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Plan

1. Introduction to the problem

2. Reduce emptiness of min-automata to the finite
section problem, via a Ramsey-type theorem

3. Solve the finite section problem using Simon’s
factorization theorem
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Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
1

(46 »
c tends to oo

Example. L = {a*"1b a"?b a3b...: ni,no... does not converge to oo}
Min-automaton has one state and three counters: ¢, 4,z
-when reading 4, do ¢:=c+1

-when reading 4, do d:=min(c,c); c:=min(z,z)

Acceptance condition: - liminf(c) = co A= liminf(d) = oo
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17'=10,1,2,..., oo, T}

with operations +, min
ordered by O<1<2<...<c0<T
where T+ x=x+T=T

2 3 4 56700
d(m,n)=|1/m-1/n|
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T
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1 = {0,1,2,..., 00, T}‘ MkT—kbykmatrices over 1
with operations +, min with matrix multiplication
ordered by O<1<2<...<c0<T 3 32 T
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Simon’s Factorization Theorem

for semigroups with stabilization

Factorization tree of word w € S* Example (finite)
Use the two rules to construct tree: Tn=(10,1, 2, ..., IV, oo}, +, #),
binary rule idempotent rule N+1=N, 0% =0, x" = oo = =

o /ﬂ\
o 00

Theorem. For any finite stabilization semigroup § and word

w € S* there exists a factorization tree over w of height < 9|S|-.

Monday, November 30, 2009



More examples
of semigroups with stabilization

Monday, November 30, 2009



More examples
of semigroups with stabilization

Example (infinite)
(M/ej_; s @ )

Monday, November 30, 2009



More examples
of semigroups with stabilization

Example (infinite) Example (finite)
(M/ej_; S w ) (MkTN) *y # )

Monday, November 30, 2009



More examples
of semigroups with stabilization

Example (infinite)  y, 00~  Example (finite)

(M/ej_; S w ) (MkTN) *y # )
AN

Monday, November 30, 2009



More examples

of semigroups with stabilization

Example (infinite)  y, 00~  Example (finite)

(M/ej_; S w) (MkTN) *y #)
AN

01 T 01 T

LT T 1 I s

J 1 T 1 %3 (). 1 T 1

0 1 2 0 1 2

w. 2 3 4 (N = ota (YP)- 2 3 3

y'lzs 3()/) 3()/)123
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Lemma. Let Q, @) be matrices over the (min,+)-semiring.
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and let e € M7 be the result of a factorization tree w.r.t an.
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Lemma. Let Q, @) be matrices over the (min,+)-semiring.

Let w be a word over 2, 6 and let © + € M7 be the “real” product of w

and let e € M7 be the result of a factorization tree w.r.t an.

Then: e i+ agree on values {0,1,...,/N-1, T}
it s[ijl=N then N=rlij] =27
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DYV

e ©.0 - (0.0

N
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DRV
The (@, @) ©.0)"
¢ ?
x, x| <NV

M I
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Then OCN((Q Q) >— OCN((Q Q)Jr w)

M<N S

Let 71, 72, 73,... € (Q: Q)+

such that x = lim 7,

Wlog, we can assume that
» ralif] = xlijl < N it xlijf]l#eo

* 7y :l,]: > 71 > 2/7 lf X:l,]: =00 finite semigroup
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Plan

1. Introduction to the problem

2. Reduce emptiness of min-automata to the finite
section problem, via a Ramsey-type theorem

3. Solve the finite section problem using Simon’s
Factorization Theorem

Thank you for your attention!
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