Deterministic Automata and Extensions of Weak MSO

Mikołaj Bojańczyk
Szymon Toruńczyk
University of Warsaw

Languages of infinite words

Languages of infinite words

$$
\text { abaabbaaaaaba } \ldots \in(a+b)^{\omega}
$$

Languages of infinite words

abaabbaaaaaba $\ldots \in(a+b)^{\omega}$

Language: infinitely a 's on odd positions

Languages of infinite words

$$
\underline{a} b \underline{a} a \underline{b} b \underline{a} a \underline{a} a \underline{a} b \underline{a} \ldots \in(a+b)^{\omega}
$$

exists a set of
 positions X

$$
\exists X
$$

Language: infinitely a 's on odd positions

Languages of infinite words

$$
\underline{a} b \underline{a} a \underline{b} b \underline{a} a \underline{\underline{a}} a \underline{a} b \underline{a} \ldots \in(a+b)^{\omega}
$$

Language: infinitely a 's on odd positions

Languages of infinite words

$$
\underline{a} b \underline{a} a \underline{b} b \underline{a} a \underline{a} a \underline{a} b \underline{a} \ldots \in(a+b)^{\omega}
$$

exists a set of
positions X

$\exists X \begin{cases}\forall x \exists y \leq x & y \in X \\
\forall x \forall y & \operatorname{suc}(x, y) \Rightarrow(x \in X \Leftrightarrow y \notin X)\end{cases}$

contains the first
position

contains every
second position

Language: infinitely a 's on odd positions

Languages of infinite words

$$
\underline{a} b \underline{a} a \underline{b} b \underline{a} a \underline{a} a \underline{a} b \underline{a} \ldots \in(a+b)^{\omega}
$$

exists a set of
positions X

$$
\exists X\left\{\begin{array}{l}
\forall x \exists y \leq x \quad y \in X \quad \text { position } \\
\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow(x \in X \Leftrightarrow y \notin X) \\
\forall x \exists y \geq x \quad a(y) \wedge y \in X
\end{array}\right.
$$

Language: infinitely a 's on odd positions

Languages of infinite words

$$
\underline{a} b \underline{a} a \underline{b} b \underline{a} a \underline{\underline{a}} a \underline{a} b \underline{a} \ldots \in(a+b)^{\omega}
$$

Monadic Secondary Order Logic (MSO)

Languages of infinite words

$$
\underline{a} b \underline{a} a \underline{b} b \underline{a} a \underline{a} a \underline{a} b \underline{a} \ldots \in(a+b)^{\omega}
$$

Weak Monadic Secondary Order Logic (WMSO)

ω-regular languages

ω-regular languages

Automata
Logic

ω-regular languages

Automata

Muller

Logic

 WMSO
Aim: find robust extensions of ω-regular languages

Automata
Muller

Logic

WMSO

Aim: find robust extensions of ω-regular languages

Automata
Muller
max-automata

Logic WMSO

Aim: find robust extensions of ω-regular languages

Automata
Muller
max-automata
min-automata

Logic WMSO

WMSO+U
WMSO+R

Aim: find robust extensions of ω-regular languages

Automata
Muller
max-automata
min-automata
min-max-automata

Logic
WMSO

WMSO+R
WMSO+U+R

Aim: find robust extensions of ω-regular languages

Automata
Muller
max-automata
min-automata
min-max-automata
periodicity-automata

Logic
WMSO

WMSO+R
$\mathrm{WMSO}+\mathrm{U}+\mathrm{R}$
WMSO+P

Aim: find robust extensions of ω-regular languages

Automata
Muller
max-automata
min-automata
min-max-automata
periodicity-automata
...-automata

Logic
WMSO
WMSO+U
WMSO+R
WMSO+U+R
WMSO+P
WMSO+...

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z -when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z - when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{i}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z -when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

$$
\begin{array}{ll}
& a a a b a b a a b \ldots \\
c & 0 \\
d & 0 \\
z & 0
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{i}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

$$
\begin{array}{lll}
& & a a a b a b a a b \ldots \\
c & 0 & 1 \\
d & 0 & 0 \\
z & 0 & 0
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
\text { "c tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{i}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

$$
\begin{array}{llll}
& a & a & a b a b a a b \ldots \\
c & 0 & 1 & 2 \\
d & 0 & 0 & 0 \\
z & 0 & 0 & 0
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{i}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

$$
\left.\begin{array}{llll}
& & a & a \\
c & a b & b & b a b \\
c & 0 & 1 & 2
\end{array}\right)
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

$$
\begin{array}{lllllllllll}
& & a & a & a & b & a & b & a & a & b \ldots \\
c & 0 & 1 & 2 & 3 & 0 \\
\\
d & 0 & 0 & 0 & 0 & 3 &
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{i}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

$$
\begin{array}{lllllllllll}
& & a & a & a & b & a & b & a & a b & b \ldots \\
c & 0 & 1 & 2 & 3 & 0 & 1 \\
d & 0 & 0 & 0 & 0 & 3 & 3 &
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{i}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

$$
\begin{array}{llllllllllll}
& & a & a & a & b & a & b & a & a & b \ldots \\
c & 0 & 1 & 2 & 3 & 0 & 1 & 0 \\
c
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{i}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

\[

\]

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{i}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

$$
\begin{aligned}
& \text { aaababaab... } \\
& \text { c } 012301012 \\
& \text { d } 0000033111 \\
& z 000000000
\end{aligned}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{i}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$

- when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$;

Acceptance condition: $\neg c \wedge \neg d$

$$
\begin{aligned}
& a a a b a b a a b \ldots \\
& \text { c } 012230110120 \\
& \text { d } 000003311112 \\
& z 0000000000
\end{aligned}
$$

Tweaking the model

Tweaking the model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example

Tweaking the model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- One can introduce the undefined counter value T this can be eliminated by storing in the states the info about which counters are defined

Tweaking the model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- One can introduce the undefined counter value T this can be eliminated by storing in the states the info about which counters are defined
- One can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, T\}$, where \min with respect to $0<1<2<\ldots<T$ is addition and + is multiplication

Tweaking the model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- One can introduce the undefined counter value T this can be eliminated by storing in the states the info about which counters are defined
- One can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, T\}$, where \min with respect to $0<1<2<\ldots<\top$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

Tweaking the model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- One can introduce the undefined counter value T this can be eliminated by storing in the states the info about which counters are defined
- One can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, T\}$, where \min with respect to $0<1<2<\ldots<\top$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & T & T \\
T & 0 & T \\
T & T & 0
\end{array}\right) .
$$

Tweaking the model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- One can introduce the undefined counter value T this can be eliminated by storing in the states the info about which counters are defined
- One can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, T\}$, where \min with respect to $0<1<2<\ldots<\top$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right) .
$$

$d:=\min (c, c) ; c:=z$ can be written as:

Tweaking the model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- One can introduce the undefined counter value T this can be eliminated by storing in the states the info about which counters are defined
- One can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, T\}$, where \min with respect to $0<1<2<\ldots<T$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right) .
$$

$d:=\min (c, c) ; c:=z$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
\top & 0 & \top \\
\top & \top & \top \\
0 & \top & 0
\end{array}\right) .
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions. Has states q_{0}, q_{1} and one counter c.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state $q_{0}-$ go to $q_{1} ; c:=c+1$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state $q_{0}-$ go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state $q_{0}-$ go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state $q_{1}-$ go to q_{0}

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \top
\end{array}\right) .
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, T)$.

$$
\begin{aligned}
a: & \left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{ll}
\top & 0 \\
1 & T
\end{array}\right) . \\
b: & \left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{lll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
0 & T
\end{array}\right) .
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state $q_{0}-$ go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{1}\right)=(0, \mathrm{~T})$.

$$
\begin{array}{ll}
a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
1 & T
\end{array}\right) . \\
b: \quad\left(\begin{array}{cc}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right) .
\end{array} \quad a \operatorname{a} a b b b a b b \ldots .
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state $q_{0}-$ go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, T)$.

$$
\begin{array}{ll}
a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
1 & T
\end{array}\right) . \\
b: \quad\left(\begin{array}{cc}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right) .
\end{array} \quad a \operatorname{a} a b b b a b b \ldots .
$$

$$
\begin{array}{ll}
c_{0} & 0 \\
c_{1} & \mathrm{~T}
\end{array}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state $q_{0}-$ go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, T)$.

$$
\left.\begin{array}{lll}
a: & \left(c_{0}\right. & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
1 & T
\end{array}\right) . \quad \text { a } \quad \text { a } b \text { b } b \text { a } a b \ldots .
$$

$$
\begin{array}{lll}
c_{0} & 0 & \top \\
c_{1} & \top & 1
\end{array}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state $q_{0}-$ go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{array}{ll}
a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
1 & T
\end{array}\right) . \\
b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right) .
\end{array} \quad a \operatorname{a} a b b b a a b \ldots .
$$

$$
\begin{array}{lllll}
c_{0} & 0 & \top & 1 \\
c_{1} & \top & 1 & \top
\end{array}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state $q_{0}-$ go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, T)$.

$$
\left.\begin{array}{lll}
a: & \left(c_{0}\right. & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
1 & T
\end{array}\right) . \quad \text { a } \quad \text { a } b \text { b } b \text { a } a b \ldots .
$$

$$
\begin{aligned}
& c_{0} 0 \mathrm{O} 1 \mathrm{~T} \\
& c_{1} \mathrm{~T}
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state $q_{0}-$ go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{1}\right)=(0, \mathrm{~T})$.

$$
\left.\begin{array}{lll}
a: & \left(c_{0}\right. & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
1 & T
\end{array}\right) . \quad \text { a } \quad \text { a } b \text { b } b \text { a } a b \ldots .
$$

$$
\begin{array}{llll}
c_{0} & 0 & \mathrm{~T} \\
c_{1} \mathrm{~T} & 1 \mathrm{~T}
\end{array}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state $q_{0}-$ go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, T)$.

$$
\left.\begin{array}{ll}
a: \quad\left(\begin{array}{cc}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
1 & T
\end{array}\right) . \\
b: & \left(c_{0}\right. \\
c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right) . \quad \text { a } a \operatorname{a} b b b a b b \ldots .
$$

$$
\begin{array}{llll}
c_{0} & 0 & \mathrm{~T} \\
c_{1} \mathrm{~T} & 1 \mathrm{~T} & 2 \mathrm{~T} \\
\hline
\end{array}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, T)$.

$$
\begin{array}{ll}
a: & \left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
1 & T
\end{array}\right) . \\
b: & \left(\begin{array}{cc}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right) .
\end{array} \quad \text { a } a \text { a } b b \text { b } a b \ldots .
$$

$$
\begin{array}{llll}
c_{0} & 0 \mathrm{~T} & 1 \mathrm{~T} 2 \mathrm{~T} \\
c_{1} \mathrm{~T} & 1 \mathrm{~T} & 2 \mathrm{~T} & 2 \mathrm{~T}
\end{array}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, T)$.

$$
\left.\begin{array}{lll}
a: & \left(\begin{array}{cc}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
1 & T
\end{array}\right) . \\
b: & \left(c_{0}\right. & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right) . \quad \text { a } a \text { a } b \text { b } b \text { a } a b \ldots .
$$

$$
\begin{aligned}
& \text { co } 0 \mathrm{~T} 1 \mathrm{~T} 2 \mathrm{~T} 2 \mathrm{~T} \\
& c_{1} \mathrm{~T} 1 \mathrm{~T} 2 \mathrm{~T} 2 \mathrm{~T} 3
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{array}{ll}
a: \quad\left(\begin{array}{cc}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \mathrm{~T}
\end{array}\right) . \\
b: \quad\left(\begin{array}{cc}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{T} & 0 \\
0 & \mathrm{~T}
\end{array}\right) . & \boldsymbol{a} \boldsymbol{a} \boldsymbol{a} b \boldsymbol{b} b \boldsymbol{b} \boldsymbol{a} b \ldots \\
& c_{0} 0 \top 1 \top 2 \top 2 \top 3 \\
& c_{1} \top 1 \top 2 \top 2 \top 3 \top
\end{array}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, T)$.

$$
\begin{array}{ll}
a: & \left(\begin{array}{cc}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \top
\end{array}\right) . \\
b: \quad\left(\begin{array}{cc}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
0 & \top
\end{array}\right) . & \boldsymbol{a} a \boldsymbol{a} b b b a b b \ldots \\
& \\
& c_{0} 0 \top 1 \top 2 \top 2 \top 3 \top \\
c_{1} \top 1 \top 2 \top 2 \top 3 \top 3
\end{array}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
Has states q_{0}, q_{1} and one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{1}\right)=(0, \mathrm{~T})$.

$$
a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & T
\end{array}\right) .
$$

$$
b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right) . \quad a a a b b b a a b \ldots
$$

$$
\begin{array}{llllllllll}
c_{0} & 0 & \top & 1 & \top & \top & \top & \top & 3 & \top \\
c_{1} & \top & 1 & \top & 2 & \top & 2 & \top & 3 & \top
\end{array}
$$

In the other direction, one can convert a min-automaton in matrix form by simulating a matrix operation as a sequence of counter operations, and then eliminating T values by storing them in the state.

Nondeterministic min-automata

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded ff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;

$$
\begin{array}{cl}
& a b a a a b a b a a a a b a b \ldots \\
\text { state } & p \\
c & 0 \\
d & 0
\end{array}
$$

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;

$$
\begin{array}{cl}
& a b a a a b a b a a d a b a b \ldots \\
\text { state } & p p \\
c & 01 \\
d & 00
\end{array}
$$

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;

$$
\left.\begin{array}{lll}
& a b a a a b a b a a a a b a b \ldots \\
\text { state } & \text { pp } p \\
c & 0 & 1
\end{array}\right)
$$

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state $p p p p$
c 0101
d 0011

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;

$$
a b a a a b a b a a a a b a b \ldots
$$

$$
\text { state } p p p p p
$$

$$
\begin{gathered}
c \\
c
\end{gathered} \quad 10012
$$

d 00111

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state $p p p p p p$
c $\quad 010123$
d 0001111

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state $p p p p p p q$
c 0101230
d 0011113

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state $p p p p p p q q$
c 01012300
d 00111133

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state $p p p p p p q q p$
c 010123000
d 001111333

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state $p p p p p p q q p p$
c 0101230001
d 0011113333

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state $p p p p p p q q p p p$
c 01012300012
d 00111133333

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a \operatorname{a} b a b \ldots$
state p ррррqqрррр
c 010123000123
d 001111333333

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b . .$.
state p рррррqqррррр
c 0101230001234
d 0011113333333

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state p рррррqqрррррq
c 01012300012340
d 00111133333334

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state p ррррqqрррррqq
с 0101233000123400
d 001111333333344

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: $p, q ; q$ is the "skip block" state
counters: c,d,z
transitions:
saw b in state p - go to p or $q ; d:=c ; c:=z$;
saw b in state q - go to p or q
saw a in state p - go to $p ; c:=c+1$;
saw a in state q - go to q;
$a b a a a b a b a a a a b a b \ldots$
state p рррррqqрррррqqq
с 01012300001234000
d 0011113333333444

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:

Theorem. A deterministic min-automaton cannot recognize the language L.

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than deterministic ones. Separating language:
$L=\left\{a^{n 1} b a^{n^{2}} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$.
Can be recognized by a nondeterministic min-automaton, due to the following Observation. The sequence $n_{1}, n_{2} \ldots$ is unbounded iff it contains a subsequence which tends to ∞.

A nondeterministic automaton can guess the subsequence:

Theorem. A deterministic min-automaton cannot recognize the language L.
Corollary. Deterministic min-automaton are not closed under the second order existential quantifier $\exists X$.

Max-automata

deterministic automata with counters
transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\max (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\limsup (\mathrm{c})=\infty \\
\text { "c has unbounded values" }
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b_{1} . .: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$
Theorem. Min-automata and max-automata have incomparable expressiveness.
Min-max-automata -
boolean combinations of min- and max-automata.

Max-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\max (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:
$\limsup (\mathrm{c})=\infty$
"c has unbounded values"

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b_{1} \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$
Theorem. Min-automata and max-automata have incomparable expressiveness.
Min-max-automata -
boolean combinations of min- and max-automata.

Max-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\max (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\limsup (\mathrm{c})=\infty
$$

"c has unbounded values"

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$
Theorem. Min-automata and max-automata have incomparable expressiveness.
Min-max-automata -
boolean combinations of min- and max-automata.

Max-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\max (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\limsup (c)=\infty
$$

"c has unbounded values"

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$
Theorem. Min-automata and max-automata have incomparable expressiveness.
Min-max-automata -
boolean combinations of min- and max-automata.

Max-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\max (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\limsup (\mathrm{c})=\infty
$$

"c has unbounded values"

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ is unbounded $\}$
Theorem. Min-automata and max-automata have incomparable expressiveness.
Min-max-automata -
boolean combinations of min- and max-automata.

Emptiness of min-max-automata

Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata, which runs in polynomial space.

Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata, which runs in polynomial space.
Proof. min-max-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata, which runs in polynomial space.
Proof. min-max-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Another proof. Uses profinite and semigroup methods.
Is related to:

- Limitedness problem for Distance Automata - Hashiguchi [82], Leung [91], Simon [94], Kirsten [05], Colcombet [09]
- Semiring of matrices over the tropical semiring

Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata, which runs in polynomial space.
Proof. min-max-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Another proof. Uses profinite and semigroup methods.
Is related to:

- Limitedness problem for Distance Automata - Hashiguchi [82], Leung [91], Simon [94], Kirsten [05], Colcombet [09]
- Semiring of matrices over the tropical semiring

Theorem. Emptiness of min- and max-automata is PSPACE-hard.

Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata, which runs in polynomial space.
Proof. min-max-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Another proof. Uses profinite and semigroup methods.
Is related to:

- Limitedness problem for Distance Automata - Hashiguchi [82], Leung [91], Simon [94], Kirsten [05], Colcombet [09]
- Semiring of matrices over the tropical semiring

Theorem. Emptiness of min- and max-automata is PSPACE-hard.
Proof. Standard reduction from universality of nondeterministic finite automata.

Logic

Max-automata

Logic

Max-automata

Extension of WMSO by the quantifier

Logic

Max-automata

Extension of WMSO by the quantifier $U X \varphi(X)$

which says
„there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Logic

Max-automata

Extension of WMSO by the quantifier $U X \varphi(X)$
 which says

,,there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ is unbounded $\}$

Logic

Max-automata

Extension of WMSO by the quantifier $U X \varphi(X)$
 which says

,,there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ is unbounded $\}$
UX "X is a block of a's"

Logic

Max-automata
Min-automata
Extension of WMSO by the quantifier $U X \varphi(X)$
which says
„there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ is unbounded $\}$ UX "X is a block of a's"

Logic

Max-automata
Min-automata
Extension of WMSO by the quantifier

$U X \varphi(X)$

$R X \varphi(X)$
which says
,,there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ is unbounded $\}$ UX "X is a block of a's"

Logic

Max-automata
Min-automata
Extension of WMSO by the quantifier

$U X \varphi(X)$

$\mathrm{RX} \varphi(X)$
which says
"there exist infinitely many sets X of bounded size, satisfying $\varphi(X) "$

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ is unbounded $\}$ UX "X is a block of a's"

Logic

Max-automata
Min-automata
Extension of WMSO by the quantifier

$U X \varphi(X)$

$R X \varphi(X)$
which says
"there exist infinitely many sets X of bounded size, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ converges to $\left.\infty\right\}$
UX "X is a block of a's"

Logic

Max-automata
Min-automata
Extension of WMSO by the quantifier

$U X \varphi(X)$

$R X \varphi(X)$
which says
"there exist infinitely many sets X of bounded size, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ converges to $\left.\infty\right\}$
$\neg \mathrm{R} X$ " X is a block of as"
$R X \varphi(X): \quad$ "there exist infinitely many sets X of the same size, satisfying $\varphi(X) "$
Theorem. WMSO+R has the same expressive power as deterministic min-automata.
$R X \varphi(X): \quad$ „there exist infinitely many sets X of the same size, satisfying $\varphi(X) "$
Theorem. WMSO+R has the same expressive power as deterministic min-automata.
Proof (easy direction). The acceptance condition is a boolean combination of conditions:
$R X \varphi(X): \quad$ „there exist infinitely many sets X of the same size, satisfying $\varphi(X) "$
Theorem. WMSO+R has the same expressive power as deterministic min-automata.
Proof (easy direction). The acceptance condition is a boolean combination of conditions:
values of c do not tend to ∞
$R X \varphi(X): \quad$ „there exist infinitely many sets X of the same size, satisfying $\varphi(X) "$
Theorem. WMSO +R has the same expressive power as deterministic min-automata.
Proof (easy direction). The acceptance condition is a boolean combination of conditions:
values of c do not tend to ∞

$$
d:=d+1 ; c:=\min (d, e) ; c:=c+1 \ldots
$$

$R X \varphi(X): \quad$ "there exist infinitely many sets X of the same size, satisfying $\varphi(X) "$
Theorem. WMSO+R has the same expressive power as deterministic min-automata.
Proof (easy direction). The acceptance condition is a boolean combination of conditions:
values of c do not tend to ∞

$$
d:=d+1 ; c:=\min (d, e) ; c:=c+1 \ldots
$$

$R X \varphi(X): \quad$ "there exist infinitely many sets X of the same size, satisfying $\varphi(X) "$
Theorem. WMSO+R has the same expressive power as deterministic min-automata.
Proof (easy direction). The acceptance condition is a boolean combination of conditions:
values of c do not tend to ∞

$$
d:=d+1 ; c:=\min (d, e) ; c:=c+1 \ldots
$$

$R X \varphi(X): \quad$ "there exist infinitely many sets X of the same size, satisfying $\varphi(X) "$
Theorem. WMSO+R has the same expressive power as deterministic min-automata.
Proof (easy direction). The acceptance condition is a boolean combination of conditions:

$$
d:=d+1 ; c:=\min (d, e) ; c:=c+1 \ldots
$$

R . there is a path starting in an initial counter, ending in c, with increments at positions in the set X
$R X \varphi(X): \quad$ "there exist infinitely many sets X of the same size, satisfying $\varphi(X) "$
Theorem. WMSO+R has the same expressive power as deterministic min-automata.
Proof (easy direction). The acceptance condition is a boolean combination of conditions:

$$
d:=d+1 ; c:=\min (d, e) ; c:=c+1 \ldots
$$

$\mathrm{R} X$. there is a path starting in an initial counter, ending in c, with increments at positions in the set X

In particular, min-automata recognize boolean combinations of languages of the form $\mathrm{R} X \varphi(X)$, where $\varphi(X)$ is WMSO and such that if $w, X \vDash \varphi$, then there is a prefix v of w such that $v u, X \vDash \varphi$ for any suffix u. We call $\mathrm{R} X \varphi(X)$ a prefix R -formula.
$R X \varphi(X): \quad$ "there exist infinitely many sets X of the same size, satisfying $\varphi(X) "$
Theorem. WMSO+R has the same expressive power as deterministic min-automata.
Proof (easy direction). The acceptance condition is a boolean combination of conditions:

$$
d:=d+1 ; c:=\min (d, e) ; c:=c+1 \ldots
$$

R . there is a path starting in an initial counter, ending in c, with increments at positions in the set X

In particular, min-automata recognize boolean combinations of languages of the form $\mathrm{R} X \varphi(X)$, where $\varphi(X)$ is WMSO and such that if $w, X \vDash \varphi$, then there is a prefix v of w such that $v u, X \vDash \varphi$ for any suffix u. We call $\mathrm{R} X \varphi(X)$ a prefix R -formula.
(harder direction). Construct automaton by induction on structure of formula.
For deterministic automata, closure under boolean operations is for free. Must show closure under $\exists_{\text {fin }}$ and that nested R quantifiers can be denested. Follows from a more general theorem.

WMSO + R

min-automata
$\mathrm{WMSO}+\mathrm{U}$
max-automata

$\mathrm{WMSO}+\mathrm{R}$

min-automata

Theorem. WMSO +U has the same expressive power as deterministic max-automata.

$\mathrm{WMSO}+\mathrm{U}$ ||

max-automata

WMSO + R

min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.
Theorem. WMSO +R has the same expressive power as deterministic min-automata.

$\mathrm{WMSO}+\mathrm{U}+\mathrm{R}$ ||

max-automata

min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.
Theorem. WMSO + R has the same expressive power as deterministic min-automata.

What if we allow both U and R ?

$\mathrm{WMSO}+\mathrm{U}+\mathrm{R}$

max-automata

min-automata

Theorem. WMSO +U has the same expressive power as deterministic max-automata.
Theorem. WMSO + R has the same expressive power as deterministic min-automata.
Theorem. WMSO $+\mathrm{U}_{+} \mathrm{R}$ has the same expressive power as boolean combinations of min- and max-automata.

$\mathrm{WMSO}+\mathrm{U}+\mathrm{R}$ || min-max-automata

Theorem. WMSO +U has the same expressive power as deterministic max-automata.
Theorem. WMSO +R has the same expressive power as deterministic min-automata.
Theorem. WMSO $+\mathrm{U}_{+} \mathrm{R}$ has the same expressive power as boolean combinations of min- and max-automata.

$\mathrm{WMSO}+\mathrm{U}+\mathrm{R}$ || min-max-automata

Theorem. WMSO +U has the same expressive power as deterministic max-automata.
Theorem. WMSO +R has the same expressive power as deterministic min-automata.
Theorem. WMSO $+\mathrm{U}_{+} \mathrm{R}$ has the same expressive power as boolean combinations of min- and max-automata.

Equivalently: Nesting the quantifiers U and R does not contribute anything to the expressive power of WMSO.

$\mathrm{WMSO}+\mathrm{U}+\mathrm{R}$ || min-max-automata

Theorem. WMSO +U has the same expressive power as deterministic max-automata.
Theorem. WMSO +R has the same expressive power as deterministic min-automata.
Theorem. WMSO $+\mathrm{U}_{+} \mathrm{R}$ has the same expressive power as boolean combinations of min- and max-automata.

Equivalently: Nesting the quantifiers U and R does not contribute anything to the expressive power of WMSO.
Follows from the more general theorem.

Periodicity-automata

Periodicity-automata

Deterministic automata allowed to verify that certain states appear in an ultimately periodic way

Periodicity-automata

Deterministic automata allowed to verify that certain states appear in an ultimately periodic way

WMSO + P

Periodicity-automata

Deterministic automata allowed to verify that certain states appear in an ultimately periodic way

$\mathrm{WMSO}+\mathrm{P}$

Extension of WMSO by the following quantifier

Periodicity-automata

Deterministic automata allowed to verify that certain states appear in an ultimately periodic way

$\mathrm{WMSO}+\mathrm{P}$

Extension of WMSO by the following quantifier

$$
\mathrm{P} x \varphi(x)
$$

"the set of positions x satisfying
$\varphi(x)$ is ultimately periodic"

Periodicity-automata

$\mathrm{WMSO}+\mathrm{P}$

Theorem. WMSO +P has the same expressive power as periodicity-automata.

Periodicity-automata

WMSO + P

Theorem. WMSO +P has the same expressive power as periodicity-automata.

Theorem. Emptiness of periodicity automata is decidable. Therefore, WMSO + P has decidable satisfiability.

Periodicity-automata

WMSO + P

Theorem. WMSO +P has the same expressive power as periodicity-automata.

Theorem. Emptiness of periodicity automata is decidable. Therefore, WMSO + P has decidable satisfiability.

Theorem. WMSO + $\mathrm{R}+\mathrm{U}+\mathrm{P}$ has the same expressive power as boolean combinations of min- max- and periodicity-automata.

General framework

General framework

Theorem. A WMSO+ $Q_{1+} Q_{2+\ldots+} Q_{n}$ formula is equivalent to a boolean combination of formulas of the form $\quad \mathrm{Q}_{k} X \varphi_{k}(X)$. (We require some additional conditions on the quantifiers $Q_{1}, Q_{2}, \ldots, Q_{n}$ which will be phrased later)

Another view on min- and max-automata

Another view on min- and max-automata

A min-automaton can be viewed as:

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$ which outputs a sequence of counter operations

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$ which outputs a sequence of counter operations
a
b.

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$ which outputs a sequence of counter operations
a
b
b
a
b.
$d:=d+1$;

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$ which outputs a sequence of counter operations
a
b
b
a
b.
$d:=d+1 ; \quad c:=\min (d, e) ;$

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$ which outputs a sequence of counter operations

$$
\begin{array}{lccc}
a & b & b & a \\
d:=d+1 ; & c:=\min (d, e) ; & c:=c+1 ; d:=d+1 ; & b \ldots \ldots
\end{array}
$$

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$ which outputs a sequence of counter operations

$$
\begin{array}{lcccc}
a & b & b & a & b \ldots \ldots \\
d:=d+1 ; & c:=\min (d, e) ; & c:=c+1 ; d:=d+1 ; & c:=c+1 ;
\end{array}
$$

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$ which outputs a sequence of counter operations

$$
\begin{array}{lclcc}
a & b & b & a & b \ldots \ldots \\
d:=d+1 ; & c:=\min (d, e) ; & c:=c+1 ; d:=d+1 ; & c:=c+1 ; & c:=\min (c, c) ; \ldots
\end{array}
$$

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$ which outputs a sequence of counter operations
a
b
b
a
b......
$d:=d+1 ; \quad c:=\min (d, e) ; \quad c:=c+1 ; d:=d+1 ; \quad c:=c+1 ; \quad c:=\min (c, c) ; \ldots$.

We consider the language $F \subseteq B^{\omega}$ of sequences of instructions in which the appropriate counters converge to ∞.

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$ which outputs a sequence of counter operations
a b
b
a b. $d:=d+1 ; \quad c:=\min (d, e) ; \quad c:=c+1 ; d:=d+1 ; \quad c:=c+1 ; \quad c:=\min (c, c) ; \ldots$.

We consider the language $F \subseteq B^{\omega}$ of sequences of instructions in which the appropriate counters converge to ∞.

The language F is prefix-independent, i.e. $F=B^{*} F$.

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$ which outputs a sequence of counter operations
a
b
b
a
b.
$d:=d+1 ; \quad c:=\min (d, e) ; \quad c:=c+1 ; d:=d+1 ; \quad c:=c+1 ; \quad c:=\min (c, c) ; \ldots$.

We consider the language $F \subseteq B^{\omega}$ of sequences of instructions in which the appropriate counters converge to ∞.

The language F is prefix-independent, i.e. $F=B^{*} F$.
The automaton accepts a word $w \in A^{\omega}$ iff $f(w) \in F$.

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$
which outputs a sequence of counter operations

An F-automaton

appropriate counters converge to ∞.
The language F is prefix-independent, i.e. $F=B^{*} F$.
The automaton accepts a word $w \in A^{\omega}$ iff $f(w) \in F$.

Another view on min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer $f: A \rightarrow B$
which outputs a sequence of counter operations

An F-automaton

appropriate counters converge to ∞.
The language F is prefix-independent, i.e. $F=B^{*} F$.
The automaton accepts a word $w \in A^{\omega}$ iff $f(w) \in F$.

Similarly, Büchi, Muller, parity, max- automata are F-automata

Another view on quantifiers $U, R, \exists_{\text {fin }}$

Another view on quantifiers $U, R, \exists_{\text {fin }}$

They speak about properties of families of finite sets of positions:

Another view on quantifiers $U, R, \exists_{\text {fin }}$
They speak about properties of families of finite sets of positions:
$\mathrm{U} X \varphi(X)$
"there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Another view on quantifiers $\mathrm{U}, \mathrm{R}, \exists_{\text {fin }}$

They speak about properties of families of finite sets of positions:
$\cup X \varphi(X)$
"there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "
$\mathrm{R} X \varphi(X) \quad$ "there exist infinitely many sets X of the same size, satisfying $\varphi(X)$ "

Another view on quantifiers $U, R, \exists_{\text {fin }}$

They speak about properties of families of finite sets of positions:
$U X \varphi(X)$
"there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "
$\mathrm{R} X \varphi(X)$
"there exist infinitely many sets X of the same size, satisfying $\varphi(X)$ "
$\exists_{\text {fin }} X \varphi(X)$
"the family of fnite sets X which satisfy $\varphi(X)$ is nonempty"

Another view on quantifiers $\mathrm{U}, \mathrm{R}, \exists_{\text {fin }}$

They speak about properties of families of finite sets of positions:
U $X \varphi(X)$
"there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "
$\mathrm{R} X \varphi(X)$
"there exist infinitely many sets X of the same size, satisfying $\varphi(X)$ "
$\exists \operatorname{fin} X \varphi(X)$
"the family of finite sets X which satisfy $\varphi(X)$ is nonempty"
Q $X \varphi(X)$
"the family of finite sets X satisfying $\varphi(X)$ bas aproperty Q "

Another view on quantifiers $U, R, \exists_{\text {fin }}$

They speak about properties of families of finite sets of positions:
$\mathrm{U} X \varphi(X)$
"there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "
"there exist infinitely many sets X of the same size, satisfying $\varphi(X)$ "
$\exists_{\text {fin }} X \varphi(X)$
"the family of finite sets X which satisfy $\varphi(X)$ is nonempty"
QX $\varphi(X)$
"the family of fnite sets X satisfying $\varphi(X)$ bas a property Q "
A locus quantifier: any property Q of families of finite sets of positions

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathbf{Q} L=\left\{w \in A^{\omega}: \mathbf{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and \mathbf{Q}-formulas. Moreover, if Q is prefixindependent then the Q -formulas are prefix Q -formulas.

φ - a WMSO formula with a free variable X;

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathbf{Q} L=\left\{w \in A^{\omega}: \mathbf{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and \mathbf{Q}-formulas. Moreover, if \mathbf{Q} is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X; eg. $\varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow \quad(x \in X \Leftrightarrow y \notin X)$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathrm{Q} L=\left\{w \in A^{\omega}: \quad \mathrm{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and \mathbf{Q}-formulas. Moreover, if \mathbf{Q} is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;
eg. $\varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow(x \in X \Leftrightarrow y \notin X)$
X - a finite set of positions; $\quad w, X \vDash \varphi$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathbf{Q} L=\left\{w \in A^{\omega}: \mathbf{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;
eg. $\varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow(x \in X \Leftrightarrow y \notin X)$
X - a finite set of positions; $\quad w, X \models \varphi$
\mathscr{C} - a family of sets $X ; \quad X_{\varphi}=\{X: w, X \models \varphi\}$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathrm{Q} L=\left\{w \in A^{\omega}: \quad \mathrm{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and \mathbf{Q}-formulas. Moreover, if \mathbf{Q} is prefixindependent then the \mathbf{Q}-formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;
eg. $\varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow(x \in X \Leftrightarrow y \notin X)$
X - a finite set of positions; $\quad w, X \models \varphi$
X - a family of sets X;
$X_{\varphi}=\{X: w, X \models \varphi\}$
Q - a property of sets \mathscr{X};
$\mathrm{Q} X_{\varphi}(X) \quad$ iff $\quad X_{\varphi} \in \mathrm{Q}$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathrm{Q} L=\left\{w \in A^{\omega}: \quad \mathrm{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and Q-formulas. Moreover, if \mathbf{Q} is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;

$$
\text { eg. } \varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow \quad(x \in X \Leftrightarrow y \notin X)
$$

X - a finite set of positions; $\quad w, X \models \varphi$
X - a family of sets X;
$X_{\varphi}=\{X: w, X \models \varphi\}$
Q - a property of sets \mathscr{X};
$\mathrm{Q} X \varphi(X) \quad$ iff $\quad \mathscr{X}_{\varphi} \in \mathrm{Q}$
QX $\varphi(X)$ - a Q-formula

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathrm{Q} L=\left\{w \in A^{\omega}: \quad \mathrm{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and \mathbf{Q}-formulas. Moreover, if \mathbf{Q} is prefixindependent then the \mathbf{Q}-formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;

$$
\text { eg. } \varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow \quad(x \in X \Leftrightarrow y \notin X)
$$

X - a finite set of positions; $\quad w, X \models \varphi$
X - a family of sets X;
$X_{\varphi}=\{X: w, X \models \varphi\}$
Q - a property of sets \mathscr{X};
$\mathrm{Q} X \varphi(X) \quad$ iff $\quad \mathscr{X}_{\varphi} \in \mathrm{Q}$
Q $X \varphi(X)$ - a Q-formula
$\exists_{\mathrm{fin}}=\left\{X: X_{\text {contains some }}\right.$ set $\left.X\right\}$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathrm{Q} L=\left\{w \in A^{\omega}: \quad \mathrm{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and \mathbf{Q}-formulas. Moreover, if \mathbf{Q} is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;

$$
\text { eg. } \varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow \quad(x \in X \Leftrightarrow y \notin X)
$$

X - a finite set of positions; $\quad w, X \models \varphi$
X - a family of sets X;
$X_{\varphi}=\{X: w, X \models \varphi\}$
Q - a property of sets \mathscr{X};
$\mathrm{Q} X \varphi(X) \quad$ iff $\quad X_{\varphi} \in \mathrm{Q}$
$\mathrm{Q} X \varphi(X)$ - a Q -formula
$\exists_{\mathrm{fin}}=\left\{X: X_{\text {contains some }}\right.$ set $\left.X\right\}$
$\mathrm{R}=\{X: X$ contains infinitely many sets X of same size $\}$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathrm{Q} L=\left\{w \in A^{\omega}: \quad \mathrm{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and Q-formulas. Moreover, if \mathbf{Q} is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;

$$
\text { eg. } \varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow \quad(x \in X \Leftrightarrow y \notin X)
$$

X - a finite set of positions; $\quad w, X \models \varphi$
X - a family of sets X;
$\mathscr{X}_{\varphi}=\{X: w, X \models \varphi\}$
Q - a property of sets \mathscr{X};
$\mathrm{Q} X \varphi(X) \quad$ iff $\quad X_{\varphi} \in \mathrm{Q}$
$\mathrm{Q} X \varphi(X)$ - a Q-formula
$\exists_{\mathrm{fin}}=\{X: X$ contains some set $X\}$
$\mathrm{R}=\{X: X$ contains infinitely many sets X of same size $\}$
$\mathrm{U}=\{X: X$ contains sets X of arbitrarily large size $\}$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathrm{Q} L=\left\{w \in A^{\omega}: \quad \mathrm{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and Q-formulas. Moreover, if \mathbf{Q} is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;

$$
\text { eg. } \varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow(x \in X \Leftrightarrow y \notin X)
$$

X - a finite set of positions; $\quad w, X \models \varphi$
X - a family of sets X;
$\mathscr{X}_{\varphi}=\{X: w, X \models \varphi\}$
Q - a property of sets \mathscr{X};
$\mathrm{Q} X \varphi(X) \quad$ iff $\quad X_{\varphi} \in \mathrm{Q}$
$\mathrm{Q} X \varphi(X)$ - a Q -formula
$\exists_{\mathrm{fin}}=\{X: X$ contains some set $X\}$
$\mathrm{R}=\{X: X$ contains infinitely many sets X of same size $\}$
$\mathrm{U}=\{X: X$ contains sets X of arbitrarily large size $\}$
Q is finitely invariant: if \mathscr{X} and \mathscr{Y} differ by finitely many sets, then $\quad \mathcal{X} \in \mathrm{Q} \Leftrightarrow \mathscr{Y} \in \mathrm{Q}$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathrm{Q} L=\left\{w \in A^{\omega}: \quad \mathrm{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and Q-formulas. Moreover, if \mathbf{Q} is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;
eg. $\varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow(x \in X \Leftrightarrow y \notin X)$
X - a finite set of positions; $\quad w, X \vDash \varphi$
\mathcal{X} - a family of sets $X ; \quad X_{\phi}=\{X: w, X \vDash \phi\}$
Q - a property of sets $X_{i} \quad \mathrm{Q} X \varphi(X) \quad$ iff $\quad X_{\varphi} \in \mathrm{Q}$
$\exists_{\text {fin }}=\left\{X: X_{\text {contains some set } X\}}\right\}$
$\mathrm{R}=\{X: X$ contains infinitely many sets X of same size $\}$
$\mathrm{U}=\{X: \mathscr{X}$ contains sets X of arbitrarily large size $\}$
Q is finitely invariant: if \mathcal{X} and \mathscr{Y} differ by finitely many sets, then $\quad X \in \mathbf{Q} \Leftrightarrow \mathscr{Y} \in \mathbf{Q}$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathbf{Q} L=\left\{w \in A^{\omega}: \mathbf{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;
eg. $\varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow(x \in X \Leftrightarrow y \notin X)$
X - a finite set of positions; $\quad w, X \vDash \varphi$
\mathcal{X} - a family of sets $X ; \quad X_{\phi}=\{X: w, X \vDash \phi\}$
Q - a property of sets $\mathscr{X}_{;} \quad \mathrm{Q} X \varphi(X) \quad$ iff $\quad X_{\varphi} \in \mathrm{Q}$
$\exists_{\mathrm{fin}}=\left\{X: X_{\text {contains some set } X\}}\right.$
$\mathrm{R}=\{X: \mathscr{X}$ contains infinitely many sets X of same size $\}$
$\mathrm{U}=\{X: \mathscr{X}$ contains sets X of arbitrarily large size $\}$
Q is finitely invariant: if \mathscr{X} and \mathscr{Y} differ by finitely many sets, then $\quad X \in \mathbf{Q} \Leftrightarrow \mathscr{Y} \in \mathbf{Q}$

Goal: convert a (WMSO+Q)-formula into a boolean combination of Q-formulas, which defines the same language.

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language
$\mathrm{Q} L=\left\{w \in A^{\omega}: \mathbf{Q} X[w \otimes X \in L]\right\}$
is a boolean combination of F-regular languages and Q-formulas. Moreover, if \mathbf{Q} is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;
eg. $\varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow(x \in X \Leftrightarrow y \notin X)$
X - a finite set of positions; $\quad w, X \vDash \varphi$
\mathcal{X} - a family of sets $X ; \quad X_{\phi}=\{X: w, X \vDash \phi\}$
Q - a property of sets $\mathscr{X}_{;} \quad \mathrm{Q} X \varphi(X) \quad$ iff $\quad X_{\varphi} \in \mathrm{Q}$
$\exists_{\text {fin }}=\{X: X$ contains some set $X\}$
$\mathrm{R}=\{X: \mathscr{X}$ contains infinitely many sets X of same size $\}$
$\mathrm{U}=\{X: X$ contains sets X of arbitrarily large size $\}$
Q is finitely invariant: if \mathscr{X} and \mathscr{Y} differ by finitely many sets, then $\quad X \in \mathrm{Q} \Leftrightarrow \mathscr{Y} \in \mathrm{Q}$

Goal: convert a (WMSO+Q)-formula into a boolean combination of Q-formulas, which defines the same language.

What language does a formula φ with a free variable define?
A language L over $A \times\{0,1\}$:

$$
L=\{w \otimes X: \quad w, X \vDash \varphi\}
$$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathbf{Q} L=\left\{w \in A^{\omega}: \mathbf{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and \mathbf{Q}-formulas. Moreover, if \mathbf{Q} is prefixindependent then the Q -formulas are prefix Q -formulas.
φ - a WMSO formula with a free variable X;
eg. $\varphi=\forall x \forall y \quad \operatorname{suc}(x, y) \Rightarrow(x \in X \Leftrightarrow y \notin X)$
X - a finite set of positions; $\quad w, X \vDash \varphi$
\mathcal{X} - a family of sets $X ; \quad X_{\phi}=\{X: w, X \vDash \phi\}$
Q - a property of sets $\mathscr{X}_{;} \quad \mathrm{Q} X \varphi(X) \quad$ iff $\quad X_{\varphi} \in \mathrm{Q}$
$\exists_{\text {fin }}=\{X: X$ contains some set $X\}$
$\mathrm{R}=\{X: \mathscr{X}$ contains infinitely many sets X of same size $\}$
$\mathrm{U}=\{X: X$ contains sets X of arbitrarily large size $\}$
Q is finitely invariant: if \mathscr{X} and \mathscr{Y} differ by finitely many sets, then $\quad X \in \mathrm{Q} \Leftrightarrow \mathscr{Y} \in \mathrm{Q}$

Goal: convert a (WMSO+Q)-formula into a boolean combination of Q-formulas, which defines the same language.

What language does a formula φ with a free variable define?
A language L over $A \times\{0,1\}$:

$$
L=\{w \otimes X: \quad w, X \vDash \varphi\}
$$

We need to show: if L is a boolean combination of Q -formulas, then so is

$$
\mathrm{Q} L=\left\{w \in A^{\omega}: \mathbf{Q} X[w \otimes X \in L]\right\}
$$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathbf{Q} L=\left\{w \in A^{\omega}: \mathbf{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is prefixindependent then the Q -formulas are prefix Q -formulas.
$\exists_{\text {fin }}=\{X: X$ contains some set $X\}$
$\mathrm{R}=\{X: X$ contains infinitely many sets X of same size $\}$
$\mathrm{U}=\left\{\mathscr{X}: X_{\text {contains sets } X}\right.$ of arbitrarily large size $\}$
Q is finitely invariant: if \mathscr{X} and \mathscr{Y} differ by finitely many sets,
then $\quad X \in \mathrm{Q} \Leftrightarrow \mathscr{Y} \in \mathrm{Q}$

Goal: convert a (WMSO+Q)-formula into a boolean combination of Q-formulas, which defines the same language.

What language does a formula φ with a free variable define?
A language L over $A \times\{0,1\}$:

$$
L=\{w \otimes X: \quad w, X \vDash \varphi\}
$$

We need to show: if L is a boolean combination of Q -formulas, then so is

$$
\mathrm{Q} L=\left\{w \in A^{\omega}: \quad \mathrm{Q} X[w \otimes X \in L]\right\}
$$

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If L is an F-regular language over the alphabet $A \times\{0,1\}$, then the language

$$
\mathbf{Q} L=\left\{w \in A^{\omega}: \mathbf{Q} X[w \otimes X \in L]\right\}
$$

is a boolean combination of F-regular languages and Q -formulas. Moreover, if Q is prefixindependent then the Q -formulas are prefix Q -formulas.

