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OVERVIEW

To go further, some references:

» I. Nourdin (2012): Lectures on Gaussian approximations
with Malliavin calculus. Sém. Probab. XLV, pp. 3-89.

» I. Nourdin and G. Peccati (2012): Normal Approximations
with Malliavin Calculus: from Stein’s Method to Universality.
Cambridge Tracts in Mathematics. Cambridge University
Press.

» L. Chen, L. Goldstein, Q.-M. Shao (2010): Normal Approxi-
mation by Stein’s Method. Probability and Its Applications.
Springer
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Normal Approximation
by Stein’s Method
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Introduction to Malliavin calculus:
dimension one
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We first recall some useful properties of Hermite polynomials.
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PRELIMINARIES ON HERMITE POLYNOMIALS

» We write dy(x) = \/%e*"zﬂdx, xeR.

» Proposition. The family (H,)p,en C R[X] of Hermite poly-
nomials (Hy =1,H; = X, Hy, = X?—1,H; = X>—3X, etc.)
has the following properties.

(a) XHP = Hp+1 + pHp—l
(b) H), = pH, 1
x2

(c) Hp(x) = (=1)¥ e% % {e'z}

(d) (\/%Hp) is an orthonormal basis of L2(), that is, each
peEN
@ € L2(7) can always be expanded as ¢ = Yo apHp with
Yoo p!az < coand (Hp, Hy)2(,) = p!dpg (Kronecker
symbol).
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THE MALLIAVIN DERIVATIVE OPERATOR D

v

v

v

v

v

Let ¢ € L?(7y).

We have ¢ = E;":O a,H, where

1

=y (9 Hydiz(y) = o ElpN)H(N)], N ~N(O,1)

1

p!

We have E[p(N)?] = L2 azp! < co.

For k € N, we set

D2 (y) = {p € L*(7) : Y p'pla] < oo} |
p=0

(Remark: DY2(7y) = L2().)
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THE MALLIAVIN DERIVATIVE OPERATOR D

» For ¢ = Y" gapH, € D'2(7y), we set

Do =} payHp1|
p=0

» Remarks:
(i) if p € DV2(7) NCY(R), then D¢ = ¢';
(ii) D can be thought as the Malliavin derivative operator in
dimension 1.
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THE DIVERGENCE OPERATOR ¢

v

We define Domé as the set

{q) €L*(y): >0, Yy eCl,

[ ovin| <clpliay }-

v

If ¢ € DomJ, then ¢ — [ ¢y'dvy is linear and continuous
from C! (viewed as a dense subset of L?(7y)) to R.

v

As such, it can be extended to a linear form of L?(y).

v

By the Riesz representation theorem, there exists a unique
element of L?(7y), written d¢, such that

/ oy'dy = /(54))41517 forall y € CL.
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» Definition. The previous operator 6 : Domé — L2(vy) is
called the divergence operator.
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THE DIVERGENCE OPERATOR ¢

Proposition.
1. We have D!?(y) C Domé.
2. Moreover, if ¢ € D?(7), then

(09)(x) = xp(x) — (Dg) (x) |

Proof.
> If @ =Y 2 gapH) € D12 (), then

o]

—Do+xp =) {—payHy1+ap(Hys1 +pHp-1)} = }_ ap_1Hp.
p=0 p=1

» Lety € Cl. Wehavey = YorobpHpand ¢’ = Y72 pbyH, 1 =
Lpzo(p +1)bps1Hp.
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THE DIVERGENCE OPERATOR ¢

Proposition.

1. We have D'?(-y) C Domé.

2. Moreover, if ¢ € D?(7), then
(99)(x) = x¢(x) — (Dg)(x) |
Proof (continued). Hence

(092 = Y. pl(p+ 1)apby 1
p=0
(x¢ = Do, )2,y = ap-1bpp! = ) apbpia(p + 1)L
p=1 p=0

That is, these two quantities are the same. Moreover,

p=0
< CSt(q)) X Hl/)HLZ('y)' Ul 12/100
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Example.

» We have, for any p € IN:

0H, = xH, — H;, = xH, —pH,_1 = Hp41.

» By induction, | H, = %1 |forallp € IN.
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AN EXPRESSION FOR THE ENTRIES

A useful expression for the entries.
> Ifp =Y gapH, € ID*2(7), then

Kae = (@, Hi)r2(y) = (@, 0He-1)12()
= ((P',Hk,1>Lz(7) (duality)

That is,

» In particular, ap = E[¢(N)].
» Moreover, E[Hy(N)] =0 forallk > 1.
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AN APPLICATION

» We have
| dx
e = —E < x >Hk(x)
k;;)k! dk | _y
0 Ck N ﬁ 0 Ck
= I;)HIE[e |H(x) =e? ];)HH;((X)

(Compare with e™ =) 2 %xk.)
» Corollary. If U,V ~ N(0,1) are jointly Gaussian and if
k,I € IN then

KEUVIF  ifk=1
E[H(U)H, (V)] :{ 0 v otherwise.
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PROOF OF THE COROLLARY

Proof.
» We have, on one hand

242 X
EUV] =5 ) ’;{'?l/' E[Hi(U)H(V)].
k,1=0

» On the other hand,

IE[EXU—H/V} _ %Var(xll—&-yV) _ %{x2+y2+2xy]E[UV]}

= B 2” E[uV)*
k=0

» By identification,

KE[UVIF  ifk=1
E[H(U)H, (V)] = { 0 vl otherwise.
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THE ORNSTEIN-UHLENBECK SEMIGROUP (P;);>0

» Definition. For t > 0and ¢ = Z;":O a,H, € L%(7), we set

e}
Pip =) e PayH,|
p=0

This defines the Ornstein-Uhlenbeck semigroup.
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THE ORNSTEIN-UHLENBECK SEMIGROUP (P;);>0

Proposition.
(a) P;P; = Py
(b) Py is the identity operator, that is, Pop = ¢

(c) P is the expectation operator, that is, P = E[p(N)]

(d) [contractivity]' |Pspll12(y) < |l @lli2(y) for any ¢ € L2(7).

(e) [Mehler formula] one has

(Prg)(x) = E[p(e'x + V1 — e *N)]

4

for N ~ N(0,1) and any ¢ € L(7).
(f) DP;p = e 'P;¢’ for any ¢ € D2().

IWe have actually much better: [Proll1se ) < llellzz(q)-
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Exercise. Prove the points (a) to (f) of the previous proposition.
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THE GENERATOR L OF (P;);>0

» For any ¢ € D??(), we can write

T Pg)x) = —xe Elg(ext Voo IN)

o2t
+———E[o' (e x4+ V1 —e2N)N
el VTP

= —xe'Pi¢/(x) +e 2 Pig" (x),

where in the last line we have used that E[Ng(N)] = E[¢'(N)].

» Now, set and let us compute LP;¢.
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» We can write

(LPig)(x) = —3(DPip)(x) = —¢~'5(Pig')(x)
— —xe"tPtqo’(x) +e—2tPt¢//(x)
= L))

» That s, L is the generator of (P;);>o.
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EXPANSION OF THE VARIANCE

v

Let us show how, using the previously introduced operators,
one can derive useful expansions for the variance in L?(y).

Let ¢ € ID®?(7) of the form ¢ = Y2 g a,H).
We have

v

v

v
—
=
)
=4
.

NG
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» Now, let us introduce, for0 < t <1,

(Plog\%(P(N)>2] :

» We have ¢(1) = E[p(N)?] and g(0) = E[¢(N)]?, so that

g(t)=E

1
Var(p(N) = g(1) ~(0) = [ g ().
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» We compute

1
) = B Py 1, 0(N) X LPyy 4 p(N)|

(000

(Plog\}zqol(N))z] -

(Plog 5o (N )) 2] :

—_

= -E

~

= E

» Clearly, by iterating:

M) =E
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EXPANSION OF THE VARIANCE

» Now, we use Taylor:

0 =5+ g0 L+ L Ly g
g =8I T Ls ko ml '
» We deduce
- k“ [ (N)? D™ [ e (4
Var(p ; NP+ [ gt

with [ gD (£)dt > 0.
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EXPANSION OF THE VARIANCE

» If m = 1, we recover the classical Poincaré inequality:

Var(¢(N)) < E[¢'(N)?]|

» If m = 2, one obtains

Var(p(N)) > E[¢/(N] — 2 Elg"(N)?]|
» If m = 3, one obtains
Var(p(N)) < E[¢/(N)?] — S E[g"(N)?] + cE[p"(N)?]|

» Etc.
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Introduction to Malliavin calculus:
any dimension
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PREAMBLE

» For the sake of simplicity and to avoid technicalities, in this
series of lectures we will only consider the case where the
underlying Gaussian process is a classical Brownian motion
B = (B:)t>0 defined on some probability space (Q, F,P).

» It will also be always implicitely assumed that the o-field
F is generated by B, thatis, F = c{B;: t > 0}.

» That is, each time we speak about a random variable, it is
implicit that it is measurable with respect to B.
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CHAOTIC EXPANSION

» Theorem. Any F € L?(Q)) can be uniquely expanded as

F = E[F] + ilp(fp), @
p=1

where each f, : R’ — R is symmetric? and square inte-
grable, and where

o tp72 ‘tp,1
Ip(fp):p!/o dBtl.../O dBtH/O dBy fo(tr,... ty) |

» (1) is called the chaotic expansion of F.

2that is, for all ¢ € &pandall xq,...,xp € Ry, one has
To(o()s - Xo(p)) = fp(x1, .-, xp)
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LINK WITH DIMENSION 1

Theorem. If i : Ry — R is such that fO W2(t)dt = 1 then, for
any integer p > 1:

H, ( / Ooh(t)d&) = L(h) )

where h®P(ty,...,t,) = h(t1)...h(ty) is symmetric and square
integrable.
Proof. We make use of Itd’s formula.

» Lett € Rand, forany x € Rand a > 0, set

~ _ [ a??H,(x/+/a) ifa #0
Hp(x,a)—{xp ifa=0"
» Using the properties of Hermite polynomials, it is readily
checked that (2 P %) ﬁp =0and a%ItIp = pFIp_l.
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LINK WITH DIMENSION 1

» Proof (continued). It6’s formula implies
~ t
78 </ h(u dBu,/ 12 (u du>
t
= / dBy h t1 p—1 (/ h(u)dBu,/th(u)du>
0

tp—2
— / dBy, h(t) / dBy, h(ty) . / "B, h(t, )

w H </0” h(u )dBu,/Ot hz(u)du)

t h oty
— p!/o dBtlh(tl)/O dBtzh(tz).../O dB, h(ty).

» The conclusion follows by letting t — co and by observing
that Hy(x,1) = Hp(x). O
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CONTINUOUS QUADRATIC VARIATION OF BROWNIAN
MOTION

Example: continuous quadratic variation of Brownian motion

> LetF = fOT(Bu+1 — By,)%du be the continuous quadratic vari-
ation of the Brownian motion B over the time interval [0, T].

» We have, since B, ;1 — B, = fo ut1] (£)dBr ~ N(0,1),

T
F — E[F+ /0 Hy(Bus1 — Bu)du

T
= E[F] +/0 Lo (L4172 )
= E[F] +L(f),
where f, (s, t) fo 1y 12 (8, t)du.

» This is the chaotic expansion of F.
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Exercise. Let T > 0. For each of the following expressions of F,
compute its chaotic expansion.

1. F = (Br)" withn € N*.
2. F=e¢br,
3. F= [ Budu.

4. F= [ (Bus1 — Bu)3du.
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» Theorem. For any p,q > 1land any f € L?(R}) and g €
I2(RY):

0 itp #q

EW“W@”={wmmmw) s
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[SOMETRY-ORTHOGONALITY FOR MULTIPLE
INTEGRALS

» Let U,V ~ N(0,1) be jointly Gaussian. Without loss of
generality, we can assume that U = [ u(t)dB; and V =
fo / (t)dBy with [[u|2r,) = 0]z, ) = Tand (4, 0) 2R, )

UV

» If p,g > 1, we can write

E[Hy(U)Hy(V)] = E[L, (u™") I (07)].

» Asaresult, if p # g then E[H,(U)H,(V)] = 0.
» If p = g, then

E[Hy(UH, (V)] = plu,0%) oy = P10}
— pIE[UV].
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MULTIPLICATION FORMULA FOR MULTIPLE
INTEGRALS

» Theorem (Multiplication formula): 1f f € L2(R") and g €
L2(R%.) then

b0 = LA () (Vi 205,

r=0 ¥

where
f ®r g(x1/ ey xP+q_27)

= /f(xll cee /xp—r/ U, ..., ur)g(xpfrqtlf e /xp+q721’1 Ui, ... Iui‘)

duy ...du,
and ~ stands for symetrization:
= 1
h(xl, .. .,xa) = E Z h(x0<1), .o ,xa(a)).
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MALLIAVIN DERIVATIVE

E[F?] = ) pllfyl* < co.
p=0

» Definition. We set

D (Q) = {F e L*(Q): iopkp!lvplz < 00} ~
=

» Definition (Malliavin derivative). If F € ID'?(Q)), we set

D.F =) pl,1(fp(-x)), xeR.|
p=1
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MALLIAVIN DERIVATIVE

» As a particular case,

D, (/0 wh(t)d&) — h(x) |

» The process DF = (DyF),>0 belongs to L?(Q x R} ):

E[|[DF[[f(g..)]

= ipz /OOO]E {Ip,l(fp(-,x))ﬂ dx
- ):p ~ 0 [0 P

= ZPPWPHZ < oo
p=1
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MALLIAVIN DERIVATIVE: CHAIN RULE

» Theorem (chain rule for D). If ¢ : R? — Ris C! and Lipschitz
and if Fy,...,F; € DY2(Q), then ¢(Fy,...,F;) belongs to

D2(Q) with

Dy¢(F, ..

. I

d
i
;a (F1,...,Fq)DyFy|.

» Particularly important case:

Dx¢(F)

= ¢'(F)DsF

if F € D2(Q) and ¢ € C! N Lip.
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Exercise. Let T > 0. For each of the following expressions of F,
compute its Malliavin derivative.

1. F = B} with n € N*.
2. F=e¢br,
3. F= [ Budu.

4. F= [} (Bus1 — Bu)"du with n € N*.
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EXERCISE

Exercise. Let xp € Rand leto,b: R — R be C! and (globally)
Lipschitz. Consider the strong solution X = (X;)> of the
stochastic differential equation (or, more correctly, stochastic
integral equation):

t t

The goal of this exercise is to compute the Malliavin derivative
of X; when t > 0 is fixed.
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EXERCISE (CONTINUED)

1. Letz = (zu)ye(o,1) be a simple adapted process, that is of the
form

k
Zy = Zl gil(tl‘,t,urﬂ (u)’

for an integer k, a finite sequence

tp=0<1t <...<ty1 =T, and random variables
¢1,...,Ck such that ¢; is F;-measurable. Assume further
that & € ID'?(Q) for each i. For any s € [0, T], show that

T T
Dq( / z,du) = / Dz, du ()
0 0

T T
DS(/O ZudBu) = Zs+/0 Dsz,dB,,. (3)

By approximation, one can show that (2)-(3) extend to any
adapted process z (not necessarily simple) such that

z, € D2(Q) foru € [0,T] and [ E[(Dsz,)2)du < co.
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2. For any s,t > 0, show that D;X; = 0 if s > t whereas, for
s <t

DsX; = 0(Xs) exp {/st [b'(Xu) — %OJZ(Xu)]du + /st U’(Xu)dBu} |
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DIVERGENCE OPERATOR

» Definition (divergence operator 6). We have

Dom/d = {u € L2(1R+ xQ): dc>0,

[E(DF, u)p2(r,)| < cllFlli2q) VF € 11312(0)}.

» If u € Dom 6 then §(u) is characterized by

E[F5(u)] = E((DF,u);2r,)) VFeDY(Q)|
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ORNSTEIN-UHLENBECK SEMIGROUP

> Definition (Ornstein-Uhlenbeck semigroup). It F = Y .7 I, (fp) €
L*(Q)) and t > 0, we set

PF =) e "I(f,) |
p=0

» Definition (generator). If F = }7° o I, (f,) € D22(Q)), we set

» Proposition:

LF = — ZPIp(fp) -
p=0

L

=2 piland[L= D]
t=

~
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ORNSTEIN-UHLENBECK SEMIGROUP

> Definition (pseudo-inverse of the generator). If F =} .7 o I (f,) €
L%(Q), we set

_ 21
L' F==Y -L({f)|
p=1F

» Theorem: for all F € L?(Q)), we have

F = E[F] —éDL'F|

» Proof. F = E[F] + LL'F = E[F] — 6DL'F. 0
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EXERCISE

Exercise. Let F € ID?(Q)). The goal of this exercise is to check
that

Var(F) = / ¢ ' E[(DF, Pi(DF)) 2 ..t |
0

We recall that PiF = Y7 g e 7L, (f,) if F = Y7 I,(f,) is the
chaotic expansion of F, that %Pt = LP;, and that L = —éD (as

operators).
1. Show that Var(F) = [E [F(PyF — PoF)].
2. Deduce that Var(F) = [;" E[F x §(DPF)]dt.

3. Show that D,P;F = e !P;D,F for all x,t > 0.
4. Conclude.
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EXERCISE

Exercise. Forany T > 0 and v € R, we set
Fr = [ (Bus1 — Bu)?du and p(v) = (1 — |o])+ (with
y+ = max(y, 0) the positive part of v).

1.
2.

Compute E|[Fr].

Show that E[(B,+1 — By)(By+1 — By)] = p(u — v) for all
u,v > 0.

. Show that [~ 1 y41) (%) 1[pp:1) (x)dx = p(u — ) for all

u,v>0.

Show that Fr — [E[Fr] belongs to the second Wiener chaos.

5. Show that Var(Fr) = Zf_TT p(y)z(T— lyl)dy.

Hint: Use that Var(F) = E[(F — E[F))?] and that
E[H,(U)Ha (V)] = 2(E[UV])2if U, V ~ N(0,1) are jointly
Gaussian.

. Deduce that Var(Fr) ~ 4T /3 as T — oo.
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Malliavin calculus and absolute continuity:
dimension one
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ABSOLUTE CONTINUITY IN DIMENSION ONE

» Theorem. Let F € D*?(Q)) be such that

|DF||> = /0 (DyF)*dx > 0 almost surely |

Then F has a density.

» Before proving this theorem, let us first see a nice applica-
tion.

» Shigekawa’s theorem. Let F have the form F = I,(f), with
f # 0. Then F has a density.
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ABSOLUTE CONTINUITY IN DIMENSION ONE

Proof of Shigekawa'’s theorem. We will proceed by induction on p.
e p=1:onehas F = I1(f) = [ f(t)dB; ~ N(O, [, f2(t)dt)
with fo f2(t)dt >0 — thls is then OK!
o p—1—p:LetF = [,(f) with f # 0. We need to check that
5~ (DyF)?dx > 0 almost surely.
» We have DyF = pl, 1(f(-,x)).
» Since f 75 0, there exists h € L2(R.) such thaty € ]R’i_1 —

o~ f(y,x)h(x)dx is a non-zero element of L2(R,~ 1)

» We then have that [;° DyFh(x)dx = pl,_1 ([ f (-, x)h(x)dx)
has a density (induction assumption).
» As aresult, using first Cauchy-Schwarz,

P </OOO(DxF)2dx - 0) <P (/Ow DyFh(x)dx = 0) —0,

» Thatis, [; (DxF)?dx > 0a.. and F has a density. O
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ABSOLUTE CONTINUITY IN DIMENSION ONE

Proof of the absolute continuity theorem.

» Goal: According to the Radon-Nikodym criterion, we must
show that if, A € B(R) satisfies A(A) = 0 (with A the
Lebesgue measure) then P(F € A) = 0.

» Let B € B(R) be a bounded Borel set. We claim that

E [I{FeB} HDPHZ} — E [/Foo 1p(x)dx x (—LF)| .
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ABSOLUTE CONTINUITY IN DIMENSION ONE

Proof of the absolute continuity theorem (continued).

» Indeed, leth : R — [0, 1] be continuous with compact sup-
port.

» Thenx — [ h(t)dtis C! and Lipschitz.

» We deduce, using L = —6D and the duality formula (first
equality) as well as the chain rule for D (second equality),

E{/_th(x)dxx(—LF)] - ]E[<D (/_Pooh(x)dx>,DF>]

- E [h(P)HDPHZ} .

» Thus, the claim is satisfied with  instead of 15.

» We deduce the claim by approximation (Lusin’s theorem
and dominated convergence).
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ABSOLUTE CONTINUITY IN DIMENSION ONE

Proof of the absolute continuity theorem (continued).

» We now apply the claim to B = AN [—n,n]|, where n € N
and A € B(R) satisfies A(A) = 0:

F
E [1scarinny IDFIF] = B[ [ L) (1)
» Since [ 1an_nn (x)dx = 0 a.e., one obtains that

E | 1(rean(-nmy | DFI| =0

forall n € IN.
» By monotone convergence (n — o), it comes that

E [1(res) |IDFI?] =o0.

» The desired conclusion follows since || DF||> > 0 a.s. O
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EXERCISE

Exercise.

» Letxg € Rand leto,b: R — R be C! and (globally) Lips-
chitz.

» Consider the strong solution X = (X;);>0 of the stochastic
differential equation (or, more correctly, stochastic integral
equation):

t t
0 0

» If o(xp) # 0, show that X; has a density for any ¢ > 0.
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EXERCISE

Exercise. Let F € D?(Q)) be such that E[F] = 0, and let us
consider the function gr : R — R defined through the following
identity:

g¢(F) = E[(DF,=DL™'F) (g .y | F].

1. Let C be a Borel set of R, and set ¢c(x fo 1c(t)dt (with

the usual convention [; = — I . for negatlve X).

1.1 Show that x¢c(x) > 0 for all x € R.
1.2 Deduce that E[gr(F)1{recy) > 0.
1.3 Conclude that gr(F) > 0 a.s.

2. If gr(F) > 0 a.s., show that F has a density.
3. Assume conversely that F has a density, say p. Show that

qr(F) = % and deduce that gr(F) > 0 a.s.
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Malliavin calculus and absolute continuity:
any dimension
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ABSOLUTE CONTINUITY IN ANY DIMENSION

Theorem (Malliavin)

» Let F = (Fy,...,F;) be such that F; € D®(Q) for all i =
1,...,d.
» LetI = ((DF;, DF]'>)1§Z.,].§d be the Malliavin matrix of F.
» If detI’ > 0 almost surely, then F has a density.
Three remarks:

(a) If d = 1, then T reduces to || DF||?, and one recovers the
result in dimension one.

(b) The Malliavin matrix is a Gram matrix; as such, it is
symmetric and positive, meaning that detI' > 0 a.s..

(c) The imposed regularity assumption (namely, F; € ID%) is
too much demanding (actually: F; € D2 is enough).
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PROOF OF MALLIAVIN’S THEOREM

» Goal: According to the Radon-Nikodym criterion, and like
in dimension 1, we must and will show that P(F € A) =0
for each Borelian set A € B(IRY) of Lebesgue measure zero.

» Fixi=1,...,d as well as a test function ¢ € C°(R?).

» Using the chain rule, one can write

(D¢(F), DFq)

(D(F), DF)

i 18*{ (F )<DFk,DF1>

Yy Bx L (F )<DFkrDFd>
3L (F)

aX]

=
5 (F)
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PROOF OF MALLIAVIN’S THEOREM

» Thanks to the identity AdjI' x I' = detI'Id (where AdjI'
refers to the adjugate of I'), one deduces from

(D¢(F), DF;) 2L (F)
: =T
(D¢(F), DFy) 22(F)

that

o 4
detT = (F) = Y_(AdjT);(D¢(F), DF;) |

axi i=1
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PROOF OF MALLIAVIN’S THEOREM

» For any ¢ € C.(R), one has
o) = [ 9wy = [ ¢ )Ny )y = (' $T0.) ().

» Assumed > 2 and let ¢ € C*(IRY) be a test function.
» A multivariate extension of the identity ¢ = ¢’ x 1/ o) is

d a4> Q4
E axl f

:1

where Q, denotes the Poisson kernel on R?, defined as

1[0/00) (Xl) ifd=1
Qua(x) = cq log(xf +3) if d =2
(x%—l—...—i—xﬁ)%*l ifd >3,

with ¢; a universal constant whose exact value is useless

here. 61/100



PROOF OF MALLIAVIN’S THEOREM

» One can write

E[detT x ¢(F)]
- Z/Waaff E [ detr 327 )|y

d
= Z /le aa% JE LZ;(AdJT)j,i(DWF—]/)/DFj)

dy

= % By [s((Adi Ty DR (E )] dy

ij=1

= Z/ [ (AdjT);; DF;)°

xfi(F—y)} dy.
ij=1 1
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PROOF OF MALLIAVIN’S THEOREM

» Let B be a bounded Borel set.
» By astandard approximation argument (e.g. based on Lusin’s

theorem), one can extend the previous formula, a priori only
valid for smooth ¢, to ¢ = 1p:

E[detT 15(F E/ [ Ad]F]le)aQ:i(P y)| dy.

ij=1

» Now, let A be a Borel set of Lebesgue measure zero.
» From the framed formula with B = AN [—n, n], one deduces

E [detl" X 1Am[_n,n](F)} =0 foralln>1.

» The desired conclusion follows by letting n — oo and be-
cause detI' > O a.s. ]
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The Malliavin-Stein approach:
dimension one
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MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

» Theorem (Charles Stein).
> Let N ~ N(0,1).
» Let F be any random variable such that E[F?] < co.
» Then

drv(F,N) < sup |E[¢'(F)] —E[Fp(F)]||
peCt
ll¢'lo<2

» We recall that the total variation distance between (the laws
of) F and N means the following quantity:

drv(F,N) = sup |P(F€A)—P(NeA)|
AeB(R)
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MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

» Proof of Stein’s theorem. First, one observes that
drv(EN) < sup [E[R(F)] — E[r(N)]|
hR—[0,1]

= sup |E[h(F)] —E[(N)]| (by Lusin).
hR—[0,1]
hec®

» Now, fix h : R — [0, 1] continuous, and set

» One easily observes that, equivalently:

2

o(x) = —e* /xw (h(a) — E[h(N)])e~ % da|
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MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

» Since hh : R — [0, 1] is continuous, it is immediate that

2

o) = 5 [ (hla) —EIR(N)])e % da

—00
2

= e [ (h(a) ~ EA(N)))e T da

is , and satisfies

» Moreover, we claim that | |¢(x)| < 2|forallx € R.
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MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

E[h(N)], the claim will be
| <1.

> Since ¢'(x) = x¢(x) + h(x)
checked if we show that |x¢(x

\_/ |

o

» If x > 0, using that ¢(x) = —e= [ (h(a) — IE[h(N)])eféda:
2 [ 2 2 [ 2
lxp(x)| < xez / e zda<ez / ae” 2da = 1.

X

» Ifx < 0, this time with ¢(x) = — o [* (h(a h(N)])e‘éda:

X a2 2 X 2
()| < Jxle / e < e / aleSda = 1.
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MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

» To conclude the proof of Stein’s theorem, we fix a continuous
h:R — [0,1], and we let ¢ be defined as before.

» Since ¢’ (x) = x¢(x) + h(x) — E[h(N)], we have
|[E[h(F)] — E[r(N)]| = [E[¢/(F)] — E[F(F)]|-

» Since ¢ belongs to C!, and is such that |¢/(x)| < 2 for all
x € R, we deduce that

[E[h(F)] — E[R(N)]| < sup [E[¢'(F)] — E[Fp(F)]
e
14l oo<2

7

from which the desired conclusion follows. O
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Theorem (Nourdin-Peccati).
» Let F € D2(Q) with E[F] = 0.
» Let N ~ N(0,1).

» Then

dry(F,N) < 2|1 — (DF, =DL™'F) 2 ) |
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MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

Proof.
» We use Stein’s theorem to bound dry (F,N) by
sup |E[¢(F)] - E[F(F)]|.

peCt
1] e0<2

v

Now, let ¢ € C! be such that ||¢/ ||« < 2.
We have, using F = LL™'F (since E[F] = 0) and L = —6D,

v

E[F¢(F)] = E[5(~DL'F) ¢(F)].

v

By duality, one deduces E[F¢(F)] = E[(D¢(F), —DL™'F)].
Eventually, using the chain rule:

v

E[F¢(F)] = E[¢'(F)(DF, ~-DL'F)].
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MALLIAVIN-STEIN APPROACH IN DIMENSION ONE

Proof (continued).
» By plugging into Stein’s bound, we get

sup |E[¢/(F)] — E[F¢(F)]|
peC!
1] e0<2

= sup [E[¢/(F)](1— (DF,~DL™'F))]
Hﬁjlﬂ

< 2E|1—(DF,—DL™'F)j2g |-
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Fourth moment theorem
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FOURTH MOMENT THEOREM

» The goal of this section is to prove the following result:
» Theorem (Nourdin-Peccati).
» Let F = I, (f) with f € L2(IR4) such that E[F?] = p!||f||* = 1.

» Then
dTvFN <—\/ F4—3.

» We recover the celebrated and surprising fourth moment
theorem of Nualart and Peccati (2005): if F, = I,(f,) is a
sequence of pth multiple Wiener-It6 integrals normalized
so that E[I,(f,)?] — 1, then L,(f,) — N(0,1) if and only if
E[L(f)*] > 3
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FOURTH MOMENT THEOREM

The proof relies on the followin lemma.
Lemma. If F = [, (f) with E[F?] = 1, then

1 2
(1 - ||DP|2)
p

Proof of the FMT. Let F = I,(f) with E[F?] = 1.

1

E <3 (IE[P‘*} —3) .

v

We have dry (F,N) < 2|1 — (DF, ~DL"'F)|.
But (DF, ~DL™'F) = %HDFH2 since L™!F = —%F.

v

\{

2
Hence ]E’l - (DF,—DL_1F>‘ < \/]E [(1 — %HDFHZ) }

We conclude thanks to Lemma B. O
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FOURTH MOMENT THEOREM

Proof of the lemma. Let F = I,(f) with E[F?] =
> First step. Since DyF = pI, _1(f(-,x)),
1

1 [ee] oo
SIDEI = [ (DFPdx = p [y ()

- ppfr!(’” >Izpzzr</f )8f(2)dx )

_ E r-n(? _i) by-2(f5.f).

» Using that (r — 1)!(";:})2 = %’(5)2, we deduce

1 2 Pt rr! p 2 ~
I;HDFH = 1 —|— Z ? r 12p_2r(f®rf).
r=1
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FOURTH MOMENT THEOREM

Proof of Lemma B (continued).
» As aresult,

(o~ 1>2] -2 5 () o)

2
r=1 ;7 r

E

» Second step. One has
E[FY] = E[F x F®] = E[LL"'F x F%]
= ;IE[(S(DF) x F°] (using L~'F = —Fand L = —6D)
_ ;IE[<DF,D(F3)>] _ zlE[F2|yDF||2] (by the chain rule
= 31E[F2(;HDF||2 —1)]+3.
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FOURTH MOMENT THEOREM

Proof of Lemma B (continued).

» But F2 = Y/ _,r!(P) 12,] 2 (f®, f) by the multiplication for-
mula, whereas

1 ) Pt (p)? _
JIDFR 1= T 2 () 1y 75 )
r=1

as shown in the first step.
» As aresult, using that E[F] — 3 = 3]E[P2(}l7 |DF||> - 1)]

3—32”(5) (2p — 2n)! [If &, £
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FOURTH MOMENT THEOREM

Proof of Lemma B (continued).
» Comparing the two formulas

@”DF“Z‘l)zl T2 o2

and

3—32 r'2< >42P 20)! [If & f11*.

(1- ;HDFW)Z] .

we deduce

E[F'] -3 >3E

O]
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Application to
fractional Brownian motion
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APPLICATION TO FRACTIONAL BROWNIAN MOTION

» Let B be a fractional Brownian motion of index H € (0, 1).

» That is, BY is a centered Gaussian process with covariance

1
—(PH 4 2H |t —5|?H).

E[B{'BY] = S

» Set

Z[ k+1 — _1]r

where 0,, > 0 is chosen so that E[F3] = 1
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APPLICATION TO FRACTIONAL BROWNIAN MOTION

Theorem.

» f0<HL %, then (Breuer-Major '83):

law

Fo ™Y Foy ~ N(0,1) |,

> If % < H <1, then (Taqqu '75):

law

F, — F« ~ Rosenblatt|.

» More precisely,

dry(Fn,Fe) =0 pAH-3

if0<H<
ifH=2

oo|Un

W

if3<H<3 .

'S

ifH=3
if2<H<1
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APPLICATION TO FRACTIONAL BROWNIAN MOTION

Proof of the normal approximation.

12
» First step. We let H = span{BI : k € N} @ C L2(Q).
» 7H is a real separable Hilbert space, so there exists an isomet-
ric bijection ¢ : H — L2(Ry).
» Sete, = QD(BEH BH).
> Claim: | {I1(e;) : k€ N} '2 {BE, — B : ke N} |
» Hence

F, ' Z I () — 1)

= iz (ex @ ex)
1’17

= D(fa), w1thfn— Zéek®ek
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APPLICATION TO FRACTIONAL BROWNIAN MOTION

Proof of the normal approximation (continued).

» Second step. We set

1
p(r) = E(|1f—i— 1+ |r =1 —2[r*), rez.

» Exercise:

op=2Y p*k—=1I)=2n Y p*(r)(1- M) :

k=0 |r|<n n
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APPLICATION TO FRACTIONAL BROWNIAN MOTION

Proof of the normal approximation (continued).

Exercise:
1. IfH < 2 then Y, .7 p*(r) < o0 and

Oy ~ /2r§p2(r)\/ﬁ.

2. If H = 3 then ¥,z p*(r) = o0 and

Oy ~ Z\/nlogn .
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APPLICATION TO FRACTIONAL BROWNIAN MOTION
Proof of the normal approximation (continued).

Exercise:
2
1. We have E {(1 — %HDFnHZ) ] = 8||fn ®@1.full*

2. Using Young inequality®, shows that

3
Ifs @1 full® < 5 (; |p<k>r%‘> .
n kl<n

3. Conclude by using that drv (F,, N) < 2E|1 — 1||DF,|?|.
O

3Young inequality: if s, p,q > 1 are such that % + % =1+ %, then
u*ollesz) < llulloz)llvlloz)
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The Malliavin-Stein approach:
any dimension
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FOURTH MOMENT THEOREM

Fourth Moment Theorem (Nualart-Peccati). Fix an integer

p >2,and let {f,},>1 C L2(R%.). Assume further that
E[I,(fy)?] — 0 as n — oo for some o > 0. Then, the following
three assertions are equivalent as n — co:

law

(1) L(fx) = N(0,0?);
) E[L,(fn)*] — 30%
3) fu @+ full = 0foreachr=1,...,p—1.
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MULTIVARIATE CASE

» Theorem (Peccati-Tudor). Consider d integers p1,...,ps > 1,
with d > 2. Assume that all the p;’s are pairwise differ-
ent*. Foreachi=1,...,d, let {fi},>1 C L2(R) satisfying
E(L,(fi)?] — ¢? asn — oo for some 0; > 0. Then, the
following two assertions are equivalent as n — oc:

law

1) I,(fi) = N(0,0?) foralli=1,...,d;

@ (I, (FD), .-, L, (F1) 2 Ny (0, diag(c?, ..., 03)).
» In other words, for sequences of vectors of multiple Wiener-
Itd integrals, componentwise convergence to Gaussian al-
ways implies joint convergence.

» Using multivariate Stein’s method, one can associate a rate
to this convergence.

“We also know what happens when such an assumption is not satisfied
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TWO SITUATIONS

> Very often, second order results for| F, = E[F,] + Y I,(fy)
p=1

can be deduced from the behaviour of its chaotic projec-
tions (in case of asymptotic gaussianity or not).

» Situation 1: F,, is dominated by one of its projection, and
it inherits the rigid asymptotic structure of sequences inside
a Wiener chaos (see next slide).

» Situation 2: no single projection dominates, and interac-
tions have to be dealt with (see Breuer-Major theorem).
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A RIGID STRUCTURE

Fixp > 2,and let F,, = I,(f,;), n > 1 with variance 1 (say).

law

» Nourdin and Poly (2013): If F, = Z, then Z has a density.

law

» Nualart and Peccati (2005): F, =% N(0,1) iff EF} — 3(=
EZ*).

» Peccati and Tudor (2005): componentwise convergence to-
wards Gaussian implies joint convergence.

> Nourdin and Peccati (2009): F, 2% (22 —1)/+/2 iff EF% —
12EF} — —36.

» Nourdin and Rosiriski (2014): if H,, = I;(gn) (with variance 1),
then F,,, H, are asymptotically independent iff Cov(H2, F2) —
0.
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Illustration: a modern proof of

the Breuer-Major theorem
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BREUER-MAJOR THEOREM

Theorem (Breuer-Major, 1983).

» Let {X)}r>1 be a centered stationary Gaussian family such
that E[X;X;| = p(k—1), k,1 > 1. Assume further that p(0) =
1, that is, each X} is N'(0,1) distributed.

» Let ¢ : R — R be a function of L?(vy) and let us expand it in
terms of Hermite polynomials as ¢ = Y;° o a,H,.

» Assumeay = E[p(X7)] = 0and

Y lp(k)|" < o0

keZ

, where r is

the Hermite rank of ¢, thatis, r = inf{p : a, # 0}.

» Then, asn — oo,

1 n
V==Y o(X) 2 N(0,0?) ),
k=1

with 02 given by 02 = Y2, plag Y ez p(k)P €
fact that 02 € [0, ) is part of the conclusion.)

[0, 0). (The
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A COUPLE OF REMARKS ABOUT BREUER-MAJOR

» The original proof consisted to show that all the moments
of V,, converge to those of the Gaussian law N(0,0?). As
anyone might guess, this required a high ability and a lot of
combinatorics.

» Assume r > 2 and p(k) ~ |k|~P as |k| — oo for some D €
(0, %) In this case, one can show that

n
— 1 1
2dD/2-1 E o(Xk) 2 non-Gaussian
k=1

This shows that the limit is usually non-Gaussian when

p & U(Z).

» There exists a functional version of Breuer-Major, in which
the sum Y}, is replaced by Z,[(”:t]l for t > 0. It is actually not
that much harder to deal with and, unsurprisingly, the limit-
ing process is then the standard Brownian motion multiplied
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PROOF OF BREUER-MAJOR

» We first compute the limit variance, which will justify the
formula we have claimed for 0.

» We can write

2
E[V2] = %113 |:<Zaka:1Hp(Xk)>

Hy(Xp)]

Sl— I

"ﬁm %Ms

k
k=1 = ZP'H > p(k) 1—u)1{\k|<n}-

p=r keZ

f_

» By dominated convergence theorem, we can prove that

E[V2] — ¢?, with 02 € [0,0) like in the statement of Breuer-
Major.
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PROOF OF BREUER-MAJOR (CONTINUED)

» We now check the gaussianity.
» We shall do it in three steps of increasing generality (but of
decreasing complexity!):
(i) when ¢ = Hj, has the form of a Hermite polynomial (for
some p > 1);
(ii) when ¢ = P € R[X] is a real polynomial;
(iii) in the general case, that is, when ¢ € L?().
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PROOF OF BREUER-MAJOR (CONTINUED)

Case where ¢ = H,, is the pth Hermite polynomial.

72
» The space H := span{Xy,Xp,...} D is a real separable

Hilbert space.

» Let ® : H — L?(R;) be an isometry. Set e = ®(X;) for
eachk > 1.

» We have p(k — 1) = E[X,X]] = [; ex(x)e;(x)dx, k,1> 1.

» If B = (B;);>0 denotes a standard Browman motion, we
deduce that

{Xidor 2 {/Ooo ek(t)dBt}k>1 )

these two families being indeed centered, Gaussian and
having the same covariance structure (by construction of the

ex’s).
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PROOF OF BREUER-MAJOR (CONTINUED)

Case where ¢ = H,, is the pth Hermite polynomial.

» We deduce that V;, = I,(f,), with

1 & 2
fu= o,
Nor=

» We already showed that IE[V,%] — 0?asn — oo,

» So, according to Fourth Moment Theorem, to get that V,, —
N(0,0?) it remains to check that ||f, ®, fu|| — 0 for any
a=1,...,p—1

» We have

fn ®afn =

:\P—‘

- ®
Z Ve et
implying in turn

W @afull® = 5 X pli=iplk=1)pli= k) ol =D"
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PROOF OF BREUER-MAJOR (CONTINUED)

Case where ¢ is any polynomial.
» One has ¢ = Zf;]:, ayH) for some finite integer N > r.

» Peccati-Tudor theorem and the previous case yield that

Ly i), 2 ) | =¥ N(0, diag(c2, ..., 0%)),
Nar= =

S\

where 07 = p!Y ez p(k)!, p=1,...,N.
» We deduce that

1 N n aw N
N Y a, Y Hp(Xe) ay N (0, Zagp! ) p(k)P> .
p=r k=1

p=r keZ
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