Development task'

Given precondition ¢ and postcondition

develop a program S” such that

(0] S7 [4]

Andrzej Tarlecki: Semantics & Verification - 260 -

Approach #1 I

Given precondition ¢ and postcondition 1, develop a program S* such that

o] S* []

e first try to have a good idea (or draw on what you learnt at the university) and

write out a program S

e then verify that | = [¢] S [¢)] | — or rather, prove | - [p] S [¢]
e Once this is done, the task is completed, and you can cash your fees.

(No hint what to do when one fails!)

No hint even whether:

That is, if you succeed. . .

— the program developed is incorrect, or
— proving skills/tools employed are not sufficiently strong

Andrzej Tarlecki: Semantics & Verification - 261 -

Better approach I

Develop the program gradually,

making sure at each step that

correctness is guaranteed if subsequent steps are correct

Example I

Develop S so that

[nZO]S?[rt2§n/\n<(rt+1)Q]

(and n is not modified in S7)

Andrzej Tarlecki: Semantics & Verification - 262 -

Step 1 I

n > 0]
We can decide to proceed via: Sim>0Art=0Asqr=1] S}
rt2 <mAn<(rt+1)3%

That is, we want to:

e first, develop Si’ so that | [n > 0] Sl? m>0A1rt =0Asqr =1]

n>0A7rt=0Asqr=1]
e independently, develop S} so that S;

(rt? <nAn < (rt+1)?

Correctness follows by the assertion

then, put| S7 = S87.57
o put | S* = Sj; 55 n>0Art=0Asqr=1]

Andrzej Tarlecki: Semantics & Verification - 263 -

Step 2 I

Develop S} so that

m>0]S{n>0Art=0Asqr=1]

(and n is not modified in S7)

EASY!

Just put S{ to be

rt:=0;sqr =1

(Verifies immediately!)

Andrzej Tarlecki: Semantics & Verification - 264 -

Step 3 I

Develop S; so that

(and n is not modified in S3)

Design decision: proceed via

m>0A1t=0Asqr =1]
while [p’] b° do decr €’ in W’ wrt -~
Sy
2 <mAn<(rt+1)%

Andrzej Tarlecki: Semantics & Verification - 265 -

That is: '

Choose W* and well-founded =" C W’ x W7, as well as the invariant go?, boolean
expression b°, expression e’, and develop S§ so that:

o Nn>0Art=0Asqr=1) = ¢’

° (go?/\ﬁb?) — (rt? <nAn<(rt+1)?

o | [p" ADT]SS[p]

o | Ele’]s =" E[e’] (S[SI]s) |for all states s € {p” A b}

Andrzej Tarlecki: Semantics & Verification - 266 -

Eureka! '

Choose:
0! = (sqr = (rt +1)2 A rt?2 < n)
Then:
e The first requirement follows.
o Put| b’ = (sqr <n) |— and then the second requirement follows.
e Choose:

— | W' =Nat |with well-founded| =7 =>

0
— | e =n—rt

Then proceed with further development. . .

Andrzej Tarlecki: Semantics & Verification - 267 -

Step 4'

Develop S so that

[sqgr = (rt +1)%2 A rt?2 < n A sqr < nl
Sy
[sqr = (1t +1)? A rt? < n]

(and n is not modified in S;)

Design decision: proceed via

[sqr = (rt + 1)? < n A sqr < n]
S?
4
[sqr = rt? < n]
Ss
[sqr = (1t +1)? A rt? < n]

Andrzej Tarlecki: Semantics & Verification

- 268 -

Termination '

Let’s not forget:

termination conditions are a part of the requirements

2 .
For S5 we also require:

o | Eln—rt]s>E[n—rt] (S[Si]s) |forse {sqr=(rt+1)> <nArt*<n}

To ensure this, we choose to impose:

| En—rt]s>En—rt](S[Si]s) |forse {sqgr=(rt+1)*> <nArt* <n}

o | E[n—rt]s>E[n—rt] (S[Si]s) |for s € {sqr=rt> <n}

Andrzej Tarlecki: Semantics & Verification - 269 -

Steps 5 & 6'

Put S} to be

rt:=rt+1

and S: to be

sqr:=sqr +2xrt + 1

Verifies immediately!

(including termination conditions)

=

Andrzej Tarlecki: Semantics & Verification - 270 -

Putting all the steps together'

n > 0]
rt:=0;sqr:=1
n>0A1t=0Asqr =1]
while [sqr = (rt +1)? A rt? < n] sqr < n do decr n — rt in Nat wrt >
(rt:=rt+1 [sqr = rt?* < n| sqr:=sqr +2* rt + 1)
12 <mAn < (rt+1)?

Correctness by construction!!!

@ .. with proofs ready for use!))

Andrzej Tarlecki: Semantics & Verification - 271 -

Making all this more abstract, and hence more general

Specifications and formal program development

“in-the-large”

Andrzej Tarlecki: Semantics & Verification - 272 -

What are specifications for?'

For the system user: specification captures the properties of the system the user

can rely on.

For the system developer: specification captures all the requirements the system

Specification engineering'

Specification development: establishing desirable system properties and then

must fulfil.

designing a specification to capture them.

Specification validation: checking if the specification does indeed capture the
expected system properties.
— prototyping and testing

— theorem proving

Andrzej Tarlecki: Semantics & Verification - 273 -

Formal specifications I

Model-oriented approach: give a specific model — a system is correct if it displays
the same behaviour.

Property-oriented approach: give a list of the properties required — a system is
correct if it satisfies all of them.

In either case, start by determining the logical system to work with. ..

We will (pretend to) work in the standard algebraic framework

BUT: everything carries over to more complex, and more realistic logical systems,
capturing the semantics of more realistic programming paradigms.

more about this elsewhere: Institutions!

Andrzej Tarlecki: Semantics & Verification - 274 -

Specification Ianguages'

Quite a few around. .. Choose one.

(For instance: CASL :-))

Make even realistic large specification understandable!

Key idea: STRUCTURE

Use it to:
e build, understand and prove properties of specifications

e (though not necessarily to implement them)

Andrzej Tarlecki: Semantics & Verification - 275 -

Programmer’s task'

Given a requirements specification

produce a module that correctly implements it

Given a requirements specification SP

build a program P such that
SP ~ P

A formal definition of | SP ~» P |is a given by the semantics

(of the specification formalism and of the programming language)

Andrzej Tarlecki: Semantics & Verification - 276 -

Recall the analogy: _ _
module interface ~ signature

module ~» algebra

module specification ~+ class of algebras

Specification semantics'

e signature of SP: Sig|SP)]

Given a specification SP:
e models of SP: Mod|SP] C Alg(Sig[SP])

We know what to start with:

Basic specifications: | (3, ®)

o Sigl(S,®)] =%
o Mod[(S,)] = Mod(®)

Keep them small. ..

Andrzej Tarlecki: Semantics & Verification - 277 -

Structured specifications'

Built by combining, extending and modifying simpler specifications

Specification-building operations
For instance:

union: to combine constraints imposed by various specifications
translation: to rename and introduce new components

hiding: to hide interpretation of auxiliary components

Three typical, elementary, but quite flexible sbo’s

Andrzej Tarlecki: Semantics & Verification - 278 -

Programmer's task'

Informally:

Given a requirements specification

produce a module that correctly implements it

Semantically:

Given a requirements specification SP
build a model M € Alg(Sig|SP]) such that
M € Mod|SP]

Andrzej Tarlecki: Semantics & Verification - 279 -

Development process: I

SP ~ M

Never in a single jump!

Rather: proceed step by step, adding gradually more and more detail and
incorporating more and more design and implementation decisions, until a
specification is obtained that is easy to implement directly

SPgy v~ SP{ v oo SP,

ensuring:

SPgy v~ SP{ v oo v SP, SP,, ~ M
SP()’\/%M

Andrzej Tarlecki: Semantics & Verification

- 280 -

Simple implementations'

SP v~ SP’

Means:
Sig[SP'] = Sig[SP] and Mod[SP'] C Mod|[SP]

e preserve the static interface (by preserving the signature)
e incorporate further details (by narrowing the class of models)

SP ~~s> SP’ SP’ v~ SP”
SP v~ SP”

Composability follows:

SPy s SPy ws -« wo SP, M € Mod[SP,)]
M e MOd[SPO]

Andrzej Tarlecki: Semantics & Verification - 281 -

For instance'

spec STRINGKEY = STRING and NAT
then opn hash: String — Nat

spec STRINGKEY_NIL = STRING and NAT
then opn hash: String — Nat
axioms hash(nil) =0

spec STRINGKEY_A_7Z = STRING and NAT
then opn hash: String — Nat
axioms hash(nil) =0
hash(a) = 1...hash(z) = 26

THEN

STRINGCKEY vwvw STRINGKEY_NIL v~ STRINGKEY_A_7Z

Andrzej Tarlecki: Semantics & Verification - 282 -

...and then, for instance.

spec STRINGKEYCODE = STRING and NAT
then opns hash: String — Nat
str2nat: String — Nat
axioms str2nat(nil) =0

str2nat(a) = 1...str2nat(z) = 26
str2nat(stry — stro) = str2nat(stry) + str2nat(strs)
hash(str) = str2nat(str) mod 15485857

hide strZnat

THEN

STRINGKEY v STRINGKEY_NIL v STRINGKEY_A_Z v STRINGKEYCODE

...and the “code” in STRINCKEYCODE

defines a program/model for STRINGKEY

Andrzej Tarlecki: Semantics & Verification - 283 -

Extra twist '

In practice, some parts will get fixed on the way:

SPL |we| [sP

SP

/

Keep them apart from whatever is really left for implementation:

Andrzej Tarlecki: Semantics & Verification

- 284 -

Constructor implementations'

SP v SP'

Means:
k(Mod[SP']) C Mod[SP]

where
k: Alg(Sig[SP']) — Alg(Sig[SP])

IS a constructor:

Intuitively: parameterised program (generic module, SML functor)

Semantically: function between model classes

putting aside: partiality, persistency. ..

Andrzej Tarlecki: Semantics & Verification - 285 -

Composability revisited I

SP > SP Sp’ s sSp”
SP vonns SP”

)

SPg o SP1 VI s o SP,, = EMPTY
k1(Ka(...kp(empty)...)) € Mod[SPg]

Methodological issues:
e top-down vs. bottom-up vs. middle-out development?
e modular decomposition (designing modular structure)

Warning: Specification structure may change during the development!

Andrzej Tarlecki: Semantics & Verification - 286 -

Separate means to design program modular structure

Branching implementation steps'

2

SP1
SP v | K<

SP.,

\

This involves a “linking procedure” (n-argument constructor, parameterised program)

ke Alg(Sig[SP1]) x - - - x Alg(Sig[SP,]) — Alg(Sig[SP]

We require:
My, € Mod|SPy] --- M, € Mod|SP,,]

k(My,...,M,) € Mod|SP]

Andrzej Tarlecki: Semantics & Verification

- 287 -

CASL architectural specifications'

CASL provides an explicit way to write down the design specification such a branching

step amounts to:

arch spec ASP = |units U;: SP;

U,: SP,,
result x(Uy,...,U,)

Moreover:

e units my be generic (parameterised programs, SML functors), but always are

declared with their specifications

e (CASL provides a rich collection of combinators to define x and various additional

ways to define units

Andrzej Tarlecki: Semantics & Verification - 288 -

Instead of conclusions'

e Quite a lot of good theory around this;

e Even more bad practise ...

Ever evading overall goal'

Practical methods

for software specification and development

with solid foundations

Andrzej Tarlecki: Semantics & Verification - 289 -

