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CHAPTER

ONE

INTRODUCTION

HAHA is a programming language embedded in a modern program development environment based on Eclipse.
The purpose of HAHA is to teach students Hoare logic. A programmer can write simple programs and annotate
them with Hoare logic assertions. The environment verifies the assertions against the code and discharges them
with help of external theorem provers, both automated and interactive. A user can write programs that manipulate
on true integers and on arrays.

This document describes version 0.5 of HAHA. It serves as a user manual. It contains instructions on how to start
using the tool, a gentle introduction the HAHA language, a description of the outputs served by the environment,
language reference, and a set of more complicated examples.

This document is not meant to serve as a developer manual. Details of the design of the tools and description of
how to effectively adapt the tool to the needs of a particular formal methods course are presented elsewhere.

1.1 Availability

You can download the newest version of the program from http://www.mimuw.edu.pl/~tsznuk/haha/

1.2 Contact

You can contact the authors through the email haha@mimuw.edu.pl.

1.3 Acknowledgements

The project was partly financed by Polish government grant N N206 493138. We are grateful Andrzej Tarlecki for
continuous mental support for the project.

1.4 Requirements

• Java 1.6

• Microsoft Z3

• The program is actively tested on Windows 8, Debian Wheezy and Linux Fedora 18. In principle it should
also work on other Windows or Linux based operating systems.

Note: We also provide binaries for Mac OS X, but we currently lack the resources necessary to test them properly
and provide support.
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CHAPTER

TWO

STARTING WITH HAHA

2.1 Installing required software

2.1.1 Java

HAHA requires JRE 1.6, which can be downloaded from its website. Most Linux distribution also contain Java in
their package repositories. On Debian and Ubuntu systems it can be installed with the following command:

sudo apt-get install openjdk-6-jre

Note that it is not necessary to install the Java Development Kit (JDK), only the JRE is required to run HAHA.

2.1.2 SMT solver

HAHA relies on a SMT solver to prove the validity of generated formulae. Currently the only supported solver is
Microsoft Z3. It can be obtained from its Codeplex site. The download page provides stable binaries for Windows
(both 32 and 64 bit), users of other systems must either

• Use a nightly build, accessible by clicking ‘Planned’ under ‘Other downloads’ on the download page.

• Or compile from source by following the procedure described below.

To compile Z3 from source, perform the following steps

• Download source code of the stable branch, either by clicking on the ‘Download’ link in the ‘Source code’
tab of the website or cloning the git repository at https://git01.codeplex.com/z3.

• Unpack the source and enter the following commands:

autoconf
./configure --prefix=/usr/local
python scripts/mk_make.py
cd build
make
sudo make install

• Make sure that binaries are available on system PATH. The commands given here install binaries in
/usr/local/bin, this can be modified by adjusting the --prefix option in the second line. In partic-
ular, it is possible to install Z3 in home directory, without root privileges.

Note: The compilation requires some additional software

• C++ compiler (obviously)

• autoconf

• make

• python

3
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On Debian and Ubuntu systems, these can be installed with:

sudo apt-get install autoconf make python g++

Note: In Mac OS X the standard C++ compiler is clang++ (based on LLVM), rather than g++ (GNU C++).
Mac users should append the text CXX=clang++ to the configure command.

Windows users can simply install the precompiled binaries from the website. It is still necessary to ensure that
installed executables are available on the system PATH.

2.2 Installing HAHA

HAHA is distributed as a single archive which contains builds for all supported systems. There is no installation
procedure other than unpacking the directory containing the proper version from the archive. We provide both 32
(x86) and 64 (x86_64) bit variants of HAHA. It is necessary to choose the one that matches the version of Java
available on the system. It can be obtained with the following command:

java -version

Startup options can be configured in the haha.ini file found in the installation directory. Changing these options
might be desirable in the following circumstances

• In case of errors related to insufficient memory. This problem can be addressed by appending the following
options to the config file

– -Xmx<total-memory-in-mb>m (e.g. -Xmx1024m).

– -Xms<stack-memory-in-mb>m (e.g. Xms128m).

– -XX:MaxPermSize=<permgen-memory-in-mb>m (e.g. -XX:MaxPermSize=512m). Note
that this value must be at least 256m for the IDE to work (512m is recommended).

• If Unicode characters are not displayed correctly (especially in the outline view), append the following
option:

-Dfile.encoding=UTF-8

Note: VM options must be given on separate lines, after the -vmargs line.

2.3 Running

To run HAHA, launch the haha executable from the installation directory. HAHA is typical file editor with
standard and intuitve commands. One thing to keep in mind is that source files should have the extension .haha
- toherwise the editor might not function properly.

The following sample can be pasted into the editor to verify that it is working correctly

function hello() : Z
postcondition hello = 4
hello := 2 + 2

The code should be highlighted (assuming that the correct file extension was used). To start the verification
process, right-click anywhere in the editor are and choose Generate VCs from the displayed menu. This
command can be also accessed from the main menu and the toolbar. HAHA will then present a console with
computed verification conditions and messages logged during verification. If there were any problems, error
markers will be added to the editor.

4 Chapter 2. Starting with HAHA



CHAPTER

THREE

GENTLE INTRODUCTION TO HAHA
LANGUAGE

Suppose that we want to write a function that given a number n returns the sum of all subsequent numbers from 1
to n inclusively. We start with a header of the function:

function sum( n : Z ) : Z

it contains the keyword function that tells the system to interpret the following expressions as a function. Then
the name of the function is given, in this case it is sum. The information about its parameters is enclosed in the
parenteses. In our case, we have one formal parameter that is called n. We declare the type of the parameter after
the colon. It is Z this time, i.e. the type of integer numbers as we know them from mathematisc (these are not
32-bit integer numbers frequently met in programming languages). In the end, the parentesis with parameters is
followed by the declaration of the result type. In our case this is again Z.

This function header can be followed by the definition of the body. The header with the body together look as
follows:

function sum( n : Z ) : Z
begin

x := 1
y := 0
while x <= n do
begin

y := y + x
x := x + 1

end
sum := y

end

The code should not be surprising as we have all seen at least one implementation of the sum in our lives, especially
for those who are familiar with Pascal as much of the syntax is based upon the language. However, let us discuss
the details of the definiton to feel at ease in further development of other programs. First of all, the code as it stands
is not syntactically correct. We assume in our language that all variables that are used in code must be declared
beforehand. Therefore, we need to add between the function header and body declarations of the variables x and
y so that the code is as follows:

function sum( n : Z ) : Z
var x : Z

y : Z
begin

x := 1
y := 0
while x <= n do
begin

y := y + x
x := x + 1

end

5
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sum := y
end

The keyword var, as in Pascal, marks the beginning of variable declaration sequence. Unlike Pascal, the elements
of the sequence are not separated with semicolons ;, but with newlines. This holds both for variable declarations
and instructions.

The variable assignemt is done in the Pascal style as in:

x := 1

or:

y := y + x

We also use the Pascal style to define the return result of the function, i.e.:

sum := y

The while loop is defined by a phrase of the form:

while x <= n do

followed by an instruction the loop iterates over. In our case this is a block instruction enclosed between begin
and end, i.e.:

begin
y := y + x
x := x + 1

end

To express our intent with regard of the function we can add a precondition and postcondition formulae. These
are located between the function header and its body. This looks as follows in this case:

function sum( n : Z ) : Z
precondition n >= 1
postcondition sum = n * (n+1) / 2
var x : Z

y : Z
begin
...

In this case the precondition, introduced with precondition keyword, says that the function can be called
when the parameter n is not less than 1. The postcondition, introduced with postcondition keyword, says
that the result is equal to the commonly known (oh, our Gauss heritage) closed formula for the sum of the integers
from 1 to n. These conditions can be named to make future reference easier:

precondition natural: n >= 1
postcondition gauss: sum = n * (n+1) / 2

Hoare logic prescribes that each instruction must be surrounded by two assertions. The first one describes the
condition of the program state that is expected before the instruction and the second one describes the state re-
sulting from the execution of the instruction. The precondition-postcondition pair are the assertions for the whole
function. The assertions for other instructions are written in curly brackets located between instructions. To save
notational burden we do not write the first and last assertions in function as these are expressed with precondition
and postcondition respectively. Therefore, the initial assignments decorated with the assertions look as follows:

begin
x := 1
{ n >= 1 /\ x = 1 }
y := 0
{ n >= 1 /\ x = 1 /\ y = 0 }
while x <= n do

The loop invariant condition, i.e. the formula that at the entry point to the loop at each its iteration, is marked with
a special keyword invariant. So the while loop header augmented with the invariant is as follows:

6 Chapter 3. Gentle introduction to HAHA language
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while x <= n do
invariant y = x * (x-1) / 2 /\ x<= n+1 /\ n >= 1
begin

This invariant formula can be named to make future reference more accurate:

invariant gauss: y = x * (x-1) / 2 /\ x<= n+1 /\ n >= 1

Again, the presence of the invariant formula gives us excuse not to mention assertions at the beginning and at the
end of loop body as they equal to the invariant. This makes the loop body look as follows:

begin
y := y + x
{ y - x = x * (x-1) / 2 /\ x<= n /\ n >= 1 }
x := x + 1

end

We can now combine all the assertions with the code and obtain the complete example:

function sum( n : Z ) : Z
precondition natural: n >= 1
postcondition gauss: sum = n * (n+1) / 2
var x : Z

y : Z
begin

x := 1
{ n >= 1 /\ x = 1 }
y := 0
{ n >= 1 /\ x = 1 /\ y = 0 }
while x <= n do
invariant gauss: y = x * (x-1) / 2 /\ x<= n+1 /\ n >= 1
begin

y := y + x
{ y - x = x * (x-1) / 2 /\ x<= n /\ n >= 1 }
x := x + 1

end
{ y = n * (n+1) / 2 }
sum := y

end

7



Hoare Advanced Homework Assistant User Manual, Release 13/11

8 Chapter 3. Gentle introduction to HAHA language



CHAPTER

FOUR

RESPONSES OF HAHA

4.1 Error markers

HAHA reports errors by displaying error markers in the editor. Each marker has a tooltip which describes the
reason why it was created. This information is also available in the console view (located in a tab in the bottom
part of the window). This chapter describes various kinds of error markers produced by HAHA.

4.2 Syntax errors

Markers for syntax errors are created as the program is typed. No user action is necessary to trigger syntax
checking. HAHA syntax is described in detail in section Language reference.

4.3 Type errors

Error markers related to typechecking are created and updated only when the source file is saved.

4.4 VCGen errors

Error markers are also produced whenever the solver is unable to prove validity of a formula generated from the
program. These markers are updated whenever the verification conditions generator is run. Marker description
contains context information, which describes why the formula was generated. Example of such information can
be seen below:

Verification condition is not valid
Program correctness
Correctness of bsearch

Block at lines 12 - 37
Loop statement at line 17
Single iteration preserves invariants.

Block at lines 21 - 34
If statement at line 24
Case 1 - condition holds.
Postconditions are valid.
still_ordered at line 19

This description tells us that the solver was unable to prove that a loop invariant named still_ordered holds
if the first branch of a conditional statement in line 24 is taken.

Verification conditions generator produces error markers in two cases

9
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• When the solver was able to prove the invalidity of a formula. In this case a counterexample is produced
and appended to error description. A counterexample is simply an assignment of values to free varialbes
occuring in an expression. For example, an attempt to validate the following program

function test(x : Z) : Z
postcondition test >= x

test := 3 * x

would result in this error:

Verification condition is not valid
Program correctness
Correctness of test

Postcondition at line 2 (after substitution)

Counterexample:
x = (- 1)

• When the solver could neither prove nor disprove the formula. This case also covers problems caused by
timeouts, internal solver errors and bugs in HAHA.

In case the program under consideration contains arrays, the counterexamples contain information about arrays.
A statement of the form:

A = (_ as-array k!17),

means that the local variable A that holds an array is represented in the further lines of the counterexample as a
function under the variable k!17. There is no special meaning hidden neither in the name k nor in the number
17. These are random values from the point of view of the verification process.

Subsequently, statements that describe the variable k!17 follow. Typically, we can observe here a formula like
this:

k!17 = 0,

and this means that all the cells of the array are equal to 0. Another typical statement is:

k!17(x!1) = (ite (= x!1 0) 7 1)

This statement means that the array k!17 is actually a function that assumes 7 when applied to 0 and assumes 1
in any other situation. Similarly:

k!17(x!1) = (ite (>= x!1 0) 5 2)

states that the function assumes 5 for all non-negative arguments and 2 for negative ones (yes, as the arrays are
indexed with Z, the indices can be negative numbers). Of course, the ite expressions can be combined as in:

k!17(x!1) = (ite (>= x!1 0) (ite (>= x!1 2) 5 3) 2)

which represents the array that has 2 on negative indices, 3 on indices 0, 1, and 5 on positive indices starting with
2. It should not come as surprise that the assertion:

k!17(x!1) = (k!17!19 (k!18 x!1))

says that k!17 is a composition of the arrays k!18 and k!17!19 understood as a composition of functions.

4.5 Console output

When the verification condition generator is run, a console is displayed in the lower pane. This console logs all
messages printed during the process of creating and discharging verification conditions. Messages in the console
are more detailed (but somewhat harder to read) than error marker descriptions.

10 Chapter 4. Responses of HAHA
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First, all computed verification conditions are printed. Each condition consists of a list of assumptions, followed
by a goal. Goal is separated from assumptions by a horizontal line. Note that all expressions are displayed in
prefix notation. The following example shows a single verification condition:

n_ge_one : (>= len 1)
orderedA : (CALL-PREDICATE ordered A 1 len)
is_inA : (CALL-PREDICATE is_in A v 1 len)
---------------------------------------------
(AND (= 1 1) (AND (>= len 1) (AND (CALL-PREDICATE ordered A 1 len) (CALL-PREDICATE is_in A v 1 len))))

Declared variables, axioms and predicates are also printed at this stage.

In the second stage, computed conditions are discharged by the solver. During this stage, commands sent to the
solver are printed. Possible commands include

• Declaration of a variable or predicate (DECLARE VAR)

• New assumption (DECLARE AXIOM)

• Context management commands MARK and RESET. The latter removes all declarations (both variables and
assumptions) since last unmatched occurence of the former.

• Validity check IS_VALID. This command checks if the goal formula is valid in the current context. After
this command, solver response (including a counterexample, if applicable) is printed to the console.

Text lines preceded by >> represent raw text sent to the external SMT solver. Similarly, lines starting with <<
contain raw solver responses. This is mainly useful for finding bugs related to translation of solver commands to
the SMT2 format.

4.5. Console output 11
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FIVE

LANGUAGE REFERENCE

This section contains a complete description of HAHA syntax. All language constructs are presented using syntax
diagrams.

5.1 Lexical conventions

The following list specifies base lexical elements from which HAHA programs are composed.

• Whitespace, which is only used to separate other elements.

• Comments - both single line (// ...) and multiline (/* ... */). Multiline comments cannot be
nested.

• Keywords and operators (specified in single quotes in the following text).

• Identifiers (ID), which consist of letters (a to z), digits and underscores. Identifiers cannot start with a digit.

• Numbers (BIGINT) - sequences of digits, leading zeros are not allowed.

• Strings (STRING) - which are used for documentation purposes only (there is no string type in the lan-
guage). Strings are specified in qither double or single quotes, both variants support a set of escape se-
quences (e.g. “”” is a string consisting of a quote character).

5.2 Program structure

Program

Predicate

Function

Axiom

Each HAHA source file contains a single program, which is a list of top-level elements. A top-level element can
be a function, a predicate or an axiom.

Function function ID ( ArgumentList ) : Type STRING

Precondition

Postcondition

Locals

HoareTriple

A function definition consists of

13
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ArgumentList Argument , Argument

Argument ID : Type
STRING

• Name.

• List of argument names and types.

• Result type.

• Optional documentation strings.

• Preconditions and postconditions

• Local variable declarations (each variable has name, type and an optional docstring).

• Function body.

A predicate is a named and parameterized boolean expression. Use of predicates can be very helpful in making a
program readable. This is especially true when dealing with arrays, as in examples Binary search and Quicksort
partition.

Axioms are simply boolean formulae that can be optionally named for clarity. Axioms are typically used when
the automated solver is unable to prove a valid formula. Examples that make use of axioms include Cubic root
and Exponentiation.

5.3 Types

Basic types used in HAHA programs are true integers Z and multi-dimensional arrays. Booleans are also sup-
ported. The syntax also includes a primitive type Int, which is supposed to represent 32 bit integers, but support
for that type is incomplete in current version of HAHA.

5.4 Hoare triples

A Haore triple is a statement with a list of precondtions and postconditions. One peculiarity of the HAHA syntax
is that a semicolon is necessary to terminate the list of preconditions, unless that list happens to be empty.

Statements available in HAHA include

• The skip statement.

• Assignment - this includes assignment of the function result, which is represented by a special variable with
the same name as the containing function.

• Blocks - lists of statements separated by midconditions.

• Conditional statements, with an optional else part.

• While loops. Loops are annotated with (optionally named) invariants and counter formulae. Counter for-
mulae are used to prove termination of a program. This is an experimental feature and is not described in
this documentation.

Precondition precondition
ID :

Expression

14 Chapter 5. Language reference
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Postcondition postcondition
ID :

Expression

Locals var Local Local

Local ID : Type
STRING

Predicate predicate ID ( ArgumentList ) = Expression

Axiom axiom
ID :

Expression

Type
SimpleType

ArrayType

SimpleType PrimitiveType

PrimitiveType

INT

Z

BOOLEAN

ArrayType ARRAY [ Type ]

HoareTriple AssertionList Statement TrailingAssertionList

AssertionList Assertion

TrailingAssertionList
Assertion ;

Assertion {
ID :

Expression }

Statement
SimpleStatement

CompositeStatement

5.4. Hoare triples 15
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SimpleStatement
Skip

Assignment

CompositeStatement

Block

Cond

Loop

Skip skip

Assignment LValue := Expression

Block begin
Statement AssertionList Statement

end

Cond if Expression then HoareTriple
else HoareTriple

Loop while Expression do LoopInvariant
LoopCounter

HoareTriple

LoopInvariant invariant
ID :

Expression

16 Chapter 5. Language reference
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There are some ambiguities in the concrete syntax corresponding to the diagrams presented hare. First, there is
the dangling else problem, which is resolved by matching every else to nearest open if. Second issue arises
when a statement, such as if or while, ends in a Hoare triple. If hat statement is itself a part of a Hoare triple, it
might not be clear if trailing assertions should become a part of the inner or the outer triple. By default, the inner
triple is chosen.

5.5 Expressions

Expression Equivalence

⇔

↔ Equivalence
Equivalence Implication

<->

Implication Disjunction

→

⇒

->

Implication

HAHA supports a number of traditional boolean and integer operators. It should be noted that many operators can
be written in multiple variants. For example, conjunction can be represented as ∧ (Unicode character), /\ (Coq
style) or simply and.

Supported operators include

• Logical operators: iff, implication, conjunction, disjunction, negation.

• Quantifiers (forall and exists).

• Integer comparisons.

• Integer operations: addition, subtraction, multiplication, division, remainder and exponentiation.

Quantified formulae may contain declarations of instantiation patterns. These patterns are used by the solver
to decide when to create instances of a quantified formula. A pattern should contain all variables bound by the
quantifier. For further discussion of the instantiation pattenrs, refer to the documentation of Simplify or Z3 solvers.

Note: Function calls are not supported by the current version of HAHA.

5.5. Expressions 17
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Disjunction Conjunction

∨

\/

or

Disjunction

Conjunction Negation

∧

/\

and

Conjunction

Negation

¬

not
Negation

Quantifier

Quantifier

Comparison

∀

forall
ForallVar

,
ForallVar

pattern [ Expression , Expression ]
, Implication

∃

exists
ExistsVar

,
ExistsVar

pattern [ Expression , Expression ]
, Implication

ForallVar ID : Type

ExistsVar ID : Type

18 Chapter 5. Language reference
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Comparison Sum

=

!=

<>

<

≤

<=

>

≥

>=

Sum

Sum Product
+ Product

- Product

Product Power

* Power

/ Power

mod Power

Power Uminus
^ Power

Uminus
ArrayAccess

- Uminus

ArrayAccess Atom [ Expression ]

5.5. Expressions 19
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Atom

( Expression )

IntLiteral

BoolLiteral

Call

Call
Var

ID ( ActualArgs )

Var ID

ActualArgs
Expression , Expression

IntLiteral BIGINT

BoolLiteral Bool

Bool

⊤

true

⊥

false

20 Chapter 5. Language reference
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SIX

EXAMPLES

Here is a number of examples that illustrate a few specific features of the HAHA language.

6.1 Cubic root

axiom cubicbin: forall b : Z, (b + 1) ^ 3 = b ^ 3 + 3 * (b ^ 2) + 3 * b + 1
axiom squarebin: forall b : Z, (b + 1) ^ 2 = b ^ 2 + 2 * b + 1

function croot( x : Z ) : Z
precondition x >= 0
postcondition (croot-1)^3 <= x /\ x < croot^3
var a : Z

b : Z
y : Z

begin
a := 1
{ x >= 0 /\ a = 1 }
b := 1
{ x >= 0 /\ a = 1 /\ b = 1 }
y := 1
{ x >= 0 /\ a = 1 /\ b = 1 /\ y = 1}
while y <= x do
invariant (b-1)^3 <= x /\ y = b^3 /\ a = b ^ 2 /\ x >= 0
begin

y := y + 3*a + 3*b + 1 // y := (b + 1) ^3
{ (b ^ 3) <= x /\ y = (b + 1) ^ 3 /\
a = b ^ 2 /\ x >= 0 }

a := a + 2*b + 1
{ (b ^ 3) <= x /\ y = (b +1) ^ 3 /\
a = (b+1)^2 /\ x >= 0 }

b := b + 1
end

{ (b-1) ^ 3 <= x /\ x < b ^3 }
croot := b

end

The Z3 solver that is used as the proving backend for the tool supports well arithmetic with frequent addition.
Therefore, we need to add additional information that helps the solver to complete the Hoare logic proofs in this
example. This is done with axioms. They are introduced with axiom keyword and can be named as it is in the
case of preconditio, postcondition or axiom.

The assertions can span over many lines, which can be observed in the loop body of the example:

y := y + 3*a + 3*b + 1 // y := (b + 1) ^3
{ (b ^ 3) <= x /\ y = (b + 1) ^ 3 /\

a = b ^ 2 /\ x >= 0 }
a := a + 2*b + 1
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We can also supply additional comments that provide additional explanation for particular assertions or pieces of
code:

y := y + 3*a + 3*b + 1 // y := (b + 1) ^3

Here, we inform that the assignment is in fact the assignment of the cubic power of b + 1 to y.

6.2 Exponentiation

predicate odd(x : Z) = (x mod 2 = 1)

axiom tozero: forall z : Z p : Z, z * (p ^ 0) = z
axiom odddiv2: forall z : Z p : Z q : Z,

odd(q) -> z * p ^ q = z * p ^ (2 * (q / 2) + 1)
axiom twoinexp: forall z : Z p : Z q : Z, z * p ^ (2 * q) = z * (p * p ) ^ q
axiom twoandoneinexp: forall z : Z p : Z q : Z,

z * (p ^ ((2 * q) + 1)) = z * ((p * p) ^ q) * p

function power( y : Z, x : Z ) : Z
precondition n_ge_one : y >= 0
precondition xnz : x <> 0
postcondition power = x ^ y
var z : Z

p : Z
q : Z

begin
z := 1
{ p = p /\ z = 1 /\ y >= 0 /\ x <> 0 }
p := x
{ q = q /\ p = x /\ z = 1 /\ y >= 0 /\ p <> 0 }
q := y
{ q = y /\ p = x /\ z = 1 /\ y >= 0 /\ p <> 0 }
while q <> 0 do
invariant z * p ^ q = x ^ y /\ q >= 0 /\ y >= 0 /\ p <> 0
begin

if q mod 2 = 1 then
begin

z := z * p
end
{ (odd(q) /\ q = 2 * (q / 2) + 1 /\ (z * p ^ q = (x ^ y) * p ))

\/
(not odd(q) /\ (z * p ^ (2 * (q / 2)) = x ^ y)) }

{ q > 0 }
{ y >= 0 }
{ p <> 0 }
q := q / 2
{ z * (p * p) ^ q = x ^ y }
{ q >= 0 }
{ y >= 0 }
{ p <> 0 }
p := p * p

end
{ z * (p ^ q) = x ^ y /\ q = 0 /\ y >= 0 }
power := z

end

This example shows that we can give function multiple parameters. Unlike Pascal we require programmers to give
full type specifications in case multiple parameters of the same type are necessary. Therefore, the header of the
exponent function is:
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function power( y : Z, x : Z ) : Z

Another important feature of the program is that we use here a simple predicate. The predicate is introduced with
the keyword predicate and its header is similar to the one of function except that the result type is not given
as it does not make sense here. The header of the predicate definition is followed by = sign and the definition of
the predicate body. In our case this is:

predicate odd(x : Z) = (x mod 2 = 1)

We can see here a number of axioms that are necessary to make the proof go through.

• The axiom tozero makes it possible to draw the final conclusion from the exit condition of the while loop.
The condition holds when q is zero and then the invariant condition gives the required result provided that
we know the meaning of exponentiation to the power of zero.

• The axiom odddiv2 is necessary to understand that odd powers decompose in a particular way when
divided by 2. This formula is necessary to make proof go through the instruction q := q / 2.

• The axioms twoinexp and twoandoneinexp are necessary to understand how even and odd powers
turn to multiplication. This is again necessary for the proof of the instruction q := q / 2.

6.3 Binary search

predicate ordered(A : ARRAY [Z], i : Z, j : Z) = forall x : Z y : Z,
i <= x -> x <= y -> y <= j -> A[x] <= A[y]

predicate is_in(A : ARRAY [Z], v : Z, i : Z, j : Z) = exists x : Z,
(i <= x /\ x <= j) /\ A[x] = v

function bsearch( A : ARRAY [Z], len : Z , v : Z ) : Z
precondition n_ge_one : len >= 1 //lenght ia st least 1
precondition orderedA: ordered(A, 1, len)//array is ordered
precondition is_inA: is_in(A, v, 1, len) //the value we look for is in the array
postcondition A[bsearch] = v //the result is a pointer to the value we look for
var i : Z

j : Z
k : Z

begin
i := 1
{ i = 1 /\ len >= 1 /\ ordered(A, 1, len) /\ is_in(A, v, 1, len) }
j := len
{ i = 1 /\ j = len /\ len >= 1 /\ ordered(A, 1, len) /\ is_in(A, v, 1, len) }
while i < j do
invariant is_in(A, v, i, j) /\ ordered(A, i, j) /\ i<=j

begin
k := (i + j) / 2
{ is_in(A, v, i, j) /\ ordered(A, i, j) /\ i<j /\ k = (i+j)/2 }
if A[k] < v then
i := k + 1

else
j := k

end
{ is_in(A, v, i, i) }
bsearch := i

end

This example illustrates the way we handle arrays. The array parameter declaration in predicates and functions
looks as follows:

predicate ordered( A : ARRAY [Z], i : Z, j : Z ) = ...
function bsearch( A : ARRAY [Z], len : Z , v : Z ) : Z
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One important thing to note here is that the arrays in our language have infinite domain of keys, namely the whole
integer numbers Z. Therefore, we need to introduce explicit parameter that describes the range of the array to
make the verification similar to the real-world situation. In this example we decided that the arrays range from 1
to some number held in the parameter len.

This example also illustrates how well chosen set of predicates may make the verified procedure very nicely and
comprehensively documented.

6.4 Quicksort partition

predicate left_contains_le (A : ARRAY[Z], where : Z, val : Z) =
forall i : Z , (1 <= i /\ i < where) -> A[i] <= val

predicate right_contains_gt (A : ARRAY[Z], where : Z, bound : Z, val : Z) =
forall i : Z, (where < i /\ i <= bound) -> A[i] > val

predicate sides_parted(A : ARRAY[Z], left : Z, right :Z, bound : Z, val : Z) =
left_contains_le(A, left, val) /\ right_contains_gt(A, right, bound, val)

predicate is_copy(A : ARRAY[Z], B : ARRAY[Z], len : Z) =
forall i : Z, (1 <= i /\ i <= len) -> A[i] = B[i]

predicate between(l : Z, m : Z, r : Z) = l <= m /\ m <= r

function partition(A : ARRAY[Z], len : Z) : ARRAY[Z]
precondition 1 <= len
postcondition
exists k : Z, sides_parted(partition, k, k, len, A[1])

var v : Z
i : Z
j : Z
x : Z

begin
partition := A
{ is_copy(A, partition, len) /\ 1 <= len }
v := A[1]
{ is_copy(A, partition, len) /\ 1 <= len /\ v = partition[1] /\ v = A[1] }
partition[len+1] := v + 1
{ is_copy(A, partition, len) /\ 1 <= len /\ v = partition[1] /\ v = A[1] /\
partition[len+1] > v

}
i := 2
{ is_copy(A, partition, len) /\ 1 <= len /\ v = partition[1] /\ v = A[1] /\
partition[len+1] > v /\ i = 2

}
j := len
{ is_copy(A, partition, len) /\ 1 <= len /\ v = partition[1] /\ v = A[1] /\
partition[len+1] > v /\ i = 2 /\ j = len

}
x := 0
{ is_copy(A, partition, len) /\ 1 <= len /\ v = partition[1] /\ v = A[1] /\
sides_parted(partition, i, j, len, v) /\
partition[len+1] > v /\ i = 2 /\ j = len /\ x = 0

}
while i <= j do
invariant pointers: j + 1 >= i - 1 /\ between(2, i, len+1) /\ between(1, j, len)
invariant sides: sides_parted(partition, i, j, len, v)
invariant guards: partition[1] = v /\ partition[len+1] > v
invariant general: 1 <= len /\ v = A[1]

begin
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while partition[i] <= v do
invariant pointers: j+1 >= i - 1 /\ between(2, i, len+1) /\ between(1, j, len)
invariant sides: sides_parted(partition, i, j, len, v)
invariant guards: partition[1] = v /\ partition[len+1] > v
invariant general: 1 <= len /\ v = A[1]

begin
i := i + 1

end
{ j+1 >= i - 1 /\ between(2, i, len+1) /\ between(1, j, len) /\

sides_parted(partition, i, j, len, v) /\
partition[1] = v /\ partition[len+1] > v /\ partition[i] > v /\
1 <= len /\ v = A[1] }

while partition[j] > v do
invariant pointers: j + 1 >= i - 1 /\ between(2, i, len+1) /\ between(1, j, len)
invariant sides: sides_parted(partition, i, j, len, v)
invariant guards: partition[1] = v /\ partition[len+1] > v /\ partition[i] > v
invariant general: 1 <= len /\ v = A[1]

begin
j := j - 1

end
{ j + 1 >= i - 1 /\ between(2, i, len+1) /\ between(1, j, len) /\

sides_parted(partition, i, j, len, v) /\
partition[1] = v /\ partition[len+1] > v /\ partition[i] > v /\ partition[j] <= v /\
1 <= len /\ v = A[1] }

if i < j then
begin

x := partition[i]
{ 1 < i /\ i < j /\ between(2, i, len+1) /\ between(1, j, len) /\

sides_parted(partition, i, j, len, v) /\
partition[1] = v /\ partition[len+1] > v /\ partition[j] <= v /\
x = partition[i] /\ x > v /\
1 <= len /\ v = A[1] }

partition[i] := partition[j]
{ 1 < i /\ i < j /\ between(2, i, len+1) /\ between(1, j, len) /\

sides_parted(partition, i + 1, j, len, v) /\
partition[1] = v /\ partition[len+1] > v /\ partition[j] <= v /\
x > v /\
1 <= len /\ v = A[1] }

partition[j] := x
{ 1 < i /\ i < j /\ between(2, i, len+1) /\ between(1, j, len) /\

sides_parted(partition, i + 1, j - 1, len, v) /\
partition[1] = v /\ partition[len+1] > v /\
x > v /\ 1 <= len /\ v = A[1] }

i := i + 1
{ 1 < i /\ i < j + 1 /\ between(2, i, len+1) /\ between(1, j, len) /\

sides_parted(partition, i, j - 1, len, v) /\
partition[1] = v /\ partition[len+1] > v /\
x > v /\
1 <= len /\ v = A[1] }

j := j - 1
end

end
{ i > j /\ j + 1 >= i - 1 /\ between(2, i, len+1) /\ between(1, j, len) /\
sides_parted(partition, i, j, len, v) /\
partition[1] = v /\ partition[len+1] > v /\
1 <= len /\ v = A[1] }

partition[1] := partition[j]
{ i > j /\ j + 1 >= i - 1 /\ between(2, i, len+1) /\ between(1, j, len) /\
sides_parted(partition, i, j, len, v) /\
partition[len+1] > v /\
1 <= len /\ v = A[1] }

partition[j] := v
end
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This example serves to demonstrate how the features such as predicates and invariant labelling work in bigger
examples. First, the predicates make it possible to exchange long and obscure expressions that define particular
features into insightful labels. Second, the complicated invariant formula can be divided into meaningful pieces
that describe a particular aspects of the loop invariant, which also contributes to readability. It is important to
understand that the split does not mean that the reasoning about the pieces is separate. In particular we need the
information on guards to correctly establish the new version of sides part.

We have to make one important point. It is critical to split the invariants when they become so big since it is very
difficult without this to figure out what is wrong in case some subtle mistake is done either in the code of the
program or in the assertion formula. Splitting of the conditions helps to localise the problem.
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