Complete partial orders

An (ω-chain-)complete partial order, cpo:

$$
\mathbf{D}=\langle D, \sqsubseteq, \perp\rangle
$$

- $\subseteq \subseteq D \times D$ is a partial order on D such that each countable chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots \sqsubseteq d_{i} \sqsubseteq \ldots$ has the least upper bound $\bigsqcup_{i>0} d_{i}$ in D
- $\perp \in D$ is the least element w.r.t. \sqsubseteq

BTW: Equivalently: all countable directed subsets of D have lub's in D.
($\Delta \subseteq D$ is directed if for every $x, y \in \Delta$, there is $d \in \Delta$ with $x \sqsubseteq d$ and $y \sqsubseteq d$.)
BTW: It is not equivalent to require that all chains have lub's in D.
($C \subseteq D$ is a chain if for every $x, y \in C, x \sqsubseteq y$ or $y \sqsubseteq x$.)
But it is equivalent to require that all countable chains have lub's in D.

Examples

Examples	Non-examples	Comments
$\langle\mathcal{P}(X), \subseteq, \emptyset\rangle$	$\left\langle\mathcal{P}_{f i n}(X), \subseteq, \emptyset\right\rangle$	$\mathcal{P}(X)$ is the set of all subsets, and $\mathcal{P}_{\text {fin }}(X)$ of all finite subsets of X
$\left\langle X \rightharpoonup Y, \subseteq, \emptyset_{X \rightarrow Y}\right\rangle$	$\langle X \rightarrow Y, \subseteq, ? ? ?\rangle$	partial and total function spaces
$\left\langle\mathbf{N a t}^{\infty}, \leq, 0\right\rangle$	\langle Nat,$\leq, 0\rangle$	Nat $n \leq \omega$, for all $\cup\{\omega \in$ Nat
$\left\langle\left(\mathbf{R}^{+}\right)^{\infty}, \leq, 0\right\rangle$	$\left\langle\left(\mathbf{Q}^{+}\right)^{\infty}, \leq, 0\right\rangle$	non-negative reals \mathbf{R}^{+}and rationals \mathbf{Q}^{+} with "infinity"
$\left\langle\left(\mathbf{R}^{+}\right)^{\leq a}, \leq, 0\right\rangle$	$\left\langle\left(\mathbf{Q}^{+}\right)^{\leq a}, \leq, 0\right\rangle$	their bounded versions
$\left\langle A^{\leq \omega}, \sqsubseteq, \varepsilon\right\rangle$	$\left\langle A^{*}, \sqsubseteq, \varepsilon\right\rangle$	$A^{\leq \omega}=A^{*} \cup A^{\omega}$ (finite and infinite strings of elements from A, including the empty string $\varepsilon) ; \sqsubseteq$ is the prefix ordering

Continuous functions

Given cpo's $\mathbf{D}=\langle D, \sqsubseteq, \perp\rangle$ and $\mathbf{D}^{\prime}=\left\langle D^{\prime}, \sqsubseteq^{\prime}, \perp^{\prime}\right\rangle$, a function $f: D \rightarrow D^{\prime}$ is

- monotone if it preserves the ordering, i.e., for all $d_{1}, d_{2} \in D$,

$$
d_{1} \sqsubseteq d_{2} \text { implies } f\left(d_{1}\right) \sqsubseteq^{\prime} f\left(d_{2}\right)
$$

- continuous if it preserves lub's of all countable chains, i.e., for each chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \cdots$ in D,

$$
f\left(\bigsqcup_{i \geq 0} d_{i}\right)=\bigsqcup_{i \geq 0} f\left(d_{i}\right)
$$

- strict if it preserves the least element, i.e.,

$$
f(\perp)=\perp^{\prime}
$$

BTW: Continuous functions are monotone; in general they need not be strict. BTW: Monotone functions in general need not be continuous.

Some intuition?

Topology

Given a cpo $\mathbf{D}=\langle D, \sqsubseteq, \perp\rangle$, define a set $X \subseteq D$ to be open if

- if $d_{1} \in X$ and $d_{1} \sqsubseteq d_{2}$ then $d_{2} \in X$
- if $d_{0} \sqsubseteq d_{1} \sqsubseteq \cdots$ is such that $\bigsqcup_{i \geq 0} d_{i} \in X$ then $d_{i} \in X$ for some $i \geq 0$.

This defines a topology on D :

- \emptyset and D are open
- intersection of two open sets is open
- union of any family of open sets is open

Given two cpo's $\mathbf{D}=\langle D, \sqsubseteq, \perp\rangle$ and $\mathbf{D}^{\prime}=\left\langle D^{\prime}, \sqsubseteq^{\prime}, \perp^{\prime}\right\rangle$, a function $f: D \rightarrow D^{\prime}$ is continuous if and only if it is continuous in the topological sense, i.e., for $X^{\prime} \subseteq D^{\prime}$ open in \mathbf{D}^{\prime}, its co-image w.r.t. $f, f^{-1}\left(X^{\prime}\right) \subseteq D$ is open in \mathbf{D}.

More intuition?

Information theory

Think of a cpo $\mathbf{D}=\langle D, \sqsubseteq, \perp\rangle$ as an "information space".

- if $d_{1} \sqsubseteq d_{2}$ then d_{2} represents "more information" than $d_{1} ; \perp$ is "no information"
- directed sets represent consistent sets of "information pieces"; their lub's represent "information" that can be derived from the "informations" in the set
- a function is monotone if it yields more information when given more information
- a function is continuous if it deals with information "bit-by-bit"

For a set of elements X, consider the cpo $\langle\mathcal{P}(X), \supseteq, X\rangle$ of "informations" about the elements in X (a set $I \subseteq X$ represents the property - information - that holds for all the elements in I, and only for those elements).

Best intuition?

Partial functions

$$
\left\langle X \rightharpoonup Y, \subseteq, \emptyset_{X \rightarrow Y}\right\rangle
$$

$-\emptyset_{X \rightarrow Y}$ is nowhere defined

- given two partial functions $f, g: X \rightharpoonup Y, f \subseteq g$ if g is more defined than f, but when f is defined, g yields the same result
- given a directed set of partial functions $\mathcal{F} \subseteq X \rightharpoonup Y$, no two functions in \mathcal{F} yield different results for the same argument; then $\bigsqcup \mathcal{F}=\bigcup \mathcal{F}$, which is a partial function in $X \rightharpoonup Y$
- a function $F:(X \rightharpoonup Y) \rightarrow\left(X^{\prime} \rightharpoonup Y^{\prime}\right)$ is continuous, if $F(f)\left(x^{\prime}\right)$ (for $f: X \rightharpoonup Y$ and $x^{\prime} \in X^{\prime}$) depends only on a finite number of applications of f to arguments in X. Typical non-continuous functions: testing definedness, checking infinitely many values,
this is quite informal

Fixed-point theorem

Fact: Given a cpo $\mathbf{D}=\langle D, \sqsubseteq, \perp\rangle$ and a continuous function $f: D \rightarrow D$, there exists the least fixed-point fix $(f) \in D$ of f, i.e.,

- $f(f i x(f))=f i x(f)$
- if $f(d)=d$ for some $d \in D$ then $f i x(f) \sqsubseteq d$

Proof:

Define $f^{0}(\perp)=\perp$, and $f^{i+1}(\perp)=f\left(f^{i}(\perp)\right)$ for $i \geq 0$. This yields a chain:

$$
f^{0}(\perp) \sqsubseteq f^{1}(\perp) \sqsubseteq \cdots \sqsubseteq f^{i}(\perp) \sqsubseteq f^{i+1}(\perp) \sqsubseteq \cdots
$$

Put:

$$
f x x(f)=\bigsqcup_{i \geq 0} f^{i}(\perp)
$$

- $f(f i x(f))=f\left(\bigsqcup_{i \geq 0} f^{i}(\perp)\right)=\perp \sqcup \bigsqcup_{i \geq 0} f\left(f^{i}(\perp)\right)=\bigsqcup_{i \geq 0} f^{i}(\perp)=f i x(f)$
- Suppose $f(d)=d$ for some $d \in D$; then $f^{i}(\perp) \sqsubseteq d$ for $i \geq 0$. Thus $f i x(f)=\bigsqcup_{i \geq 0} f^{i}(\perp) \sqsubseteq d$.

Proof techniques

Given a cpo $\mathbf{D}=\langle D, \sqsubseteq, \perp\rangle$ and a continuous function $f: D \rightarrow D$:
Fact: For any $d \in D$, if $f(d) \sqsubseteq d$ then $f i x(f) \sqsubseteq d$.

Fixed-point induction

A property $P \subseteq D$ is admissible if it is preserved by lub's of all countable chains: for any chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \cdots$, if $d_{i} \in P$ for all $i \geq 0$ then also $\bigsqcup_{i \geq 0} d_{i} \in P$, and $\perp \in P$.

Fact: For any admissible $P \subseteq D$ that is closed under f (i.e., if $d \in P$ then $f(d) \in P$)

$$
f i x(f) \in P
$$

Semantics of while

Recall the (original direct) semantic clause for while:

$$
\mathcal{S} \llbracket \text { while } b \text { do } S \rrbracket=f i x(\Phi)
$$

where $\Phi: \mathbf{S T M T} \rightarrow \mathbf{S T M T}$ is given by $\Phi(F)=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, \mathcal{S} \llbracket S \rrbracket ; F, i d_{\text {State }}\right)$.

Is STMT a cpo?
Is Φ continuous?

In this case we can easily check that indeed $\left\langle\right.$ STMT, $\subseteq, \emptyset_{\text {State }} \rightarrow$ State \rangle is a cpo and Φ : STMT \rightarrow STMT is continuous.

BUT: we do not want to have to check this each time we use a fixed-point definition!

Domain constructors

Basic domains

For any set $X, \mathbf{X}_{\perp}=\left\langle X_{\perp}, \sqsubseteq, \perp\right\rangle$ is a flat cpo, where $X_{\perp}=X \cup\{\perp\}, \perp$ is a new element, $\perp \sqsubseteq x$ for all $x \in X$ and otherwise \sqsubseteq is trivial.

$$
\{*\}_{\perp}:
$$

Bool $_{\perp}$:

$\operatorname{Int}_{\perp}$:

Fact: Every monotone function defined on a flat cpo is continuous.

For any cpo's $\mathbf{D}_{1}=\left\langle D_{1}, \sqsubseteq_{1}, \perp_{1}\right\rangle$ and $\mathbf{D}_{2}=\left\langle D_{2}, \sqsubseteq_{2}, \perp_{2}\right\rangle$:

Product

Product of \mathbf{D}_{1} and \mathbf{D}_{2} is the following cpo:

$$
\mathbf{D}_{1} \times \mathbf{D}_{2}=\left\langle D_{1} \times D_{2}, \sqsubseteq,\left\langle\perp_{1}, \perp_{2}\right\rangle\right\rangle
$$

where for all $d_{1}, d_{1}^{\prime} \in D_{1}$ and $d_{2}, d_{2}^{\prime} \in D_{2},\left\langle d_{1}, d_{2}\right\rangle \sqsubseteq\left\langle d_{1}^{\prime}, d_{2}^{\prime}\right\rangle$ if $d_{1} \sqsubseteq_{1} d_{1}^{\prime}$ and $d_{2} \sqsubseteq_{2} d_{2}^{\prime}$.

Sum

$$
\mathbf{D}_{1}+\mathbf{D}_{2}=\left\langle\left(D_{1} \times\{1\}\right) \cup\left(D_{2} \times\{2\}\right) \cup\{\perp\}, \sqsubseteq, \perp\right\rangle
$$

where for $d_{1}, d_{1}^{\prime} \in D_{1},\left\langle d_{1}, 1\right\rangle \sqsubseteq\left\langle d_{1}^{\prime}, 1\right\rangle$ if $d_{1} \sqsubseteq_{1} d_{1}^{\prime}$, for $d_{2}, d_{2}^{\prime} \in D_{2},\left\langle d_{2}, 2\right\rangle \sqsubseteq\left\langle d_{2}^{\prime}, 2\right\rangle$ if $d_{2} \sqsubseteq_{2} d_{2}^{\prime}$, and for $d_{1} \in D_{1}, d_{2} \in D_{2}, \perp \sqsubseteq\left\langle d_{1}, 1\right\rangle$ and $\perp \sqsubseteq\left\langle d_{2}, 2\right\rangle$.

To avoid proliferation of bottoms:

Smashed product

Smashed product of \mathbf{D}_{1} and \mathbf{D}_{2} is the following cpo:

$$
\mathbf{D}_{1} \otimes \mathbf{D}_{2}=\left\langle\left(D_{1} \backslash\left\{\perp_{1}\right\}\right) \times\left(D_{2} \backslash\left\{\perp_{2}\right\}\right) \cup\{\perp\}, \sqsubseteq, \perp\right\rangle
$$

where for all non-bottom $d_{1}, d_{1}^{\prime} \in D_{1}$ and $d_{2}, d_{2}^{\prime} \in D_{2},\left\langle d_{1}, d_{2}\right\rangle \sqsubseteq\left\langle d_{1}^{\prime}, d_{2}^{\prime}\right\rangle$ if $d_{1} \sqsubseteq_{1} d_{1}^{\prime}$ and $d_{2} \sqsubseteq_{2} d_{2}^{\prime}$, and $\perp \sqsubseteq\left\langle d_{1}, d_{2}\right\rangle$.

Smashed sum

Smashed sum of \mathbf{D}_{1} and \mathbf{D}_{2} is the following cpo:

$$
\mathbf{D}_{1} \oplus \mathbf{D}_{2}=\left\langle\left(\left(D_{1} \backslash\left\{\perp_{1}\right\}\right) \times\{1\}\right) \cup\left(\left(D_{2} \backslash\left\{\perp_{2}\right\}\right) \times\{2\}\right) \cup\{\perp\}, \sqsubseteq, \perp\right\rangle
$$

where for all non-bottom $d_{1}, d_{1}^{\prime} \in D_{1},\left\langle d_{1}, 1\right\rangle \sqsubseteq\left\langle d_{1}^{\prime}, 1\right\rangle$ if $d_{1} \sqsubseteq_{1} d_{1}^{\prime}$, for $d_{2}, d_{2}^{\prime} \in D_{2}$, $\left\langle d_{2}, 2\right\rangle \sqsubseteq\left\langle d_{2}^{\prime}, 2\right\rangle$ if $d_{2} \sqsubseteq_{2} d_{2}^{\prime}$, and $\perp \sqsubseteq\left\langle d_{1}, 1\right\rangle$ and $\perp \sqsubseteq\left\langle d_{2}, 2\right\rangle$.

Function spaces

Continuous-function space from \mathbf{D}_{1} to \mathbf{D}_{2} is the following cpo:

$$
\left[\mathbf{D}_{1} \rightarrow \mathbf{D}_{2}\right]=\left\langle\left[D_{1} \rightarrow D_{2}\right], \sqsubseteq, \perp\right\rangle
$$

where

- $\left[D_{1} \rightarrow D_{2}\right]$ is the set of all continuous functions from D_{1} to D_{2}
- for functions $f, g: D_{1} \rightarrow D_{2}, f \sqsubseteq g$ if for each $d_{1} \in D_{1}, f\left(d_{1}\right) \sqsubseteq_{2} g\left(d_{1}\right)$
$-\perp\left(d_{1}\right)=\perp_{2}$ for each $d_{1} \in D_{1}$.

$$
\sqsubseteq \text { does not depend on the ordering on } D_{1}
$$

For any set X, function space from X to \mathbf{D}_{2} is the following cpo:

$$
\left(X \rightarrow \mathbf{D}_{2}\right)=\left\langle X \rightarrow D_{2}, \sqsubseteq, \perp\right\rangle
$$

where $X \rightarrow D_{2}$ is the set of total functions from X to D_{2} ordered by \sqsubseteq as above.

Domain isomorphism

Cpo's \mathbf{D}_{1} and \mathbf{D}_{2} are isomorphic

$$
\mathbf{D}_{1} \cong \mathbf{D}_{2}
$$

if there is a bijection between D_{1} and D_{2} which preserves and reflects the ordering.
Examples: $\begin{aligned} \text { Bool }_{\perp} & \cong\{*\}_{\perp} \oplus\{*\}_{\perp} \\ \left\langle X \rightharpoonup Y, \subseteq, \emptyset_{X \rightarrow Y}\right\rangle & \cong\left\langle X \rightarrow Y_{\perp}, \sqsubseteq, \perp\right\rangle\end{aligned}$

Consider semantic domains up to isomorphism only

So, we can forget (boolean values and) partial functions !

Forgeting natural numbers is more difficult

- but possible as well

BTW:

Informally:

- $\mathbf{D} \otimes \mathbf{D}^{\prime}$ admits only "strict" (defined) elements in the pairs
- $\mathbf{D} \times \mathbf{D}^{\prime}$ admits both "strict" and "undefined" ("unknown") elements in the pairs
$-\mathbf{D}_{\perp}$ makes all elements in \mathbf{D} "strict"
Hence:

$$
\begin{gathered}
\left(\mathbf{D} \times \mathbf{D}^{\prime}\right)_{\perp} \cong \mathbf{D}_{\perp} \otimes \mathbf{D}_{\perp}^{\prime} \\
\mathbf{D}+\mathbf{D}^{\prime} \cong \mathbf{D}_{\perp} \oplus \mathbf{D}_{\perp}^{\prime}
\end{gathered}
$$

We also define:

Define: $\mathbf{D} \oplus_{L} \mathbf{D}^{\prime}, \mathbf{D} \otimes_{R} \mathbf{D}^{\prime}, \mathbf{D} \oplus_{R} \mathbf{D}^{\prime}$

Building continuous functions

- Every constant function is continuous
- Partial functions on sets, as used so far, can be replaced by (strict) continuous functions between flat domains; for instance, with a bit of abuse of notation:
- ifte $_{\mathbf{D}} \in\left[\operatorname{Bool}_{\perp} \times \mathbf{D} \times \mathbf{D} \rightarrow \mathbf{D}\right]$ is given by:

$$
\text { ifte }_{\mathbf{D}}\left(c, d, d^{\prime}\right)= \begin{cases}\text { ifte }_{D}\left(c, d, d^{\prime}\right) & \text { if } c \neq \perp \\ \perp_{\mathbf{D}} & \text { if } c=\perp\end{cases}
$$

$-_{-}+_{-} \in\left[\operatorname{Int}_{\perp} \times \operatorname{Int}_{\perp} \rightarrow \operatorname{Int}_{\perp}\right]$ is given by:

$$
n+n^{\prime}= \begin{cases}n+n^{\prime} & \text { if } n \neq \perp \text { and } n^{\prime} \neq \perp \\ \perp & \text { if } n=\perp \text { or } n^{\prime}=\perp\end{cases}
$$

More constructs

- function composition: ${ }_{-} ;-\in\left[\left[\mathbf{D}_{1} \rightarrow \mathbf{D}_{2}\right] \times\left[\mathbf{D}_{2} \rightarrow \mathbf{D}_{3}\right] \rightarrow\left[\mathbf{D}_{1} \rightarrow \mathbf{D}_{3}\right]\right]$, i.e.:
- composition of continuous functions is continuous
- the composition function is continuous
- indexing:
lift $\mathbf{I}^{\mathbf{I}} \in\left[\left[\mathbf{D}_{1} \times \ldots \times \mathbf{D}_{n} \rightarrow \mathbf{D}\right] \rightarrow\left[\left[\mathbf{I} \rightarrow \mathbf{D}_{1}\right] \times \ldots \times\left[\mathbf{I} \rightarrow \mathbf{D}_{n}\right] \rightarrow[\mathbf{I} \rightarrow \mathbf{D}]\right]\right]$, i.e.:
- indexing a continuous function yields a continuous function
- the indexing function is continuous
- Given a function $f: D_{1} \times \ldots \times D_{n} \rightarrow D, f$ is a continuous function from the product domain $\mathbf{D}_{1} \times \ldots \times \mathbf{D}_{n}$ to \mathbf{D} if and only if it is continuous w.r.t. each argument separately
- this justifies the use of lambda-notation to build continuous functions:

$$
\Lambda \in\left[\left[\mathbf{D}_{0} \times \mathbf{D}_{1} \times \ldots \times \mathbf{D}_{n} \rightarrow \mathbf{D}\right] \rightarrow\left[\mathbf{D}_{1} \times \ldots \times \mathbf{D}_{n} \rightarrow\left[\mathbf{D}_{0} \rightarrow \mathbf{D}\right]\right]\right]
$$

... and more

- continuous-function application is continuous: ${ }_{-}(-) \in\left[\left[\mathbf{D}_{1} \rightarrow \mathbf{D}_{2}\right] \times \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}\right]$
- projections: $\pi_{1} \in\left[\mathbf{D}_{1} \times \mathbf{D}_{2} \rightarrow \mathbf{D}_{1}\right]$ and $\pi_{2} \in\left[\mathbf{D}_{1} \times \mathbf{D}_{2} \rightarrow \mathbf{D}_{2}\right]$
- (two-argument pairing, but how to write this sensibly?)
- injections: $\iota_{1} \in\left[\mathbf{D}_{1} \rightarrow \mathbf{D}_{1}+\mathbf{D}_{2}\right]$ and $\iota_{2} \in\left[\mathbf{D}_{2} \rightarrow \mathbf{D}_{1}+\mathbf{D}_{2}\right]$,

- domain checks: i s_in $_{1} \in\left[\mathbf{D}_{1}+\mathbf{D}_{2} \rightarrow \mathbf{B o o l}_{\perp}\right]$ and $i s_{-} i n_{2} \in\left[\mathbf{D}_{1}+\mathbf{D}_{2} \rightarrow \mathbf{B o o l}_{\perp}\right]$
- function pairing: $\langle-,-\rangle:\left[\left[\mathbf{D} \rightarrow \mathbf{D}_{1}\right] \times\left[\mathbf{D} \rightarrow \mathbf{D}_{2}\right] \rightarrow\left[\mathbf{D} \rightarrow \mathbf{D}_{1} \times \mathbf{D}_{2}\right]\right]$, where for $f \in\left[\mathbf{D} \rightarrow \mathbf{D}_{1}\right]$ and $g \in\left[\mathbf{D} \rightarrow \mathbf{D}_{2}\right],\langle f, g\rangle=\lambda d: D .\langle f(d), g(d)\rangle$.
- function sum: $[-,-]:\left[\left[\mathbf{D}_{1} \rightarrow \mathbf{D}\right] \times\left[\mathbf{D}_{2} \rightarrow \mathbf{D}\right] \rightarrow\left[\mathbf{D}_{1}+\mathbf{D}_{2} \rightarrow \mathbf{D}\right]\right]$, where for $f \in\left[\mathbf{D}_{1} \rightarrow \mathbf{D}\right]$ and $g \in\left[\mathbf{D}_{2} \rightarrow \mathbf{D}\right],[f, g](d)=$ ifte $_{\mathbf{D}}\left(i s_{-} i n_{1}(d), f(d), g(d)\right)$
- the least fixed-point operation $f i x(-) \in[[\mathbf{D} \rightarrow \mathbf{D}] \rightarrow \mathbf{D}]$
- for $\mathbf{D}=\left[\mathbf{D}_{1} \rightarrow \mathbf{D}_{2}\right]$, it follows that the least fixed-point of a continuous function on continuous functions is a continuous function...

Enough is enough...

Not all functions are continuous. . .
Enough functions are continuous...

Fixed-point equations

Elements of cpo's $d_{1} \in D_{1}, \ldots, d_{n} \in D_{n}$ can be defined by writing (sets of) fixed-point equations

$$
\begin{gathered}
d_{1}=\Phi_{1}\left(d_{1}, \ldots, d_{n}\right) \\
\ldots \\
d_{n}=\Phi_{n}\left(d_{1}, \ldots, d_{n}\right)
\end{gathered}
$$

where $\Phi_{1} \in\left[\mathbf{D}_{1} \times \ldots \times \mathbf{D}_{n} \rightarrow \mathbf{D}_{1}\right], \ldots, \Phi_{n} \in\left[\mathbf{D}_{1} \times \ldots \times \mathbf{D}_{n} \rightarrow \mathbf{D}_{n}\right]$.
This defines $\left\langle d_{1}, \ldots, d_{n}\right\rangle$ as the least fixed-point of

$$
\left\langle\Phi_{1}, \ldots, \Phi_{n}\right\rangle \in\left[\mathbf{D}_{1} \times \ldots \times \mathbf{D}_{n} \rightarrow \mathbf{D}_{1} \times \ldots \times \mathbf{D}_{n}\right]
$$

The continuous functions used in such definitions may be build using the basic functions and the ways of their composition as discussed so far.

Domain equations

$$
\begin{aligned}
\text { Int } & =\{0,1,-1,2,-2, \ldots\}_{\perp} \\
\text { Bool } & =\{\mathrm{tt}, \mathrm{ff}\}_{\perp} \\
\text { State } & =\text { Var } \rightarrow \text { Int } \\
\mathrm{EXP} & =[\text { State } \rightarrow \text { Int }] \\
\mathrm{BEXP} & =[\text { State } \rightarrow \text { Bool }] \\
\text { STMT } & =[\text { State } \rightarrow \text { State }]
\end{aligned}
$$

$$
\begin{aligned}
\text { BTW: } \quad \text { Int }^{?} ? & =\operatorname{Int} \oplus\{?\}_{\perp} \\
\text { Bool }^{?} ? & =\operatorname{Bool} \oplus\{?\}_{\perp}
\end{aligned}
$$

If definitions of domains turn out to be recursive, use the successive approximation technique, as above for domain elements

Recursive domain equations

$$
\text { Stream }=A_{\perp} \otimes_{L} \text { Stream }
$$

$$
\text { Stream }^{0}=\{\perp\}
$$

$$
\text { Stream }^{1}=\left\{\perp \sqsubseteq\left\langle a_{1}, \perp\right\rangle\right\}
$$

```
                Stream = ( }\mp@subsup{A}{\perp}{}\mp@subsup{\otimes}{L}{}\mathrm{ Stream )}\oplus{\mathrm{ eof }\mp@subsup{}}{\perp}{
```

 adds eof, \(\left\langle a_{1}\right.\), eof \(\rangle,\left\langle a_{1},\left\langle a_{2}\right.\right.\), eof \(\left.\rangle\right\rangle\),
 Stream $^{2}=\left\{\perp \sqsubseteq\left\langle a_{1}, \perp\right\rangle \sqsubseteq\left\langle a_{1},\left\langle a_{2}, \perp\right\rangle\right\rangle\right\}$

Stream $^{n}=\left\{\perp \sqsubseteq\left\langle a_{1}, \perp\right\rangle \sqsubseteq\left\langle a_{1},\left\langle a_{2}, \perp\right\rangle\right\rangle \sqsubseteq \cdots \sqsubseteq\left\langle a_{1},\left\langle a_{2},\left\langle\ldots,\left\langle a_{n}, \perp\right\rangle \ldots\right\rangle\right\rangle\right\rangle\right\}$

$$
\begin{aligned}
\text { Stream }= & \bigsqcup_{n \geq 0} \text { Stream }^{n} \\
= & \left\{\perp \sqsubseteq\left\langle a_{1}, \perp\right\rangle \sqsubseteq\left\langle a_{1},\left\langle a_{2}, \perp\right\rangle\right\rangle \sqsubseteq \cdots \sqsubseteq\left\langle a_{1},\left\langle a_{2},\left\langle\ldots,\left\langle a_{n}, \perp\right\rangle \ldots\right\rangle\right\rangle\right\rangle\right. \\
& \left.\sqsubseteq \cdots \sqsubseteq\left\langle a_{1},\left\langle a_{2},\left\langle\ldots,\left\langle a_{n},\langle\ldots\rangle\right\rangle \ldots\right\rangle\right\rangle\right\rangle\right\}
\end{aligned}
$$

where all $a_{1}, a_{2}, \ldots, a_{n}, \ldots \in A$.

Recursive domain equations

Stream $=A_{\perp} \otimes_{L}$ Stream

$$
\begin{aligned}
& \text { Stream }^{0}=\{\perp\} \\
& \text { Stream }^{1}=\left\{\perp \sqsubseteq\left\langle a_{1}, \perp\right\rangle\right\} \\
& \text { Stream }^{2}=\left\{\perp \sqsubseteq\left\langle a_{1}, \perp\right\rangle \sqsubseteq\left\langle a_{1}, a_{2}, \perp\right\rangle\right\}
\end{aligned}
$$

$$
\text { Stream }=\left(A_{\perp} \otimes_{L} \text { Stream }\right) \oplus\{\text { eof }\}_{\perp}
$$

$$
\text { adds eof, }\left\langle a_{1}, \text { eof }\right\rangle,\left\langle a_{1}, a_{2}, \text { eof }\right\rangle, \ldots
$$

Stream $^{n}=\left\{\perp \sqsubseteq\left\langle a_{1}, \perp\right\rangle \sqsubseteq\left\langle a_{1}, a_{2}, \perp\right\rangle \sqsubseteq \cdots \sqsubseteq\left\langle a_{1}, a_{2}, \ldots, a_{n}, \perp\right\rangle\right\}$

Stream $=\bigsqcup_{n \geq 0}$ Stream $^{n}=$

$$
\left\{\perp \sqsubseteq\left\langle a_{1}, \perp\right\rangle \sqsubseteq\left\langle a_{1}, a_{2}, \perp\right\rangle \sqsubseteq \cdots \sqsubseteq\left\langle a_{1}, a_{2}, \ldots, a_{n}, \perp\right\rangle \sqsubseteq \cdots \sqsubseteq\left\langle a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\rangle\right\}
$$

where all $a_{1}, a_{2}, \ldots, a_{n}, \ldots \in A$.

Problems?

If definitions of domains turn out to be recursive, use the successive approximation technique, as above for domain elements

$$
\begin{gathered}
\text { Really? } \\
\text { No problem? }
\end{gathered}
$$

Suppose we want to add (parameterless) procedures, which are named statements to be stored in states and used in call statements:

$$
\text { State }=\text { Var } \rightarrow \text { VAL } \quad \text { VAL }=\text { Int }+ \text { PROC } \quad \text { PROC }=[\text { State } \rightarrow \text { State }]
$$

> Do such domains exist?

There is no (non-trivial) set that satisfies

$$
\mathbf{D} \cong \mathbf{D} \rightarrow \mathbf{D}
$$

Models for untyped λ-calculus

In particular, this is necessary to model untyped λ-calculus, a formal untyped calculus where every term may be applied to any argument.

History, late 60s, 70s:

- Dana Scott (PRG/Oxford), 1971, 1976
- then others: Plotkin, Smyth, Stoy

Good naive solution

Naive denotational semantics

- Use standard set-theoretic domain constructors
- Never use "heavy" recursion, as involved in the reflexive domain definition.
- Use naive set-theoretic approximations and set-theoretic unions to solve domain equations.
- This works for well-typed langauges with a hierarchy of concepts and domains.

Solution

Scott-ery

- Limit the size of domains: require countable basis plus some technical conditions
- Use continuous functions only
- Define "domain of all domains" where all such domains can be interpreted
- Define continuous functions on this domain to interpret each of the domain constructors
- Write and solve domain equations as fixed-point equations in this domain

Models: $\mathbf{P} \omega, \mathbf{T} \omega$, information systems, ...

