
Development task

Given precondition ϕ and postcondition ψ

develop a program S? such that

[ϕ]S? [ψ]

Andrzej Tarlecki: Semantics & Verification - 260 -

Approach #1

Given precondition ϕ and postcondition ψ, develop a program S? such that
[ϕ]S? [ψ]

• first try to have a good idea (or draw on what you learnt at the university) and

write out a program S

• then verify that |= [ϕ]S [ψ] — or rather, prove ` [ϕ]S [ψ]

• Once this is done, the task is completed, and you can cash your fees.

That is, if you succeed. . .�
�

�
�

�
�

�

No hint what to do when one fails!

No hint even whether:

− the program developed is incorrect, or

− proving skills/tools employed are not sufficiently strong

Andrzej Tarlecki: Semantics & Verification - 261 -

Better approach

Develop the program gradually,

making sure at each step that

correctness is guaranteed if subsequent steps are correct

Example

Develop S? so that

[n ≥ 0]S? [rt2 ≤ n ∧ n < (rt + 1)2]

(and n is not modified in S?)

Andrzej Tarlecki: Semantics & Verification - 262 -

Step 1

We can decide to proceed via:

[n ≥ 0]

S?
1 [n ≥ 0 ∧ rt = 0 ∧ sqr = 1] S?

2

[rt2 ≤ n ∧ n < (rt + 1)2]

That is, we want to:

• first, develop S?
1 so that [n ≥ 0]S?

1 [n ≥ 0 ∧ rt = 0 ∧ sqr = 1]

• independently, develop S?
2 so that

[n ≥ 0 ∧ rt = 0 ∧ sqr = 1]

S?
2

[rt2 ≤ n ∧ n < (rt + 1)2]

• then, put S? ≡ S?
1 ;S?

2

�
�

�
�

�
�

�
�

Correctness follows by the assertion
[n ≥ 0 ∧ rt = 0 ∧ sqr = 1]

Andrzej Tarlecki: Semantics & Verification - 263 -

Step 2

Develop S?
1 so that

[n ≥ 0]S?
1 [n ≥ 0 ∧ rt = 0 ∧ sqr = 1]

(and n is not modified in S?
1)

EASY!

Just put S?
1 to be

rt := 0; sqr := 1 �
�

�
�

�
�

�

Verifies immediately!

Andrzej Tarlecki: Semantics & Verification - 264 -

Step 3

Develop S?
2 so that

[n ≥ 0 ∧ rt = 0 ∧ sqr = 1]S?
2 [rt2 ≤ n ∧ n < (rt + 1)2]

(and n is not modified in S?
2)

Design decision: proceed via

[n ≥ 0 ∧ rt = 0 ∧ sqr = 1]

while [ϕ?] b? do decr e? in W ? wrt �?

S?
3

[rt2 ≤ n ∧ n < (rt + 1)2]

Andrzej Tarlecki: Semantics & Verification - 265 -

That is:

Choose W ? and well-founded �? ⊆W ? ×W ?, as well as the invariant ϕ?, boolean

expression b?, expression e?, and develop S?
3 so that:

• (n ≥ 0 ∧ rt = 0 ∧ sqr = 1) =⇒ ϕ?

• (ϕ? ∧ ¬b?) =⇒ (rt2 ≤ n ∧ n < (rt + 1)2)

• [ϕ? ∧ b?]S?
3 [ϕ?]

• E [[e?]] s �? E [[e?]] (S[[S?
3]] s) for all states s ∈ {ϕ? ∧ b?}

Andrzej Tarlecki: Semantics & Verification - 266 -

Eureka!

Choose:

ϕ? ≡ (sqr = (rt + 1)2 ∧ rt2 ≤ n)

Then:

• The first requirement follows.

• Put b? ≡ (sqr ≤ n) — and then the second requirement follows.

• Choose:

− W ? = Nat with well-founded �? = >

− e? = n− rt

Then proceed with further development. . .

Andrzej Tarlecki: Semantics & Verification - 267 -

Step 4

Develop S?
3 so that

[sqr = (rt + 1)2 ∧ rt2 ≤ n ∧ sqr ≤ n]

S?
3

[sqr = (rt + 1)2 ∧ rt2 ≤ n]

(and n is not modified in S?
3)

Design decision: proceed via

[sqr = (rt + 1)2 ≤ n ∧ sqr ≤ n]

S?
4

[sqr = rt2 ≤ n]

S?
5

[sqr = (rt + 1)2 ∧ rt2 ≤ n]

Andrzej Tarlecki: Semantics & Verification - 268 -

Termination

Let’s not forget:

termination conditions are a part of the requirements

For S?
3 we also require:

• E [[n− rt]] s > E [[n− rt]] (S[[S?
3]] s) for s ∈ {sqr = (rt + 1)2 ≤ n ∧ rt2 ≤ n}

To ensure this, we choose to impose:

• E [[n− rt]] s > E [[n− rt]] (S[[S?
4]] s) for s ∈ {sqr = (rt + 1)2 ≤ n ∧ rt2 ≤ n}

• E [[n− rt]] s ≥ E [[n− rt]] (S[[S?
5]] s) for s ∈ {sqr = rt2 ≤ n}

Andrzej Tarlecki: Semantics & Verification - 269 -

Steps 5 & 6

Put S?
4 to be

rt := rt + 1

and S?
5 to be

sqr := sqr + 2 ∗ rt + 1

�
�
�
�

�
�
�

EASY!

#
"

!

�
�

�
�

Verifies immediately!

(including termination conditions)

Andrzej Tarlecki: Semantics & Verification - 270 -

Putting all the steps together

[n ≥ 0]

rt := 0; sqr := 1

[n ≥ 0 ∧ rt = 0 ∧ sqr = 1]

while [sqr = (rt + 1)2 ∧ rt2 ≤ n] sqr ≤ n do decr n− rt in Nat wrt >

(rt := rt + 1 [sqr = rt2 ≤ n] sqr := sqr + 2 ∗ rt + 1)

[rt2 ≤ n ∧ n < (rt + 1)2]

Correctness by construction!!!�
�

�

�
 �	. . . with proofs ready for use!

Andrzej Tarlecki: Semantics & Verification - 271 -

Making all this more abstract, and hence more general

Specifications and formal program development

“in-the-large”

Andrzej Tarlecki: Semantics & Verification - 272 -

What are specifications for?

For the system user: specification captures the properties of the system the user

can rely on.

For the system developer: specification captures all the requirements the system

must fulfil.

Specification engineering

Specification development: establishing desirable system properties and then

designing a specification to capture them.

Specification validation: checking if the specification does indeed capture the

expected system properties.

− prototyping and testing

− theorem proving

Andrzej Tarlecki: Semantics & Verification - 273 -

Formal specifications

Model-oriented approach: give a specific model — a system is correct if it displays

the same behaviour.

Property-oriented approach: give a list of the properties required — a system is

correct if it satisfies all of them.

In either case, start by determining the logical system to work with. . .

We will (pretend to) work in the standard algebraic framework

BUT: everything carries over to more complex, and more realistic logical systems,

capturing the semantics of more realistic programming paradigms.

more about this elsewhere: Institutions!

Andrzej Tarlecki: Semantics & Verification - 274 -

Specification languages

Quite a few around. . . Choose one. �
�

�
�

�
 �	For instance: Casl :-)

Make even realistic large specification understandable!

Key idea: STRUCTURE

Use it to:

• build, understand and prove properties of specifications

• (though not necessarily to implement them)

Andrzej Tarlecki: Semantics & Verification - 275 -

Programmer’s task

Given a requirements specification

produce a module that correctly implements it

Given a requirements specification SP

build a program P such that

SP ; P

'

&

$

%

#
"

!

A formal definition of SP ; P is a given by the semantics

(of the specification formalism and of the programming language)

Andrzej Tarlecki: Semantics & Verification - 276 -

Recall the analogy:
module interface ; signature

module ; algebra

module specification ; class of algebras

Specification semantics

Given a specification SP :
• signature of SP : Sig [SP]

• models of SP : Mod [SP] ⊆ Alg(Sig [SP])

We know what to start with:

Basic specifications: 〈Σ,Φ〉
• Sig [〈Σ,Φ〉] = Σ

• Mod [〈Σ,Φ〉] = Mod(Φ)
Keep them small. . .

Andrzej Tarlecki: Semantics & Verification - 277 -

Structured specifications

Built by combining, extending and modifying simpler specifications

Specification-building operations

For instance:

union: to combine constraints imposed by various specifications

translation: to rename and introduce new components

hiding: to hide interpretation of auxiliary components

Three typical, elementary, but quite flexible sbo’s

Andrzej Tarlecki: Semantics & Verification - 278 -

Programmer’s task

Informally:

Given a requirements specification

produce a module that correctly implements it

Semantically:

Given a requirements specification SP

build a model M ∈ Alg(Sig [SP]) such that

M ∈ Mod [SP]

Andrzej Tarlecki: Semantics & Verification - 279 -

Development process:

SP ;M

Never in a single jump!

Rather: proceed step by step, adding gradually more and more detail and

incorporating more and more design and implementation decisions, until a

specification is obtained that is easy to implement directly

SP0 ññòSP1 ññò· · · ññòSPn

ensuring:

SP0 ññòSP1 ññò· · · ññòSPn SPn ;M

SP0 ;M

Andrzej Tarlecki: Semantics & Verification - 280 -

Simple implementations

SP ññòSP ′

Means:

Sig [SP ′] = Sig [SP] and Mod [SP ′] ⊆ Mod [SP]

• preserve the static interface (by preserving the signature)

• incorporate further details (by narrowing the class of models)

P
ro

of
ob

lig
at

io
n

lin
ke

d
w

it
h

su
ch

im
pl

em
en

ta
ti

on
s

Composability follows:
SP ññòSP ′ SP ′

ññòSP ′′

SP ññòSP ′′

SP0 ññòSP1 ññò· · · ññòSPn M ∈ Mod [SPn]

M ∈ Mod [SP0]

Andrzej Tarlecki: Semantics & Verification - 281 -

For instance

spec StringKey = String and Nat

then opn hash : String → Nat

spec StringKey nil = String and Nat

then opn hash : String → Nat

axioms hash(nil) = 0

spec StringKey a z = String and Nat

then opn hash : String → Nat

axioms hash(nil) = 0

hash(a) = 1 . . . hash(z) = 26

THEN

StringKey ññòStringKey nil ññòStringKey a z

Andrzej Tarlecki: Semantics & Verification - 282 -

. . . and then, for instance

spec StringKeyCode = String and Nat

then opns hash : String → Nat

str2nat : String → Nat

axioms str2nat(nil) = 0

str2nat(a) = 1 . . . str2nat(z) = 26

str2nat(str1 ̂ str2) = str2nat(str1) + str2nat(str2)

hash(str) = str2nat(str) mod 15485857

hide str2nat

THEN

StringKey ññòStringKey nil ññòStringKey a z ññòStringKeyCode

. . . and the “code” in StringKeyCode

defines a program/model for StringKey

Andrzej Tarlecki: Semantics & Verification - 283 -

Extra twist

In practice, some parts will get fixed on the way:

'

&

$

%
SP ′

0
ññò

κ1

'
&
$
%SP ′

1
ññò

κ1
κ2

�
�
�
�SP ′

2 ññò· · · ññò

κ1
κ2

· · · κn•

Keep them apart from whatever is really left for implementation:'

&

$

%
SP ′

0 κ1
ñññò

'
&
$
%SP ′

1 κ2
ñññò

�
�
�
�SP ′

2 κ3
ñññò. . . κn

ñññò• SP ′
n = EMPTY

Andrzej Tarlecki: Semantics & Verification - 284 -

Constructor implementations

SP κññòSP ′

Means:

κ(Mod [SP ′]) ⊆ Mod [SP]

where

κ : Alg(Sig [SP ′])→ Alg(Sig [SP])

is a constructor :

P
ro

of
ob

lig
at

io
n

lin
ke

d
w

it
h

su
ch

im
pl

em
en

ta
ti

on
s

Intuitively: parameterised program (generic module, SML functor)

Semantically: function between model classes

putting aside: partiality , persistency . . .

Andrzej Tarlecki: Semantics & Verification - 285 -

Composability revisited

SP κññòSP ′ SP ′
κ′ñññòSP ′′

SP
κ′;κ
ñññññòSP ′′

SP0 κ1
ñññòSP1 κ2

ñññò· · · κn
ñññòSPn = EMPTY

κ1(κ2(. . . κn(empty) . . .)) ∈ Mod [SP0]

Methodological issues:

• top-down vs. bottom-up vs. middle-out development?

• modular decomposition (designing modular structure)

Warning: Specification structure may change during the development!

Andrzej Tarlecki: Semantics & Verification - 286 -

Separate means to design program modular structure

Branching implementation steps

SP ññò κ


SP1

...

SPn

This involves a “linking procedure” (n-argument constructor, parameterised program)

κ : Alg(Sig [SP1])× · · · ×Alg(Sig [SPn])→ Alg(Sig [SP])

We require:

M1 ∈ Mod [SP1] · · · Mn ∈ Mod [SPn]

κ(M1, . . . ,Mn) ∈ Mod [SP]

Proof obligation

linked with such design steps

Andrzej Tarlecki: Semantics & Verification - 287 -

Casl architectural specifications

Casl provides an explicit way to write down the design specification such a branching

step amounts to:

arch spec ASP = units U1 : SP1

. . .

Un : SPn

result κ(U1, . . . , Un)

Moreover:

• units my be generic (parameterised programs, SML functors), but always are

declared with their specifications

• Casl provides a rich collection of combinators to define κ and various additional

ways to define units

Andrzej Tarlecki: Semantics & Verification - 288 -

Instead of conclusions

• Quite a lot of good theory around this;

• Even more bad practise . . .

Ever evading overall goal

Practical methods

for software specification and development

with solid foundations

Andrzej Tarlecki: Semantics & Verification - 289 -

