ iff $\mathbb{E} F_{n}^{4}$ $12 \mathbb{E} F_{n}^{3} \rightarrow-36$.
- Nourdin and Rosiński (2014): if $H_{n}=I_{q}\left(g_{n}\right)$ (with variance 1), then F_{n}, H_{n} are asymptotically independent iff $\operatorname{Cov}\left(H_{n}^{2}, F_{n}^{2}\right) \rightarrow$ 0 .

Illustration: a modern proof of the Breuer-Major theorem

BREUER-MAJOR THEOREM

Theorem (Breuer-Major, 1983).

- Let $\left\{X_{k}\right\}_{k \geq 1}$ be a centered stationary Gaussian family such that $\mathbb{E}\left[X_{k} X_{l}\right]=\rho(k-l), k, l \geq 1$. Assume further that $\rho(0)=$ 1, that is, each X_{k} is $\mathcal{N}(0,1)$ distributed.
- Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a function of $L^{2}(\gamma)$ and let us expand it in terms of Hermite polynomials as $\varphi=\sum_{p=0}^{\infty} a_{p} H_{p}$.
- Assume $a_{0}=\mathbb{E}\left[\varphi\left(X_{1}\right)\right]=0$ and $\sum_{k \in \mathbb{Z}}|\rho(k)|^{r}<\infty$, where r is the Hermite rank of φ, that is, $r=\inf \left\{p: a_{p} \neq 0\right\}$.
- Then, as $n \rightarrow \infty$,

$$
V_{n}=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \varphi\left(X_{k}\right) \xrightarrow{\text { law }} N\left(0, \sigma^{2}\right),
$$

with σ^{2} given by $\sigma^{2}=\sum_{p=r}^{\infty} p!a_{p}^{2} \sum_{k \in \mathbb{Z}} \rho(k)^{p} \in[0, \infty)$. (The fact that $\sigma^{2} \in[0, \infty)$ is part of the conclusion.)

A couple of remarks about Breuer-Major

- The original proof consisted to show that all the moments of V_{n} converge to those of the Gaussian law $N\left(0, \sigma^{2}\right)$. As anyone might guess, this required a high ability and a lot of combinatorics.
- Assume $r \geq 2$ and $\rho(k) \sim|k|^{-D}$ as $|k| \rightarrow \infty$ for some $D \in$ $\left(0, \frac{1}{r}\right)$. In this case, one can show that

$$
n^{d D / 2-1} \sum_{k=1}^{n} \varphi\left(X_{k}\right) \xrightarrow{\text { law }} \text { non-Gaussian }
$$

This shows that the limit is usually non-Gaussian when $\rho \notin \ell^{r}(\mathbb{Z})$.

- There exists a functional version of Breuer-Major, in which the sum $\sum_{k=1}^{n}$ is replaced by $\sum_{k=1}^{[n t]}$ for $t \geq 0$. It is actually not that much harder to deal with and, unsurprisingly, the limiting process is then the standard Brownian motion multiplied by σ.

Proof of Breuer-Major

- We first compute the limit variance, which will justify the formula we have claimed for σ^{2}.
- We can write

$$
\begin{aligned}
& \mathbb{E}\left[V_{n}^{2}\right]=\frac{1}{n} \mathbb{E}\left[\left(\sum_{p=r}^{\infty} a_{p} \sum_{k=1}^{n} H_{p}\left(X_{k}\right)\right)^{2}\right] \\
= & \frac{1}{n} \sum_{p, q=r}^{\infty} a_{p} a_{q} \sum_{k, l=1}^{n} \mathbb{E}\left[H_{p}\left(X_{k}\right) H_{q}\left(X_{l}\right)\right] \\
= & \frac{1}{n} \sum_{p=r}^{\infty} p!a_{p}^{2} \sum_{k, l=1}^{n} \rho(k-l)^{p}=\sum_{p=r}^{\infty} p!a_{p}^{2} \sum_{k \in \mathbb{Z}} \rho(k)^{r}\left(1-\frac{|k|}{n}\right) \mathbf{1}_{\{|k|<n\}} .
\end{aligned}
$$

- By dominated convergence theorem, we can prove that $\mathbb{E}\left[V_{n}^{2}\right] \rightarrow \sigma^{2}$, with $\sigma^{2} \in[0, \infty)$ like in the statement of BreuerMajor.

Proof of Breuer-Major (CONTINUEd)

- We now check the gaussianity.
- We shall do it in three steps of increasing generality (but of decreasing complexity!):
(i) when $\varphi=H_{p}$ has the form of a Hermite polynomial (for some $p \geq 1$);
(ii) when $\varphi=P \in \mathbb{R}[X]$ is a real polynomial;
(iii) in the general case, that is, when $\varphi \in L^{2}(\gamma)$.

Proof of Breuer-Major (CONTINUED)

Case where $\varphi=H_{p}$ is the p th Hermite polynomial.

- The space $\mathcal{H}:=\overline{\operatorname{span}\left\{X_{1}, X_{2}, \ldots\right\}^{L^{2}(\Omega)}}$ is a real separable Hilbert space.
- Let $\Phi: \mathcal{H} \rightarrow L^{2}\left(\mathbb{R}_{+}\right)$be an isometry. Set $e_{k}=\Phi\left(X_{k}\right)$ for each $k \geq 1$.
- We have $\rho(k-l)=\mathbb{E}\left[X_{k} X_{l}\right]=\int_{0}^{\infty} e_{k}(x) e_{l}(x) d x, k, l \geq 1$.
- If $B=\left(B_{t}\right)_{t \geq 0}$ denotes a standard Brownian motion, we deduce that

$$
\left\{X_{k}\right\}_{k \geq 1} \stackrel{\text { law }}{=}\left\{\int_{0}^{\infty} e_{k}(t) d B_{t}\right\}_{k \geq 1},
$$

these two families being indeed centered, Gaussian and having the same covariance structure (by construction of the $\left.e_{k}{ }^{\prime} \mathrm{s}\right)$.

Proof of Breuer-Major (CONTINUED)

Case where $\varphi=H_{p}$ is the p th Hermite polynomial.

- We deduce that $V_{n}=I_{p}\left(f_{n}\right)$, with

$$
f_{n}=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} e_{k}^{\otimes p}
$$

- We already showed that $\mathbb{E}\left[V_{n}^{2}\right] \rightarrow \sigma^{2}$ as $n \rightarrow \infty$.
- So, according to Fourth Moment Theorem, to get that $V_{n} \rightarrow$ $N\left(0, \sigma^{2}\right)$ it remains to check that $\left\|f_{n} \otimes_{a} f_{n}\right\| \rightarrow 0$ for any $a=1, \ldots, p-1$.
- We have

$$
f_{n} \otimes_{a} f_{n}=\frac{1}{n} \sum_{k, l=1}^{n} \rho(k-l)^{a} e_{k}^{\otimes p-a} \otimes e_{l}^{\otimes p-a}
$$

implying in turn

$$
\left\|f_{n} \otimes_{a} f_{n}\right\|^{2}=\frac{1}{n^{2}} \sum_{i, j, k, l=1}^{n} \rho(i-j)^{a} \rho(k-l)^{a} \rho(i-k)^{p-a} \rho(j-l)^{p-a}
$$

Proof of Breuer-Major (CONTINUED)

Case where φ is any polynomial.

- One has $\varphi=\sum_{p=r}^{N} a_{p} H_{p}$ for some finite integer $N \geq r$.
- Peccati-Tudor theorem and the previous case yield that

$$
\left(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} H_{r}\left(X_{k}\right), \ldots, \frac{1}{\sqrt{n}} \sum_{k=1}^{n} H_{N}\left(X_{k}\right)\right) \xrightarrow{\text { law }} N\left(0, \operatorname{diag}\left(\sigma_{d}^{2}, \ldots, \sigma_{N}^{2}\right)\right),
$$

where $\sigma_{p}^{2}=p!\sum_{k \in \mathbb{Z}} \rho(k)^{p}, p=r, \ldots, N$.

- We deduce that

$$
V_{n}=\frac{1}{\sqrt{n}} \sum_{p=r}^{N} a_{p} \sum_{k=1}^{n} H_{p}\left(X_{k}\right) \xrightarrow{\text { law }} N\left(0, \sum_{p=r}^{N} a_{p}^{2} p!\sum_{k \in \mathbb{Z}} \rho(k)^{p}\right) .
$$

[^0]: ${ }^{2}$ that is, for all $\sigma \in \mathfrak{S}_{p}$ and all $x_{1}, \ldots, x_{p} \in \mathbb{R}_{+}$, one has $f_{p}\left(x_{\sigma(1)}, \ldots, x_{\sigma(p)}\right)=f_{p}\left(x_{1}, \ldots, x_{p}\right)$

