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Abstract

Compressed sensing aims at recovering a sparse signal x ∈ RN
from few nonadaptive, linear measurements Φ(x) given by a measure-
ment matrix Φ. One of the fundamental recovery algorithms is an
`1 minimisation. In this paper we investigate the situation when our
measurement Φ(x) is contaminated by arbitrary noise under the as-
sumption that the matrix Φ satisfies the restricted isometry property.
This complements results from [4] and [8].

1 Introduction

Compressed sensing is a new scheme which shows that some signals can be
reconstructed from fewer measurements than previously considered. The
mathematical formulation is the following. Our signal is a vector x ∈ RN .
We have a matrix Φ with N columns and d rows called measurement matrix
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and our measurements are represented by y = Φ(x) ∈ Rd. We also need a
decoder ∆ (which generally is non-linear) which produces ∆(y) ∈ RN which
should be an approximation to x. The main point in compressed sensing as
expressed in recent papers (see e.g. [3, 5, 9, 7]) is that it is actually possible
to recover the essential information about x from relatively few non-adaptive
measurements d << N . Substantial progress have been made in recent years
in understanding the performance of various measurement matrices Φ and
decoders ∆. Generally we have also an integer k ≤ d which measures the
amount of information we wish to recover. The standard initial requirement
is that for every k–sparse vector (i.e. x ∈ Σk) we have ∆(Φ(x)) = x. This
clearly forces Φ|Σk to be one to one. But for ∆ to be numerically friendly
we must have the corresponding systems of equations well conditioned. This
leads to the restricted isometry property RIP (also called in the literature
uniform uncertainty property – UUP).

By Σµ we will mean the set of all vectors from Rs (where s should be
clear from the context) which have at most µ non-zero coefficients. For a
vector x ∈ RN and µ = 1, 2, . . . , N we define the error of the best µ-term
approximation in `1 norm as

σ1
µ(x) = inf{‖x− z‖1 : z ∈ Σµ}.

We say that matrix Φ satisfies RIP(k, δ) where 0 < δ < 1 and k ∈ N if

(1− δ)‖c‖2 ≤ ‖Φ(c)‖2 ≤ (1 + δ)‖c‖2 (1)

for all vectors c ∈ Σk. One of the most popular decoders (see e.g. [2, 4, 8, 9])
is `1 minimization given by

∆1(y) = Argmin{‖z‖1 : Φz = y}. (2)

For ε ≥ 0 we will also consider the decoder cf. [4]

∆ε(y) = Argmin{‖z‖1 : ‖Φ(z)− y‖2 ≤ ε}. (3)

Note that ∆0 = ∆1. It seems to be a general belief in the compressed
sensing community that `1 minimization for RIP measurement matrices is
robust with respect to the measurement errors. This is based on many results
proven under various assumptions about noise see e.g. [7, Sect. 1.5.2] for
an overview. The aim of this paper is to examine this belief in some detail
in the worst case situation i.e. we put no restriction on the structure of the
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error and we want to have estimates valid for all errors. Basically there are
two results dealing with this question. First we have the classical theorem of
Candes-Romberg-Tao [4] (with later improvements) which says

Theorem 1.1. Suppose that Φ satisfies RIP (2k, δ) with δ <
√

2− 1 and let
ε ≥ 0 be fixed. Then for any x ∈ RN and any e ∈ Rd with ‖e‖2 ≤ ε

‖∆ε(Φ(x) + e)− x‖2 ≤ C0k
−1/2σ1

k(x) + C1ε (4)

where constants C0 and C1 depend only on δ.

Secondly we have theorems from [12] and [8] (see also [13]) which can be
summarized as follows

Theorem 1.2. Suppose that Φ is a random matrix with all entries being
independent copies of a symmetric, subgaussian random variable η such that
E(η2) = d−1. For x ∈ Rd we define

‖x‖J = max(
√

logN‖x‖∞, ‖x‖2). (5)

Then with overwhelming probability matrix Φ has the following property: for
every x ∈ RN and e ∈ Rd we have

‖∆1(Φ(x) + e)− x‖2 ≤ C(‖e‖J + k−1/2σ1
k(x)) (6)

for k = cd/ logN where constants C and c depend on η. When η is Gaussian
variable we can replace ‖x‖J by ‖x‖2.

Let us note that when we use a constant we understand that this constant
does not depend on N, d, k but may depend on other parameters of the
problem e.g. δ.

When we know that there is no error both Theorems reduce to Theorem
2.1. There are however several important differences between those theorems.

• Theorem 1.1 applies to a wide, abstract class of matrices while Theorem
1.2 deals with special matrices. Actually the proof of Theorem 1.2
requires RIP (which in this case is known to hold with overwhelming
probability) plus some other properties of the matrix.

• Theorem 1.1 requires an a priori upper bound on the size of the error
and uses a decoder which depends on this upper bound. It says nothing
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about errors with ‖e‖2 > ε. But if we pessimistically estimate ‖e‖2 < ε
while in reality e is much smaller or e = 0 the estimate (4) still contains
the term C1ε. Contrary to this Theorem 1.2 uses a fixed decoder which
gives the error of the decoding dependent on the real (unknown) error.

This analysis rises several questions

1. What is the actual performance of ∆ε for noisy data with ‖e‖2 << ε
and ‖e‖2 > ε?

2. Can we produce an estimate like (5) for arbitrary RIP measurement
matrix with ‖.‖J replaced by a suitable norm?

We will discuss those question in the worst case situation i.e. we put no
restriction on the structure of the error and we want to have estimates valid
for all errors. The results our discussion can be summarized as follows

1. For arbitrary matrix Φ we construct a norm ‖.‖Φ such that analog of
Theorem 1.2 holds when this norm replaces ‖.‖J . We show that in
general this norm gives an optimal estimate.

2. We show examples of matrices with very good RIP properties such that
for some measurements an unlucky but very small measurement error
can result in huge reconstruction error of ∆1 decoder. The same may
happen for ∆ε when the error is bigger then ε.

3. We show ways to modify measurement matrices so that the modified
matrix will be robust with respect to measurement error.

2 General estimates

We fix a matrix Φ : RN → Rd and we assume that it satisfies RIP (k, δ).We
will always denote by (φj)

N
j=1 columns of the matrix Φ. Symbols ∆1 and ∆ε

will denote decoders defined in (2) and (3).
Let us now make some remarks about those decoders:

1. In order for ∆1 and ∆ε to be well defined we must have Φ(RN) = Rd

and we will always assume this.
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2. By compactness for every y ∈ Rd there exists ỹ ∈ Rd such that
‖y − ỹ‖2 ≤ ε and ∆ε(y) = ∆1(ỹ). Actually by elementary convex-
ity considerations we see that we must have ‖y − ỹ‖2 = ε.

3. Since unit ball in a euclidean space is strictly convex this ỹ is unique.

A fundamental role in our considerations will be played by the following
Theorem of E.Candes, J.Romberg and T.Tao [4]:

Theorem 2.1. Suppose the matrix Φ satisfies RIP(2k, δ) with δ <
√

2 − 1.
Then there exists a constant K such that

‖x−∆1(Φx)‖2 ≤
Kσ1

k(x)√
k

(7)

for all x ∈ RN .

Note that in particular this theorem gives ∆1(Φ(x)) = x for all x ∈ Σk ⊂
RN . This Theorem was formulated without proof in [1]. It appeared for
the first time in [4] but with the assumption that Φ satisfies RIP(3k, δ1) and
RIP(4k, δ2) and δ1 + 3δ2 < 2. The present version was proved in [2].

For a fixed k and a matrix Φ we define a norm ‖y‖Φ on Rd by the formula

‖y‖Φ = max(‖y‖2,
1√
k

inf{
N∑
j=1

|yj| :
N∑
j=1

yjφj = y}). (8)

Since we assume Φ(RN) = Rd this is a well defined norm. Its unit ball
equals U =

√
kΦ(BN

1 ) ∩ Bd
2 . Note that in particular we have ‖x‖Φ ≥ ‖x‖2.

The proof of the following Proposition and Theorem repeat almost verbatim
arguments from [12] which follow arguments from [4]. We present them for
completeness of the paper.

Proposition 2.2. For every x ∈ RN there exists x̃ ∈ RN such that

1. Φ(x) = Φ(x̃)

2. ‖x̃‖1 ≤
√
k‖Φ(x)‖Φ

3. ‖x̃‖2 ≤ C‖Φ(x)‖Φ
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Proof. From the definition of the norm ‖Φ(x)‖Φ we can find a vector x̃ =
(x̃j)

N
j=1 such that Φ(x) =

∑N
j=1 x̃jφj = Φ(x̃) with 1√

k

∑N
j=1 |x̃j| ≤ ‖Φ(x)‖Φ

which gives 1. and 2.. To estimate ‖x̃‖2 we split the set {1, 2, . . . , N} into
disjoint k–element sets S0, S1, . . . such that |x̃j| ≥ |x̃l| whenever j ∈ Sν and
l ∈ Sν+1. Clearly we have

‖x̃|Sν+1‖2 ≤
1√
k
‖x̃|Sν‖1. (9)

From 2. and (9) we get

‖x̃|Sc0‖2 ≤
∑
ν≥1

‖x̃|Sν‖2 ≤
1√
k
‖x̃‖1 ≤ ‖Φ(x)‖Φ. (10)

Also using (10) and RIP condition we get

‖Φ(x̃|Sc0)‖2 ≤
∑
ν≥1

‖Φ(x̃|Sν)‖2 ≤ (1 + δ)
∑
ν≥1

‖x̃|Sν‖2 ≤ (1 + δ)‖Φ(x)‖2. (11)

Now we use RIP condition, (11) and the definition of ‖.‖Φ to get

‖x̃|S0‖2 ≤
1

1− δ
‖Φ(x̃|S0)‖2 =

1

1− δ
‖Φ(x̃)− Φ(x̃|Sc0)‖2

≤ 1

1− δ
(‖Φ(x)‖2 + ‖Φ(x̃|Sc0)‖2)

≤ 1

1− δ
(‖Φ(x)‖2 + (1 + δ)‖Φ(x)‖2)

≤ 2 + δ

1− δ
‖Φ(x)‖Φ.

which together with (10) gives 3 with C =
√

1 +
(

2+δ
1−δ

)2

Theorem 2.3. Suppose that the matrix Φ satisfies RIP(2k, δ) with the con-
stant δ <

√
2− 1 and is surjective. Then for any x ∈ RN and any e ∈ Rd

‖∆1(Φ(x) + e)− x‖2 ≤ C
(
‖e‖Φ +

σ1
k(x)√
k

)
. (12)

If we also have ‖e‖2 ≥ ε then we have

‖∆ε(Φ(x) + e)− x‖2 ≤ C
(
ε+ (1− ε‖e‖−1

2 )‖e‖Φ + k−1/2σ1
k(x)

)
. (13)
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Proof. Since Φ is surjective we infer that there exists z ∈ RN such that
Φ(z) = e. From Proposition 2.2 we infer that we can choose z such that
‖z‖1 ≤

√
k‖e‖Φ and ‖z‖2 ≤ C‖e‖Φ. Since Φ(x+z) = Φ(x)+e from Theorem

2.1 we get

‖∆(Φ(x) + e)− (x+ z)‖2 ≤ K
σ1
k(x+ z)√

k

so using Proposition 2.2 we get

‖∆(Φ(x) + e)− x‖2 ≤ ‖z‖2 +K
σ1
k(x+ z)√

k

≤ C‖e‖Φ +K
σ1
k(x) + ‖z‖1√

k

≤ (C +K)‖e‖Φ +K
σ1
k(x)√
k
.

Now we prove (13). Let us put Φ(x) + e = y and β = 1 − ε‖e‖−1
2 . Using

Proposition 2.2 let us fix z ∈ RN such that Φ(z) = e and ‖z‖1 ≤
√
k‖e‖Φ

and ‖z‖2 ≤ C‖e‖Φ and let us put v = x + βz so ‖y − Φ(v)‖2 = ε. From
Theorem 2.1 we get

‖∆ε(y)− v‖2 ≤ C1ε+ C0k
−1/2σ1

k(v)

so

‖∆ε(y)− x‖2 ≤ ‖∆ε(y)− v‖2 + β‖z‖2 ≤ C1ε+ C0k
−1/2σ1

k(v) + Cβ‖e‖Φ

≤ C1ε+ C0k
−1/2σ1

k(x) + C0k
−1/2β‖z‖1 + Cβ‖e‖Φ

≤ C(ε+ β‖e‖Φ + k−1/2σ1
k(x)).

Now we want to show that the decoder ∆ε has an error ε build in; we
analyze the situation when in reality there is no measurement error.

Proposition 2.4. Suppose that Φ satisfies assumptions of Theorem 2.1 and
let ε > 0 be fixed. Then for any vector x ∈ RN we have

1. If ‖Φ(x)‖2 ≤ ε then ∆ε(Φ(x)) = 0.
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2. If x is k–sparse and ‖Φ(x)‖2 > ε then

‖x−∆ε(Φ(x))‖1 ≥
ε

1 + δ

‖x‖1

‖x‖2

(14)

and
‖x−∆ε(Φ(x))‖2 ≥ (1− δ)ε. (15)

Proof. The first claim follows directly from the definition. Let us denote
x# = ∆ε(Φ(x)). To prove (14) let us put x0 = ξx for ξ = 1 − ε

‖Φ(x)‖2 . Since

‖Φ(x)− Φ(x0)‖2 = |1− ξ|‖Φ(x)‖2 = ε we get ‖x#‖1 ≤ ‖∆1(Φ(x0))‖1. From
Theorem 2.1 we infer that ∆1(Φ(x0)) = x0 so we get ‖x#‖1 ≤ ξ‖x‖1 and

‖x− x#‖1 ≥ ‖x‖1 − ξ‖x‖1 = ε
‖x‖1

‖Φ(x)‖2

≥ ε

1 + δ

‖x‖1

‖x‖2

so we have (14).
Now let us denote A = suppx. If ‖x − x#|A‖2 >

ε
1+δ

then ‖x − x#‖2 ≥
‖x − x#|A‖2 > ε

1+δ
> (1 − δ)ε, so we have (15). If ‖x − x#|A‖2 ≤ ε

1+δ

using RIP we get ‖Φ(x) − Φ(x#|A)‖2 ≤ ε. From the definition of ∆ε we
infer that ‖x#‖1 ≤ ‖∆1(Φ(x#|A)‖1. But σ1

k(x
#|A) = 0 so Theorem 2.1

gives ∆1(Φ(x#|A) = x#|A. Thus we get ‖x#‖1 ≤ ‖x#|A‖1. This implies
that supp x# ⊂ A. But from the definition of ∆ε we see that we must have
‖Φ(x)− Φ(x#)‖2 = ε so using RIP we get ‖x− x#‖2 ≥ (1− δ)ε. Thus (15)
holds.

3 Examples and comments

Examples Before we proceed let us build some geometric intuitions. Clearly
the best norm we can hope for in place of ‖.‖Φ in Theorem 2.3 is the euclidean
norm ‖.‖2. Nothing really smaller will work as we see if take any k-sparse
signal x and e = Φ(z) with supp(z) ⊂ supp(x). It was shown in [12] that
for a random Gaussian measurement matrix Φ we have ‖y‖Φ ≤ c‖y‖2 for
y ∈ Rd. In [13] we gave some other matrices with this property.

Thus if we are looking for examples where Theorem 2.3 is precise we
need vectors e such that ‖e‖Φ is big while ‖e‖2 is very small. From (8) we
see that it happens when any representation of e as a linear combination of
Φj’s must have big `1 norm of coefficients. Another way to express it is to
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say that every euclidean ball B(0, r) ⊂ conv{±φj}Nj=1 has very small radius
r. We see from (8) that if conv{±φj}Nj=1 contains euclidean ball B(0, c√

k
)

then ‖y‖Φ ≤ c−1‖y‖2 for all y ∈ Rd. With this in mind we can produce the
following

Example: Let us start with a matrix Φ : RN → Rd with columns (φj)
N
j=1

such that

1. Φ has RIP (4k, δ) for some k and δ > 0

2. conv{±φj}Nj=k+1 ⊃
µ√
k
Bd

2 , in particular Φ is surjective.

It follows from arguments in [12] that random Gaussian matrices with d ∼
k lnN satisfy those conditions with overwhelming probability.

Let us fix γ > 0 and assume that γ + δ <
√

2 − 1. We define our
measurement matrix Φ̃ : RN → Rd+k by defining columns φ̃j as follows:
φ̃j = φj for j = k + 1, k + 2, . . . , N and φ̃j = φj + γed+j for j = 1, . . . , k. We
identify vectors (a1, . . . , ad) ∈ Rd with vectors (a1, . . . , ad, 0, . . . , 0) ∈ Rd+k.
One checks that Φ̃ maps RN onto Rd+k and that for any set A with #A ≤ 4k
we have

(1− δ)
√∑

j∈A

|aj|2 ≤ ‖
∑
j∈A

ajφ̃j‖2 ≤
√

(1 + δ)2 + γ2

√∑
j∈A

|aj|2. (16)

so Φ̃ satisfies RIP (4k, δ + γ).
Now let us put e = η√

k

∑d+k
j=d+1 ej so ‖e‖2 = η. If Φ̃(z) = e then zj = η

γ
√
k

for j = 1, . . . , k. This implies that

‖z‖1 ≥ ‖z|{1, . . . , k}‖1 =
η
√
k

γ

‖z‖2 ≥ ‖z|{1, . . . , k}‖2 =
η

γ

so ‖e‖Φ ≥ η
γ
. Also

∑N
j=k+1 zjφj = −

∑k
j=1 zjφj. Since ‖

∑k
j=1 zjφj‖2 ≤

(1 + δ)η/γ, from our assumptions we infer that we can find such (zj)
N
j=k+1

satisfying
∑N

j=k+1 |zj| ≤
η(1+δ)

√
k

γµ
which yields ‖e‖Φ ≤ η(1+δ)

γµ
, so

η

γ
≤ ‖e‖Φ ≤

1 + δ

µ

η

γ
. (17)
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Now we want to analyze the performance of decoders ∆1 and ∆ε for
measurement matrix Φ̃ and measurement error e. Let us take any k-sparse
signal x with suppx ⊂ {k+1, . . . , N} and put y = Φ(x) = Φ̃(x). For z ∈ RN

such that Φ̃(z) = y + e we see that zj = η

γ
√
k

for j = 1, . . . , k. This implies

that ‖z‖2 ≥ ‖z|{1, . . . , k}‖2 = η
γ
, so ‖∆1(y + e) − x‖2 ≥ η

γ
. Since σ1

k(x) = 0

from Theorem 2.3 and (17) we get

µ

1 + δ
‖e‖Φ ≤ ‖∆1(Φ̃(x) + e)− x‖2 ≤ C‖e‖Φ. (18)

Now let us take ε < η and let us analyze ‖∆ε(Φ̃(x) + e) − x‖2. From the
definition of ∆ε we see that there exists ẽ ∈ Rd such that ∆ε(Φ̃(x) + e) =
∆1(Φ̃(x)+e+ẽ) and ‖ẽ‖2 ≤ ε. If for some z ∈ RN we have Φ̃(z) = Φ̃(x)+e+ẽ
then

(z|{1, . . . , k}) = γ−1((ẽ+Φ̃(x)+e)|{d+1, . . . , d+k}) = γ−1((ẽ+e)|{d+1, . . . , d+k).

This implies that

‖z|{1, . . . , k}‖2 ≥ γ−1‖e+ ẽ‖2 ≥
η − ε
γ

so ‖z−x‖2 ≥ ‖(z−x)|{1, . . . , k}‖2 = ‖z|{1, . . . , k‖2 ≥ γ−1(η−ε) in particular

‖∆ε(Φ̃(x) + e)− x‖2 ≥ γ−1(η − ε).

This example shows that

1. For ∆1 decoder and a measurement matrix satisfying RIP even with
very small constant it may happen that very small measurement error
can produce very big decoding error. Thus RIP is not a sufficient
assumption to guarantee robust recovery.

2. In some situations the norm ‖e‖Φ used in Theorem 2.3 is an optimal
control of decoding error.

3. The decoder ∆ε for errors with ‖e‖2 > ε can produce very big decoding
errors. In particular if ‖e‖2 ≥ 2ε the decoding error can be comparable
with ‖e‖Φ.
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Improving the measurement matrix Now we want to show that de-
spite previous results, when the matrix Φ satisfies RIP the corrupted mea-
surement Φ(x) + e contains enough information to recover x with accuracy
C(‖e‖2 + k−1/2σ1

k(x)) using `1 minimization as the decoder. This is not very
supprising as some of the greedy decoders have similar performance guaran-
tee (see e.g. [11, 6]). We will achieve this goal by enlarging the matrix Φ,
which may seem a bit counterintuitive.

The basic idea for enlargement was already sketched in [13]. Suppose we
have a matrix Φ : RN → Rd which satisfies RIP (2k, δ) with δ <

√
2 − 1.

Suppose also that we can find vectors ψ1, . . . , ψs ∈ Rd such that the matrix
A with columns [φ1, . . . , φN , ψ1, . . . , ψs] maps RN ⊕ Rs = RN+s into Rd,
satisfies RIP (2k, δ′) with δ′ <

√
2− 1 and ‖y‖A < C‖y‖2 for all y ∈ Rd. In

this situation we can use the following recovery procedure (decoder) based
on `1 minimization.

1. We identify a signal x ∈ RN with a vector in RN+s.

2. For the noisy measurement y = Φ(x) + e ∈ Rd we use the ∆1 decoder
defined using matrix A i.e. we find

x# = Argmin{‖z‖1 : Az = y, z ∈ RN+s}.

3. We define x#|{1, . . . , N} ∈ RN as the output of our algorithm.

Note that Φ(x) = A(x), so from Theorem 2.3 (in this case it is [12, Theorem
3.4]) and our assumptions about A we get

‖x#|{1, . . . , N} − x‖2 ≤ ‖x# − x‖2 ≤ C(‖e‖2 +
σ1
k(x)√
k

).

It should be pointed out that measurements used by this algorithm are done
using matrix Φ, matrix A is only a part of our recovery procedure.

In [13] it is shown that if k ∼ cn
lnN

then s ∼ N random Gaussian vectors
ψ1, . . . , ψs does the job with overwhelming probability.

In general the problem of finding vectors ψ1, . . . , ψs, i.e. extending the
RIP matrix so that the new matrix will meet our requirements, clearly re-
quires farther thought. Geometrically speaking we have matrix Φ such that
the set conv{±φj}Nj=1 does contains only a small euclidean ball B(0, r). Our
aim is to add vectors so that this convex will be enlarged to contain euclidean
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ball of radius ∼ 1√
k

but that the bigger matrix will still have good RIP con-

stant. The method described in [13] is basically to add vectors so that the
convex of new vectors alone will be big enough. This is clearly wasteful.

Geometric remarks To make more precise some of the geometric ideas
discussed above for a matrix Φ we consider the Kolmogorov widths of Φ(B1

N).
Those are classical tools in approximation theory [10, Chap. 13]. They are
defined as follows

ds = inf
dimV≤s

sup
x∈Φ(B1

N )

dist(x, V ) (19)

where V denotes a linear subspace of Rd and s = 0, 1, . . . , d. It is easy to
check that we have

ds = inf
dimV≤s

sup
j

dist(φj, V ). (20)

The distances in those definitions are usual euclidean distances. Clearly (ds)
is a decreasing sequence with dd = 0 and it is easy to see that if Φ has
RIP (2, δ) then d1 ≥ 1 − δ. The following Proposition relates Kolmogorov
widths (ds) with our discussion.

Proposition 3.1. Suppose Φ : RN → Rd satisfies RIP (k, δ).

1. Let ds <
γ√
k

for some s < d. Let V be a subspace of dimension s such

that supj dist(φj, V ) < γ√
k

and let P be an orthogonal projection onto

V . Then the matrix PΦ : Rd → V satisfies RIP (k, δ + γ).

2. Suppose that we have dd−1 ≥ γ√
k
. Then ‖y‖Φ ≤ γ−1‖y‖2 for all y ∈ Rd.

Proof. First note that subspace V exists by our assumption about ds. We
write φj = Pφj + (I − P )φj := Pφj + vj and we know that ‖vj‖2 ≤ γ√

k
. For

any A ⊂ {1, . . . , N} with #A ≤ k we have

‖
∑
j∈A

ajPφj‖2 ≤ ‖
∑

aj∈Aajφj‖2 + ‖
∑
j∈A

ajvj‖2

≤ (1 + δ)

√∑
j∈A

|aj|2 +

√∑
j∈A

|aj|2
√∑

j∈A

‖vj‖2
2

≤ (1 + δ + γ)

√∑
j∈A

|aj|2.
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The estimate from below follows from the same calculation with obvious
modifications, so the first claim follows. If dd−1 ≥ γ√

k
then for every vec-

tor ξ ∈ Rd with ‖ξ‖2 = 1 there exists j such that |〈φj, ξ〉| ≥ γ√
k

because

dist(φj, ker ξ) = |〈φj, ξ〉| and ker ξ is a subspace of dimension d − 1. This
implies that Φ(BN

1 ) ⊃ γ√
k
Bd

2 . Indeed if not then some y ∈ Rd with ‖y‖2 <
γ√
k

is not in Φ(BN
1 ) so using the fact that Φ(BN

1 ) is a convex set we apply Hahn-
Banach theorem to get ξ ∈ Rd with ‖ξ‖2 = 1 such that

sup
j
|〈ξ, φj〉| < 〈ξ, y〉 ≤ ‖ξ‖2‖y‖2 <

γ√
k
.

This contradicts our assumption that dd−1 ≥ γ√
k
. One easily checks from (8)

that the inclusion Φ(BN
1 ) ⊃ γ√

k
Bd

2 implies the second claim.
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