Guarded Negation in query languages

Vince Bárány (TU Darmstadt) joint work with Balder ten Cate (UC Santa Cruz) & Martin Otto (TU Darmstadt)

Oxford June 2012

Why is modal logic so robustly decidable?

"Why is modal logic so robustly decidable?"

- tree model property
- translation into MSO / tree automata
- finite model property

Fragments of FO embedding ML

- X 2-variable fragment
- ✓ guarded fragment
- ✓ unary negation fragment

ent [ten Cate - Segoufin STACS'11]

[Andréka - van Benthem - Németi '95-98]

Bárány-ten Cate-Otto (TU Darmstadt)

Guarded Negation in query languages

[Vardi '96]

finite variable fragments

- ► FO² has FMP (exp. size models) and SAT is NEXPTIME-complete
- ► FO³ undecidable (already the prefix class $\forall \exists \forall$ is)

ML: modal logic K

FMP, invariant under bisimulation, tree-model prop., interpolation SAT is PSPACE-c. [Ladner], $ML \equiv FO / \sim$ [van Benthem/Rosen/(Otto)]

CS applications (verification, TLs, DBs, KBs, DLs, XML)

call for more expressive extensions: recursion, fixpoints, counting, etc.

ML embeds into FO² but is much better behaved under extensions

- μ -calculus = ML + fixpoints is equally well behaved
- FO² + TC → highly undecidable [Grädel-Otto-Rosen]
- nevertheless, FO² + counting is still decidable

Recall GFO, GFP characteristics

- invariance under guarded bisimulation
- guarded unravelling
- Tree-like Model Property

Similarly for UNFO, UNFP (and ML and temporal logics up to L_{μ}).

UNFO debut in [ten Cate - Marx '07] as an alternative for XPath

- ► GNFP \supset UNFP $\supset \mu$ -calculus \supset most branching time logics.
- On ranked trees and XML trees UNFP, UNFP², μ-calculus define the regular languages.
- On XML trees UNFO/ UNFP capture CoreXPath / RegularXPath

Finite model reasoning

- ► GFO, UNFO, FO² have the Finite Model Property
- ► FO²+counting and GFO proposed as basic description logics
- Finite controllability of query answering: φ ⊨ q with φ ∈ GFO and q ∈ UCQ
- Beth property of GFO and Craig interpolation for UNFO relevant for e.g. query answering

plenty of shortcomings

many interesting integrity constraints / role constructs are inexpressible

Guarded negation fragments of FO and of LFP

Idea: constrain the use of negation instead of quantification.

Common extension of

- the guarded fragments
- the positive existential fragment \exists +FO
- the unary negation fragments [ten Cate-Segoufin STACS'11] which extend ∃+FO, CoreXPath/RegularXPath, Data tree patterns, *ALCI* query containment, modal μ-calculus (with backward modalities), Monadic DataLog

Bárány-ten Cate-Otto (TU Darmstadt)

Guarded Negation in query languages

Guarded Negation Fragment vs Guarded Fragment

Guarded fragment (GFO)

 $[\alpha(\bar{x}\bar{y})$ is atomic or equality)]

 $\varphi ::= R(\bar{x}) \mid x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists \bar{y} . \alpha(\bar{x}\bar{y}) \land \varphi(\bar{x}\bar{y}) \mid \forall \bar{y} . \alpha(\bar{x}\bar{y}) \to \varphi(\bar{x}\bar{y})$

can't express existence of (unguarded) cycles

Guarded Negation Fragment vs Guarded Fragment

Guarded fragment (GFO) $[\alpha(\bar{x}\bar{y}) \text{ is atomic or equality})]$

 $\varphi ::= R(\bar{x}) \mid x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists \bar{y} . \alpha(\bar{x}\bar{y}) \land \varphi(\bar{x}\bar{y}) \mid \forall \bar{y} . \alpha(\bar{x}\bar{y}) \to \varphi(\bar{x}\bar{y})$

can't express existence of (unguarded) cycles

Guarded negation fragment (GNFO) [detto]

 $\varphi ::= R(\bar{x}) \mid x = y \mid \exists x \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \alpha(\bar{x}\bar{y}) \land \neg \varphi(\bar{y})$

arbitrary positive existential formulas, but \neg (and \forall) only under a guard

Guarded Negation Fragment vs Guarded Fragment

Guarded fragment (GFO) $[\alpha(\bar{x}\bar{y}) \text{ is atomic or equality})]$

 $\varphi ::= R(\bar{x}) \mid x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists \bar{y} . \alpha(\bar{x}\bar{y}) \land \varphi(\bar{x}\bar{y}) \mid \forall \bar{y} . \alpha(\bar{x}\bar{y}) \to \varphi(\bar{x}\bar{y})$

can't express existence of (unguarded) cycles

Guarded negation fragment (GNFO) [detto]

 $\varphi ::= R(\bar{x}) \mid x = y \mid \exists x \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \alpha(\bar{x}\bar{y}) \land \neg \varphi(\bar{y})$

arbitrary positive existential formulas, but \neg (and \forall) only under a guard

Prop. Every GFO sentence is equivalent to a GNFO sentence.

Not true for formulas in general: $\neg R(x, y)$ is in GFO but not in GNFO.

a good way to understand GNFO formulas...

DNF $\bigvee_i \phi_i$ a disjunction of ϕ_i generated by

$$\phi ::= \exists x_1, \dots, x_n(\zeta_1 \wedge \dots \wedge \zeta_m) \zeta ::= R(\bar{x}) \mid (x = y) \mid R(\bar{x}) \wedge \neg \phi(\bar{x})$$

- ► GNFO → DNF (possibly exponential)
- UCQ are DNF without negation

width number of variables occurring (free or bound) in the DNF

Guarded Negation Fixpoint Logic (GNFP)

Syntax

$\phi ::= R(\bar{x}) |\mathbf{x}=\mathbf{y}| \phi_1 \land \phi_2 | \phi_1 \lor \phi_2 | \exists \mathbf{x} \phi | \alpha(\bar{x}\bar{y}) \land \neg \phi(\bar{x}) |$ $Z(\bar{x}) | [\lambda Z, \bar{z}] \underbrace{\text{guarded}_{\sigma}(\bar{z}) \land \phi(\bar{Y}, Z, \bar{z})}_{\text{explicit guarding of free vars } \bar{z}}](\bar{x}) \quad (\lambda \in \{\mu, \nu\})$

like GFP

- Fixpoint vars Z occur only positively in the scope of a binding μ or ν
- no first-order params
- fixpoint vars cannot stand as guard
- duality, negation nf. (despite earlier claims to the contrary)

unlike GFP

explicitly guarded fixpoint formulas (wlog. assumed in GFP)

GN-bisimulation (of width $k \ge 1$) $Z : M \approx_{GN}^{(k)} N$

non-empty family Z of local isomorphisms $f: M \to N$ s.t. f.a. $f \in Z$

(forth) for all finite $X \subseteq dom(M)$ (with $|X| \le k$) ex. hom. $h: M|_X \to N$ compatible with fand $h|_{\bar{c}} \in Z$ for every \bar{c} guarded in M

GN-bisimulation (of width $k \ge 1$) $Z : M \approx_{GN}^{(k)} N$

non-empty family Z of local isomorphisms $f: M \rightarrow N$ s.t. f.a. $f \in Z$

(forth) for all finite $X \subseteq dom(M)$ (with $|X| \le k$) ex. hom. $h: M|_X \to N$ compatible with fand $h|_{\overline{c}} \in Z$ for every \overline{c} guarded in M

GN-bisimulation (of width $k \ge 1$) $Z : M \approx_{GN}^{(k)} N$

non-empty family Z of local isomorphisms $f: M \rightarrow N$ s.t. f.a. $f \in Z$

(forth) for all finite $X \subseteq dom(M)$ (with $|X| \le k$) ex. hom. $h: M|_X \to N$ compatible with fand $h|_{\overline{c}} \in Z$ for every \overline{c} guarded in M

GN-bisimulation (of width $k \ge 1$) $Z : M \approx_{GN}^{(k)} N$

non-empty family Z of local isomorphisms $f: M \rightarrow N$ s.t. f.a. $f \in Z$

(forth) for all finite $X \subseteq dom(M)$ (with $|X| \le k$) ex. hom. $h: M|_X \to N$ compatible with fand $h|_{\overline{c}} \in Z$ for every \overline{c} guarded in M

GN-bisimulation (of width $k \ge 1$) $Z : M \approx_{GN}^{(k)} N$

non-empty family Z of local isomorphisms $f: M \rightarrow N$ s.t. f.a. $f \in Z$

(forth) for all finite $X \subseteq dom(M)$ (with $|X| \le k$) ex. hom. $h: M|_X \to N$ compatible with fand $h|_{\overline{c}} \in Z$ for every \overline{c} guarded in M

GN-bisimulation (of width $k \ge 1$) $Z : M \approx_{GN}^{(k)} N$

non-empty family Z of local isomorphisms $f: M \rightarrow N$ s.t. f.a. $f \in Z$

(forth) for all finite $X \subseteq dom(M)$ (with $|X| \le k$) ex. hom. $h: M|_X \to N$ compatible with fand $h|_{\overline{c}} \in Z$ for every \overline{c} guarded in M

GN-bisimulation (of width $k \ge 1$) $Z : M \approx_{GN}^{(k)} N$

non-empty family Z of local isomorphisms $f: M \rightarrow N$ s.t. f.a. $f \in Z$

(forth) for all finite $X \subseteq dom(M)$ (with $|X| \le k$) ex. hom. $h: M|_X \to N$ compatible with fand $h|_{\overline{c}} \in Z$ for every \overline{c} guarded in M

GN-bisimulation (of width $k \ge 1$) $Z : M \approx_{GN}^{(k)} N$

non-empty family Z of local isomorphisms $f: M \rightarrow N$ s.t. f.a. $f \in Z$

(forth) for all finite $X \subseteq dom(M)$ (with $|X| \le k$) ex. hom. $h: M|_X \to N$ compatible with fand $h|_{\overline{c}} \in Z$ for every \overline{c} guarded in M

(back) likewise in the other direction, where $X \subseteq dom(N)$

[X restricted to guarded sets ~> guarded bisimulation]

Prop (cf. GN-normal form) every $\varphi \in \text{GNFP}^{(k)}$ is invariant under $\approx_{GN}^{(k)}$

⇒ Tree-like Model Property (via GN-unravelling...)

Thrm GNFO^(*k*) is the $\approx_{GN}^{(k)}$ -invariant fragment of FO (unrestr. models) **proof** uses Compactness Theorem & ω -saturated models ...

Henessy-Milner prop on ω -saturated structures M, N

 $\{ (\bar{a}, \bar{b}) \in guarded(M) \times guarded(N) \mid M, \bar{a} \equiv_{GNFO}^{(k)} N, \bar{b} \}$

is a GN-bisimulation (of width k).

(subtle issue with definition of GNFO^k)

Recall basic prop's of GNFO & GNFP

smooth model theory

- invariance under GN-bisimulation
- Tree-like Model Property of GNFP
- Finite Model Property of GNFO
- Beth definability and Craig interpolation

no added computational cost

- satisfiability is 2EXPTIME-complete for both GNFO and GNFP (also for validity and entailment)
- also GNFP-finSAT is 2EXPTIME-complete (via [B.,Bojańczyk '11])

model checking (combined complexity)

- ▶ is P^{NP[O(log²n)]}-complete for GNFO
- ▶ is hard for P^{NP} and in $NP^{NP} \cap coNP^{coNP}$ for GNFP

Lots of questions

- ▶ prove GNFO ≡ FO/≈_{GN} in the finite Done! [M. Otto '12]
- ► characterize GNFP in terms of ≈_{GN}-invariance GNFP = GSO/≈_{GN} [Erich's BSc student! '12]
- boundedness problem for GNFP we are far from there, but decidable for GN-Datalog !
- Craig interpolation for GNFO (for UNFO^(k) cf. [Balder-Luc '11])
 Done! (as of Saturday), fails for GNFO^k
- Beth property for GNFO follows from Craig, also holds for GNFO^k

GN-RA

unrestricted: selection, projection, crossproduct, intersection, union difference restricted to $\pi_{i_1,...,i_k}(R) \setminus Expr$

GN-SQL

not(condition) — only when condition has ≤ 1 free tuple variable

q1 except q2 — only when q1 is a simple projection (select ... from R)

GNFP with simultaneous fixpoints syntactic sugar only

GN-Datalog

stratified Datalog with only guarded negation

Codd completeness

 $GN-RA \equiv GN-SQL \equiv non-rec. GN-Datalog \equiv domain-indep. GNFO$

GN-RA

GN-RA Codd's RA with the sole restriction

• $E1 \setminus E2$ allowed only when E1 is of the form R or $\pi_{...}(R)$

Cf. semijoin algebra SA (\ltimes_{ϑ} in place of \times) Codd complete for GFO [Leinders et al.'05]

non-examples

- $(\pi_1(R) \times S) \pi_{1,1}(R)$
- $\pi_{1,4}(\sigma_{2=3}(R \times R)) R$
- $\pi_1(R) \pi_1((\pi_1(R) \times S) R)$

(distinct pairs from $\pi_1(R) \times S$) (reachability in two steps, not one) (the quotient $R \div S$)

Codd completeness GN-RA ---> GNFO linear, GNFO ---> GN-RA exponential

GN-SQL

FO-SQL without aggregation, arithmetic, etc.

query := select (t₁ as ATTR₁,..., t_n as ATTR_n)
from (REL₁ R₁,..., REL_m R_m) where condition
| query union query | query intersect query
| query except query

GN-SQL negation-guarded FO-SQL, meaning:

- ▶ q1 except q2 only for FV(q2) = \emptyset and q1 a simple projection: 'select ... from R where true'
- ▶ not(*cond*) only for $|FV(cond)| \le 1$

Codd completeness GN-SQL \equiv domain-independent GNFO

GN-Datalog

Stratified Datalog

sequence $\tilde{\Pi} = (\Pi_1, ..., \Pi_n)$ of Datalog[¬] programs (strata), where $\text{EDB}^{\Pi_i} = \text{EDB}^{\Pi_{i-1}} \cup \text{IDB}^{\Pi_{i-1}}$ (*i* = 2...*n*)

GN-Datalog program stratified $\tilde{\Pi} = (\Pi_1, \dots, \Pi_n)$, where each rule

 $\phi_0 \leftarrow (\neg)\phi_1, \ldots, (\neg)\phi_n \in \operatorname{Rules}^{\prod_k} (1 \le k \le n)$

is *negation guarded*, meaning: the head atom ϕ_0 and every negated atom $\neg \phi_i$ has a positive EDB^{Π_k}-atom ϕ_i guarding it

GN-Datalog query GN-Datalog program + UCQ over EDB^{\Pi_N} \cup IDB^{\Pi_N}

- non-recursive GN-Datalog is Codd complete for GNFO
- ► GN-Datalog ~→ GNFP with simultaneous fixpoints
- ► GNFP with simultaneous fp. → alt-free GNFP

(each of these translations incurs an exponential blow-up)

Bárány-ten Cate-Otto (TU Darmstadt)

Guarded Negation in query languages

Query containment

Thrm 2ExpTime-complete for both GN-SQL and GN-Datalog queries

GN-SQL $\stackrel{poly}{\sim}$ **GNFO** $q_1 \subseteq q_2$ iff $\neg \exists \bar{x}(q_1(\bar{x}) \land dummy(\bar{x}) \land \neg q_2(\bar{x}))$ (can assume domain-indep. in hardness proofs for GNFO)

GN-Datalog $\stackrel{exp}{\rightsquigarrow}$ GNFP-simult.fp. $\stackrel{exp}{\rightsquigarrow}$ GNFP 2x exp. blowup workaround

- expand signature with IDBs
- ▶ push simultaneous fixpoints through the reductions GNFP →→ GFP →→ 2-way tree automata, in particular...
- GNFP with simultaneous fixpoints (FIN-)SAT is 2ExpTime

Corollaries decidability of containment of

- monadic Datalog queries and UCQs [Cosmadakis et al.'88]
- Datalog queries in UCQs [Chaudhuri-Vardi'97] (just add guards!)

+ *finite controllability* of satisfiability and query containment for GN-SQL and non-rec. GN-Datalog

Bárány-ten Cate-Otto (TU Darmstadt)

GN-SQL $P^{NP[log^2]}$ -complete via GN-SQL $\stackrel{poly}{\sim}$ GNFO and GNFO $\stackrel{poly}{\sim}$ GN-SQL in the presence of ADOM

GN-Datalog P^{NP}-complete

(already for non-recursive GN-Datalog on a fixed instance with unary IDBs and only zero-ary negation (!))

▶ cf. complexity gap for GNFP: P^{NP} -hard and in $NP^{NP} \cap coNP^{NP}$

P-complete for ML

[Berwanger-Grädel '01]

- P-complete for GFO
- in NP \cap coNP for GFP

[Schnoebelen '03] $P^{NP[O(\log^2 n)]}$ -complete for $CTL^*(X)$

[ten Cate-Segoufin '11]

- ▶ P^{NP[O(log²n)]}-complete for UNFO
- ▶ in $NP^{NP} \cap coNP^{NP}$ for UNFP

same for GNFO and GNFP, resp. via reduction to the above

OWA semantics (incomp. DBs, data exchange, ontological reasoning...)

 $I \models_{OWA} q(\bar{a})$ iff $I \cup \{\neg q(\bar{a})\}$ unsat.

 $OWA_{q,\Sigma}$ asks whether $I, \Sigma \models_{OWA} q(\bar{a})$ (constraints Σ , query q, input instance I and \bar{a} in adom(I))

TGD $\forall \bar{x} \bar{y} \Phi(\bar{x}, \bar{y}) \to \exists \bar{z} \Psi(\bar{y}, \bar{z})$ with Φ, Ψ conj. of atoms *frontier guarded* if Φ contains an atom guarding \bar{y} [Baget et al.'11]

Thrm $OWA_{q,\Sigma}$ is coNP-complete for $q \in GNFO$ and fgTGDs Σ

- fgTGDs can be compiled into the GNFO query q
- ▶ lemma whenever $I \subseteq J \models q(\bar{a})$ then there is some $I \subseteq J' \models q(\bar{a})$ such that |J'| = O(|I|).

Open-world query answering cont'd (data complexity)

Serial GNFO queries (SGNQ) are in DNF

with no positive occurrence of a subformula $\neg \chi \land \ldots \land \neg \psi$

► frontier-guarded TGDs $\Sigma \rightsquigarrow \bigvee_{\sigma \in \Sigma} \neg \sigma$ serial GNFO query

Thrm for fgTGDs Σ and q a serial GNFO query

- $OWA_{q,\Sigma}$ is PTime-complete
- ▶ ex. Datalog rewriting (Π , Ans) s.t. $I \models_{OWA} q$ iff $\Pi(I) \models Ans$

reduction to [Baget et al.'11]

CQs are Datalog rewritable over fgTGDs ~> PTime data complexity

Thrm there is a boolean SGNQ *q* and a single *key constraint* κ such that $OWA_{q,\{\kappa\}}$ is *undecidable*

Boundedness Datalog program Π is *bounded* (*in the finite*) if I.f.p. of Π is reached in *k* steps on any (*finite*) instance: $\Pi^{\infty} = \Pi^{k}$

[Barwise-Moschovakis '78] (classically)

IDB-positive first-order program Π is bounded iff Π^{∞} is FO-definable

undecidability is the rule (even for very rudimentary programs)

hitherto champion [Cosmadakis,Gaifman,Kanellakis,Vardi '88] for monadic Datalog boundedness is decidable and coinsides with boundedness in the finite

employed two-way alternating automata on trees for the purpose, \rightarrow main vehicle of decision proc. for L⁻_u, GFP, UNFP, and GNFP

Boundedness of GN-Datalog programs

GNFO-program IDB-positive program Π with rules

 $X_i(\bar{x}) \longleftarrow \alpha_i(\bar{x}) \land \phi_i(\bar{X}, \bar{x})$

where α_i is an EDB predicate, and ϕ_i is positive in the IDB preds \bar{X}

Claim for Π a GNFO-program t.f.a.e.

- 1. Π^{∞} is FO-definable over all (finite) instances
- 2. Π^{∞} is GNFO-definable over all (finite) instances
- 3. П is bounded over all (finite) instances

Godfather theorem [Blumensath,Otto,Weyer'11, Colcombet-Löding?] boundedness is decidable for GSO^{*} over structures of tree-width *k*

- \implies boundedness for GNFO-programs is decidable
- boundedness for GN-Datalog is decidable using the result for GNFO-programs and the Claim stratum-by-stratum

Bárány-ten Cate-Otto (TU Darmstadt)

Guarded Negation in query languages

Craig interpolation Given $\varphi \models \psi$ in respective signatures τ and σ there is some χ in signature $\tau \cap \sigma$ such that $\varphi \models \chi \models \psi$

Def a $\tau \cup \nu \cup \{Q\}$ -formula φ implicitly defines Q in terms of ν if for every $(A, \overline{T}, \overline{V}, Q) \models \varphi$ and $(A, \overline{S}, \overline{U}, P) \models \varphi$ such that $\overline{V} = \overline{U}$ it holds that Q = P.

projective Beth property If $\tau \cup \nu \cup \{Q\}$ -formula φ *implicitly defines* Q then there is some ν -formula ψ such that $\varphi \models \forall \bar{x} (Q\bar{x} \leftrightarrow \psi(\bar{x}))$

Beth property as above only for $\tau = \emptyset$

Fact Craig \implies projective Beth

consider the entailment $\varphi \land Q(\bar{x}) \models \varphi' \rightarrow Q'(\bar{x})$ where in φ' all pred. names $R \in \tau \cup \{Q\}$ are subst'd with R' GFO

- no Craig interpolation !
- Beth definability intact

UNFO

- UNFO has Craig interpolation
- ▶ UNFO^k has Craig for all k

GNFO

- GNFO has Craig interpolation
- GNFO^k does not have Craig interpolation for any k ex. GFO³-formulas with no GNFO^k interpolant
- GNFO^k has Beth definability (projective Beth open)

[Hoogland,Marx,Otto '99]

[Balder & Luc '11]

new

things to do this summer

- Balder: extend GN-Datalog to capture alt.-free GNFP (cf. DatalogLITE) !
- Balder (not really): complexity of boundedness for GN-Datalog ?
- Luc: is GNFP model checking P^{NP} ?
- Martin: char. of GNFP using \approx_{GN} -inv. *in the finite* (long open for L_µ) !
- Martin: Lindström char. of GNFO (cf. van Benthem on ML) ?
- Michael: any bound on complexity of interpolants ?
- V.: show that GNFO is the least ... extension of GFO with interpolation !
- Lucifer: boundedness problem for GNFP?

things to do this summer

- Balder: extend GN-Datalog to capture alt.-free GNFP (cf. DatalogLITE) !
- Balder (not really): complexity of boundedness for GN-Datalog ?
- Luc: is GNFP model checking P^{NP} ?
- Martin: char. of GNFP using \approx_{GN} -inv. *in the finite* (long open for L_µ) !
- Martin: Lindström char. of GNFO (cf. van Benthem on ML) ?
- Michael: any bound on complexity of interpolants ?
- V.: show that GNFO is the least ... extension of GFO with interpolation !
- Lucifer: boundedness problem for GNFP?

