Deciding Emptiness of min-automata

Szymon Toruńczyk
joint work with
Mikołaj Bojańczyk
LSV Cachan / University of Warsaw

Plan

1. Introduction to the problem
2. Reduce emptiness of min-automata to the finite section problem, via a Ramsey-type theorem
3. Solve the finite section problem using Simon's factorization theorem

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$ Min-automaton has one state and three counters: c, d, z -when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$ Min-automaton has one state and three counters: c, d, z -when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$ Min-automaton has one state and three counters: c, d, z -when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$ Min-automaton has one state and three counters: c, d, z -when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$ Min-automaton has one state and three counters: c, d, z -when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z -when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z - when reading a, do $c:=c+1$
$a a a b a b a a b \ldots$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z - when reading a, do $c:=c+1$
aaababaab...
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$
Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

$$
\begin{array}{ll}
& a a a b a b a a b \ldots \\
c & 0 \\
d & 0 \\
z & 0
\end{array}
$$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{array}{lll}
& & a a a b a b a a b \ldots \\
c & 0 & 1 \\
d & 0 & 0 \\
z & 0 & 0
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{array}{lll}
& & a \\
& a & a b a b a a b \ldots \\
c & 0 & 1
\end{array} 2
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\left.\begin{array}{llll}
& & a & a \\
c & a b & b & b a b \\
c & 0 & 1 & 2
\end{array}\right]
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{array}{lllllll}
& & a & a & a & b & a \\
c & b a b & b \ldots \\
c & 0 & 1 & 2 & 3 & 0 \\
d & 0 & 0 & 0 & 0 & 3
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

$$
\begin{aligned}
& a a a b a b a a b \ldots \\
& \text { c } 012301 \\
& \text { d } 000033 \\
& \text { z } 000000
\end{aligned}
$$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{\|} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{array}{llllllllllll}
& & a & a & a & b & a & b & a & a & b \ldots \\
c & 0 & 1 & 2 & 3 & 0 & 1 & 0 \\
c
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{\|} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$
$a a \operatorname{a} a b a a b \ldots$
c 01230101
d 000003311
$z 00000000$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{\|} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{aligned}
& a a a b a b a a b \ldots \\
& \text { c } 012301012 \\
& \text { d } 00000331111 \\
& z 000000000
\end{aligned}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{\|} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n 1} b a^{n 2} b a^{n 3} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{aligned}
& a a a b a b a a b \ldots \\
& \text { c } 0123010120 \\
& \text { d } 00000331112 \\
& z 0000000000
\end{aligned}
$$

Equivalent description

Equivalent description

- No states, just counters with values $\{0,1,2, \ldots, T\}$

Equivalent description

- No states, just counters with values $\{0,1,2, \ldots, T\}$
- T is the undefined counter value

Equivalent description

- No states, just counters with values $\{0,1,2, \ldots, T\}$
- T is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters

Equivalent description

- No states, just counters with values $\{0,1,2, \ldots, T\}$
- T is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2, \ldots, T\}$, where min with respect to $0<1<2<\ldots<\top$ is addition and + is multiplication

Equivalent description

- No states, just counters with values $\{0,1,2, \ldots, T\}$
- T is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2, \ldots, T\}$, where min with respect to $0<1<2<\ldots<\top$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

Equivalent description

- No states, just counters with values $\{0,1,2, \ldots, T\}$
- T is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2, \ldots, T\}$, where \min with respect to $0<1<2<\ldots<T$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right)
$$

Equivalent description

- No states, just counters with values $\{0,1,2, \ldots, T\}$
- T is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2, \ldots, T\}$, where \min with respect to $0<1<2<\ldots<T$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right)=\left(\begin{array}{lll}
c+1 & d & z
\end{array}\right)
$$

Equivalent description

- No states, just counters with values $\{0,1,2, \ldots, T\}$
- T is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2, \ldots, T\}$, where \min with respect to $0<1<2<\ldots<T$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right)=\left(\begin{array}{lll}
c+1 & d & z
\end{array}\right)
$$

$d:=\min (c, c) ; c:=\min (z, z)$ can be written as:

Equivalent description

- No states, just counters with values $\{0,1,2, \ldots, T\}$
- T is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2, \ldots, T\}$, where min with respect to $0<1<2<\ldots<\top$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right)=\left(\begin{array}{lll}
c+1 & d & z
\end{array}\right)
$$

$d:=\min (c, c) ; c:=\min (z, z)$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
\top & 0 & \top \\
\top & \top & \top \\
0 & \top & 0
\end{array}\right)
$$

Equivalent description

- No states, just counters with values $\{0,1,2, \ldots, T\}$
- T is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2, \ldots, T\}$, where min with respect to $0<1<2<\ldots<\top$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right)=\left(\begin{array}{lll}
c+1 & d & z
\end{array}\right)
$$

$d:=\min (c, c) ; c:=\min (z, z)$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
\top & 0 & \top \\
\top & \top & \top \\
0 & \top & 0
\end{array}\right)=\left(\begin{array}{lll}
z & c & z
\end{array}\right)
$$

Emptiness of min-automata

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of $\omega \mathrm{BS}$-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of $\omega \mathrm{BS}$-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.
2nd proof. Reduction to the finite section problem over the tropical semiring. Gives PSPACE algorithm, which is optimal.

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of $\omega \mathrm{BS}$-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.
2nd proof. Reduction to the finite section problem over the tropical semiring.
Gives PSPACE algorithm, which is optimal.

starheight 1 problem

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of $\omega \mathrm{BS}$-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.
2nd proof. Reduction to the finite section problem over the tropical semiring.
Gives PSPACE algorithm, which is optimal.

starheight 1 problem

Hashiguchi, 82
limitedness
of distance
automata

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of $\omega \mathrm{BS}$-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.
2nd proof. Reduction to the finite section problem over the tropical semiring.
Gives PSPACE algorithm, which is optimal.

starheight 1 problem

Hashiguchi, 82

limitedness of distance automata

finite section problem

Simon, Leung ~ 90's

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.
2nd proof. Reduction to the finite section problem over the tropical semiring.
Gives PSPACE algorithm, which is optimal.

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.
2nd proof. Reduction to the finite section problem over the tropical semiring.
Gives PSPACE algorithm, which is optimal.

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of $\omega \mathrm{BS}$-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.
2nd proof. Reduction to the finite section problem over the tropical semiring.
Gives PSPACE algorithm, which is optimal.

An example

initial counter

Initial valuation:

Acceptance condition: $\neg \liminf \left(c_{3}\right)=\infty$

An example

What are the values of the counters after reading baab?

An example

initial counter

Initial valuation:
Acceptance condition: $\neg \liminf \left(c_{3}\right)=\infty$

What are the values of the counters after reading baab?

An example

initial counter

Initial valuation:
Acceptance condition: $\neg \liminf \left(c_{3}\right)=\infty$

What are the values of the counters after reading baab?

An example

initial counter

Initial valuation:

Acceptance condition: $\neg \liminf \left(c_{3}\right)=\infty$

An example

An example

An example

An example

Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds
iff
val $\left(c_{3}\right)$ has a bounded subsequence

An example

Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds
iff
val $\left(c_{3}\right)$ has a bounded subsequence
iff

An example

An example

Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds
iff
val($\left.c_{3}\right)$ has a bounded subsequence
iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1's

An example

An example

$\times a b a^{2} b a^{3} b a^{4} b a^{5} \ldots$.

initial counter

Initial valuation:

Acceptance condition: $\neg \liminf \left(c_{3}\right)=\infty$
Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds iff
val $\left(c_{3}\right)$ has a bounded subsequence iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1 's

An example

Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds $a b a b a^{2} b a b a^{3} b a b a^{4} b a \ldots$. iff
val($\left.c_{3}\right)$ has a bounded subsequence
iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1's

An example

$a:$| 0 | \top | \top |
| :---: | :---: | :---: |
| \top | 1 | \top |
| \top | \top | 1 |

$\times a b a^{2} b a^{3} b a^{4} b a^{5} \ldots$.

initial counter

Initial valuation:
Acceptance condition: $\neg \liminf \left(c_{3}\right)=\infty$
Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds iff
val $\left(c_{3}\right)$ has a bounded subsequence
iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1's

An example

Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds
$a b a b a^{2} b a b a^{3} b a b a^{4} b a \ldots$.
val $\left(c_{3}\right)$ has a bounded subsequence

> iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1 's

An example

$a^{n} b a^{n+1} b:$

$$
\text { Input: } \quad w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots
$$

$\neg \liminf \left(c_{3}\right)=\infty$ holds
val($\left.c_{3}\right)$ has a bounded subsequence
iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1 's

An example

$$
a^{n} b a^{n+1} b: \left.\begin{array}{ccc}
0 & 0 & n+1 \\
\top & \top & 2 n+2 \\
\top & \top & 2 n+3
\end{array} \right\rvert\,
$$

$$
\text { Input: } \quad w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots
$$

$\neg \liminf \left(c_{3}\right)=\infty$ holds
val $\left(c_{3}\right)$ has a bounded subsequence
of
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1's

An example

$$
a^{n} b a^{n+1} b: \left.\begin{array}{ccc}
0 & 0 & n+1 \\
\top & \top & 2^{n+2} \\
\top & \top & 2^{n+3}
\end{array} \right\rvert\, \quad a^{n} b a b:
$$

Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds iff
val($\left(_{3}\right.$) has a bounded subsequence
iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1's

An example

\(a^{n} b a^{n+1} b: \left.\begin{array}{ccc}0 \& 0 \& n+1

\top \& \top \& 2 n+2

\top \& \top \& 2 n+3\end{array} \right\rvert\, \quad a^{n} b a b:\)| 0 | 0 | 1 |
| :---: | :---: | :---: |
| \top | \top | $n+2$ |
| \top | \top | $n+3$ |

Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds iff
val($\left.c_{3}\right)$ has a bounded subsequence
iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1 's

An example

$a^{n} b a^{n+1} b:$| 0 | 0 | $n+1$ |
| :---: | :---: | :---: |
| T | T | $2 n+2$ |
| T | T | $2 n+3$ |\(\left|\rightarrow \begin{array}{ccc}0 \& 0 \& \infty

\mathrm{~T} \& \mathrm{~T} \& \infty

\mathrm{~T} \& \mathrm{~T} \& \infty\end{array}\right| \quad a^{n} b a b:\)| 0 | 0 | 1 |
| :---: | :---: | :---: |
| T | T | $n+2$ |
| T | T | $n+3$ |

$$
\text { Input: } \quad w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots
$$

$\neg \liminf \left(c_{3}\right)=\infty$ holds
val($\left(_{3}\right.$) has a bounded subsequence
of
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1 's

An example

$a^{n} b a^{n+1} b:$| 0 | 0 | $n+1$ |
| :---: | :---: | :---: |
| \top | \top | $2 n+2$ |
| \top | \top | $2 n+3$ |\(\left|\rightarrow \begin{array}{ccc}0 \& 0 \& \infty

\top \& \top \& \infty

\top \& \top \& \infty\end{array}\right| \quad a^{n} b a b:\)| 0 | 0 | 1 |
| :---: | :---: | :---: |
| \top | \top | $n+2$ |
| \top | \top | $n+3$ |\rightarrow| 0 | 0 | 1 |
| :---: | :---: | :---: |
| \top | \top | ∞ |
| \top | \top | ∞ |

Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds iff
val(c_{3}) has a bounded subsequence
iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1 's

An example

Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds iff
val(c_{3}) has a bounded subsequence
iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1 's

An example

Input: $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
$\neg \liminf \left(c_{3}\right)=\infty$ holds iff
val(c_{3}) has a bounded subsequence
iff
there exist arbitrarily long paths labeled by a prefix of w, starting in c_{1}, ending in c_{3} with a bounded number of 1's

Plan

1. Introduction to the problem
2. Reduce emptiness of min-automata to the finite section problem, via a Ramsey-type theorem
3. Solve the finite section problem using Simon's factorization theorem

Plan

\checkmark 1. Introduction to the problem
2. Reduce emptiness of min-automata to the finite section problem, via a Ramsey-type theorem
3. Solve the finite section problem using Simon's factorization theorem

The tropical semiring

The tropical semiring

$$
T=\{0,1,2, \ldots, \infty, \top\}
$$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+\top=\top
\end{gathered}
$$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+\top=\top
\end{gathered}
$$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+T=\top
\end{gathered}
$$

$\mathrm{M}_{k} T-k$ by k matrices over T with matrix multiplication

$$
3 \quad 32 \quad \top
$$

$$
\begin{array}{lll}
\top & 11 & 1
\end{array}
$$

27∞

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+\top=\top
\end{gathered}
$$

$\mathrm{M}_{k} T-k$ by k matrices over T with matrix multiplication

$$
3 \quad 32 \quad \top
$$

$$
\begin{array}{lll}
\top & 11 & 1
\end{array}
$$

Topology
27∞

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+\top=\top
\end{gathered}
$$

$\mathrm{M}_{k} T-k$ by k matrices over T with matrix multiplication
$3 \quad 32$ T
† 111
Topology
27∞
$\begin{array}{lll}1 & 2 & 345670 \infty\end{array}$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+\top=\top
\end{gathered}
$$

$\mathrm{M}_{k} T-k$ by k matrices over T with matrix multiplication

Topology \quad| 3 | 32 | T |
| :---: | :---: | :---: |
| T | 11 | 1 |
| 2 | 7 | ∞ |

1

$$
\begin{gathered}
2 \quad 3 \quad 4 \quad 5670 \infty \\
d(m, n)=|1 / \mathrm{m}-1 / \mathrm{n}|
\end{gathered}
$$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+\top=\top
\end{gathered}
$$

$\mathrm{M}_{k} T-k$ by k matrices over T with matrix multiplication
$3 \quad 32 \quad$ T

T 111
Topology
27∞
$234567 . \infty \quad$ T
$d(m, n)=|1 / m-1 / n|$

The tropical semiring

$$
\begin{aligned}
& T=\{0,1,2, \ldots, \infty, \top\} \\
& \text { with operations }+ \text {, min } \\
& \text { ordered by } 0<1<2<\ldots<\infty<T \\
& \text { where } \mathrm{T}+x=x+\mathrm{T}=\mathrm{\top} \\
& \mathrm{M}_{k} T-k \text { by } k \text { matrices over } T \\
& \text { with matrix multiplication } \\
& \text { T } 111 \\
& 27 \infty \\
& d(m, n)=|1 / \mathrm{m}-1 / \mathrm{n}|
\end{aligned}
$$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+\top=\top
\end{gathered}
$$

$\mathrm{M}_{k} T-k$ by k matrices over T with matrix multiplication

Topology

$$
\begin{array}{ccc}
3 & 32 & \top \\
\top & 11 & 1
\end{array}
$$

$$
27 \infty
$$

product topology on $T^{k x k}$

$$
d(M, N)=\max _{i, j}|M[i, j]-N[i, j]|
$$

The tropical semiring

$$
\begin{aligned}
& T=\{0,1,2, \ldots, \infty, \top\} \\
& \text { with operations }+ \text {, min } \\
& \text { ordered by } 0<1<2<\ldots<\infty<T \\
& \text { where } \mathrm{T}+x=x+\mathrm{T}=\mathrm{T} \\
& \text { Topology } \\
& \mathrm{M}_{k} T-k \text { by } k \text { matrices over } T \\
& \text { with matrix multiplication } \\
& 27 \infty \\
& 2345670 \infty \\
& d(m, n)=|1 / m-1 / n| \\
& \text { product topology on } T^{k x k} \\
& d(M, N)=\max _{i, j}|M[i, j]-N[i, j]|
\end{aligned}
$$

The tropical semiring

$$
\begin{aligned}
& T=\{0,1,2, \ldots, \infty, \top\} \\
& \text { with operations }+ \text {, min } \\
& \text { ordered by } 0<1<2<\ldots<\infty<\top \\
& \text { where } \top+x=x+\top=\top \\
& \mathrm{M}_{k} T-k \text { by } k \text { matrices over } T \\
& \text { with matrix multiplication } \\
& \text { Topology } \\
& 27 \infty \\
& 234567+\infty \quad \text { T } \\
& d(m, n)=|1 / m-1 / n| \\
& \text { product topology on } T^{k x k} \\
& d(M, N)=\max _{i j}|M[i, j]-N[i, j]| \\
& \text { profinite semigroup }
\end{aligned}
$$

The tropical semiring

$$
\begin{aligned}
& T=\{0,1,2, \ldots, \infty, \top\} \\
& \text { with operations }+ \text {, min } \\
& \text { ordered by } 0<1<2<\ldots<\infty<\top \\
& \text { where } \top+x=x+\top=\top \\
& \mathrm{M}_{k} T-k \text { by } k \text { matrices over } T \\
& \text { with matrix multiplication } \\
& \text { Topology } \\
& 27 \infty \\
& 234567 \times \infty \quad \text { T } \\
& d(m, n)=|1 / m-1 / n|
\end{aligned}
$$

- compact space

The tropical semiring

$$
\begin{aligned}
& T=\{0,1,2, \ldots, \infty, \top\} \\
& \text { with operations }+ \text {, min } \\
& \text { ordered by } 0<1<2<\ldots<\infty<T \\
& \text { where } \mathrm{T}+x=x+\mathrm{T}=\top \\
& \mathrm{M}_{k} T-k \text { by } k \text { matrices over } T \\
& \text { with matrix multiplication } \\
& \text { Topology } \\
& \mathrm{M}_{k} T-k \text { by } k \text { matrices over } T \\
& \text { with matrix multiplication } \\
& 3 \quad 32 \quad \text { T } \\
& \text { T } 111 \\
& 27 \infty \\
& 234567 \times \infty \quad \text { T } \\
& d(m, n)=|1 / m-1 / n| \\
& \text { product topology on } T^{k x k} \\
& d(M, N)=\max _{i j}|M[i, j]-N[i, j]|
\end{aligned}
$$

- compact space
- matrix multiplication is continuous

The tropical semiring

$$
\begin{aligned}
& T=\{0,1,2, \ldots, \infty, \top\} \\
& \text { with operations }+ \text {, } \mathrm{min} \\
& \text { ordered by } 0<1<2<\ldots<\infty<T \\
& \text { where } \mathrm{T}+x=x+\mathrm{T}=\top \\
& \mathrm{M}_{k} T-k \text { by } k \text { matrices over } T \\
& \text { with matrix multiplication } \\
& \text { Topology } \\
& \mathrm{M}_{k} T-k \text { by } k \text { matrices over } T \\
& \text { with matrix multiplication } \\
& \begin{array}{ll}
3 & 32
\end{array} \text { T } \\
& \text { T } 111 \\
& 27 \infty \\
& 234567 \times \infty \quad \text { T } \\
& \text { product topology on } T^{k x k} \\
& d(M, N)=\max _{i, j}|M[i, j]-N[i, j]|
\end{aligned}
$$

- compact space
- matrix multiplication is continuous
- naturally equipped with the ω-power

ω-power

ω-power

ω-power

ω-power

ω-power continuous

0	1	\top
\top	\top	1
\top	\top	1

$\begin{array}{lll}0 & 1 & 2\end{array}$
† $\top \infty$
T $\top \infty$

ω-power continuous

0	1	\top
\top	\top	1
\top	\top	1

$\begin{array}{lll}0 & 1 & 2\end{array}$
T T ∞
T $\top \infty$

$$
s^{\omega}=\lim _{n \rightarrow \infty} s^{n!}
$$

Ramsey Theorem
 for compact spaces

$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$

Ramsey Theorem
 for compact spaces

Ramsey Theorem for compact spaces

Ramsey Theorem for compact spaces

Ramsey Theorem
 for compact spaces

The reduction

$a \quad b \quad b \quad a \quad a \quad b \quad a \quad a \quad b \quad a \quad b \quad b \quad a \quad a \quad a \quad b \ldots \ldots$

The reduction

$$
a^{b} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x} \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \times \times \times \ldots
$$

The reduction

$$
\mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{b} \mathbf{x}^{a}-\mathbf{x}^{a}-\mathbf{x}^{b}-\mathbf{x}^{a} \mathbf{x}^{a} \mathbf{x}^{b}-\mathbf{x}^{a}-\mathbf{x}^{b}-\mathbf{x}-\mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \times \times \times \ldots
$$

The reduction

The reduction

The reduction

The reduction

$$
\mathbf{x}^{a}{ }^{-} \mathbf{x}^{b} \mathbf{x}^{b} \mathbf{x}^{a}-\mathbf{x}^{a}-\mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{b} \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \ldots
$$

The reduction

$$
\mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x} \times{ }^{b} \times \times \times \times \times \times \times \times \times \ldots
$$

The reduction

\lim

The reduction

\lim

The reduction

Counter c does not converge to ∞
iff exists a counter d such that $\operatorname{pre}\left[c_{0}, d\right]<\infty$,
$\lim [d, d]=0$,

$$
d(0, \lim)<1 / 15
$$

$\lim [d, c]<\infty$.
lim

The reduction

 $\lim [d, c]<\infty$.

Which limits lim are possible?
lim

The reduction

$\lim [d, c]<\infty$.
\lim

The reduction

$\lim [d, c]<\infty$.
(a) b

The reduction

$\lim [d, c]<\infty$.
(a) b

The reduction

$\lim [d, c]<\infty$.

The reduction

 $\lim [d, c]<\infty$.

$$
\lim \in \overline{(a, b)^{+}}
$$

The reduction

Which limits lim are possible?
$\lim \in \overline{(a, b)^{+}}$

The reduction

Which limits lim are possible?

$$
(a, b)^{+}
$$

The reduction

Which limits lim are possible?

$$
(a, b)^{+}
$$

The reduction

Which limits lim are possible?

$$
(a, b)^{+}
$$

Finite section problem: given tropical matrices a b
decide whether there exists $\lim \in(a, b)^{+}$with $\lim [d, c]=\infty$.

Plan

\checkmark 1. Introduction to the problem
2. Reduce emptiness of min-automata to the finite section problem, via a Ramsey-type theorem
3. Solve the finite section problem using Simon's Factorization Theorem

Plan

\checkmark 1. Introduction to the problem
\checkmark 2. Reduce emptiness of min-automata to the finite section problem, via a Ramsey-type theorem
3. Solve the finite section problem using Simon's Factorization Theorem

Simon's Factorization Theorem
 for semigroups with stabilization

Simon's Factorization Theorem
 for semigroups with stabilization

semigroup with stabilization

Simon's Factorization Theorem
 for semigroups with stabilization

$$
(S, \cdot, \#)
$$

semigroup with stabilization

Simon's Factorization Theorem

for semigroups with stabilization
semigroup with stabilization

Simon's Factorization Theorem

for semigroups with stabilization
semigroup with stabilization

Simon's Factorization Theorem
 for semigroups with stabilization

semigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$

Simon's Factorization Theorem

 for semigroups with stabilizationsemigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$

Simon's Factorization Theorem

 for semigroups with stabilizationsemigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$

Simon's Factorization Theorem

 for semigroups with stabilizationsemigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$
- $e^{\#} e=e^{\#} \quad$ if e is idempotent

Simon's Factorization Theorem

 for semigroups with stabilizationsemigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$
- $e^{\#} e=e^{\#} \quad$ if e is idempotent
$e=e^{\#} \quad$ if e is idempotent

Simon's Factorization Theorem

 for semigroups with stabilizationsemigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$
- $\frac{e^{\#} e=e^{\#} \quad \text { if e is idempotent }}{e=e^{\#} \quad}$

Simon's Factorization Theorem

 for semigroups with stabilization

Example (infinite)
$\left(\{0,1,2, \ldots, \infty\},+{ }^{\omega}\right)$,
$0^{\omega}=0, \quad 1^{\omega}=2^{\omega}=\ldots=\infty$

Simon's Factorization Theorem

 for semigroups with stabilization$$
(\underbrace{S}_{i}, \cdots,{ }^{*})
$$

semigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#}$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$
- $\frac{e^{\#} e=e^{\#} \quad \text { if e is idempotent }}{e=e^{\#}} \quad \begin{gathered}\text { idempotent }\end{gathered}$

Example (infinite)
$\left(\{0,1,2, \ldots, \infty\},+,{ }^{\omega}\right)$,
$0^{\omega}=0, \quad 1^{\omega}=2^{\omega}=\ldots=\infty$

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+, \#)$,
$N+1=N, 0^{\#}=0, x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

 for semigroups with stabilization$$
\left(s_{2}, \cdots\right)
$$

semigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $\quad(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$
- $e^{\#} e=e^{\#} \quad$ if e is idempotent $e=e^{\#} \quad$ if \quad idempotent

Example (infinite)
$(\{0,1,2, \ldots, \infty\},+, \omega)$,
$N+1, N+2, \ldots \rightarrow N$
$0^{\omega}=0, \quad 1^{\omega}=2^{\omega}=\ldots=\infty$
$N+1=N, 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

$$
\begin{aligned}
& \text { Example (finite) } \\
& T_{N=(\{0,1,2, \ldots, N, \infty\},+, \#),}^{N+1=N, \quad 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty}
\end{aligned}
$$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule

idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+, \#)$,
$N+1=N, \quad 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+$,) ,
$N+1=N, 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree: binary rule idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+$,) ,
$N+1=N, 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$ Use the two rules to construct tree: binary rule idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+, \#)$,
$N+1=N, 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+$,) ,
$N+1=N, 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+$,) ,
$N+1=N, 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree: binary rule idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+$,) ,
$N+1=N, 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization
Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Simon's Factorization Theorem

for semigroups with stabilization
Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree: binary rule idempotent rule

Simon's Factorization Theorem

for semigroups with stabilization
Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree: binary rule idempotent rule

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+$, \#),
$N+1=N, 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$ Use the two rules to construct tree: binary rule idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+, \#)$,
$N+1=N, 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$ Use the two rules to construct tree: binary rule idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+, \#)$,
$N+1=N, 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule

idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+, \#)$,
$N+1=N, \quad 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Example (finite)
$T_{N}=(\{0,1,2, \ldots, N, \infty\},+, \#)$,
$N+1=N, \quad 0^{\#}=0, \quad x^{\#}=\infty^{\#}=\infty$

Theorem. For any finite stabilization semigroup S and word $w \in S^{+}$there exists a factorization tree over w of height $\leq 9|S|^{2}$.

More examples of semigroups with stabilization

More examples of semigroups with stabilization

Example (infinite)
 $\left(\mathrm{M}_{k} T, \cdot,{ }^{\omega}\right)$

More examples of semigroups with stabilization

Example (infinite)
 $\left(\mathrm{M}_{k} T, \cdot,{ }^{\omega}\right)$

Example (finite)
$\left(\mathrm{M}_{k} T_{N}, \cdot \cdot{ }^{\text {\# }}\right.$)

More examples of semigroups with stabilization

$\left(\mathrm{M}_{k} T, \cdot,{ }^{\omega}\right)$

Example (infinite)
$N+1, N+2, \ldots \rightarrow N$
α_{N}

Example (finite)
$\left(\mathrm{M}_{k} T_{N}, \cdot \cdot{ }^{\#}\right)$

More examples

of semigroups with stabilization

Example (infinite) $\left(\mathrm{M}_{k} T, \cdot,{ }^{\omega}\right)$
$N+1, N+2, \ldots \rightarrow N$
Example (finite)
$\left(\mathrm{M}_{k} T_{N}, \cdot{ }^{\prime}{ }^{\#}\right)$

$$
\begin{gathered}
y: \begin{array}{ccc}
0 & 1 & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~T} & 1 \\
1 & \mathrm{~T} & 1
\end{array} \\
y^{\omega}: \begin{array}{|lll}
0 & 1 & 2 \\
2 & 3 & 4 \\
1 & 2 & 3
\end{array}
\end{gathered}
$$

$$
\alpha_{3}(y): \left.\begin{array}{ccc}
0 & 1 & T \\
\mathrm{~T} & \mathrm{~T} & 1 \\
1 & \mathrm{~T} & 1
\end{array} \right\rvert\,
$$

$$
\alpha_{3}(y)^{\#}=\alpha_{3}\left(y^{\omega}\right): \begin{array}{lll}
0 & 1 & 2 \\
2 & 3 & 3 \\
1 & 2 & 3
\end{array}
$$

Lemma.

Lemma. Let a, b be matrices over the (min,+)-semiring.

Lemma. Let (a), be matrices over the (min,+)-semiring.
Let w be a word over a, b and let $\quad \in \mathrm{M}_{k} T$ be the "real" product of w and let $s \in \mathrm{M}_{k} T_{N}$ be the result of a factorization tree w.r.t α_{N}.

Lemma. Let a , b be matrices over the (min,+)-semiring. Let w be a word over a, b and let $\in \mathrm{M}_{k} T$ be the "real" product of w and let $\mathrm{s} \in \mathrm{M}_{k} T_{N}$ be the result of a factorization tree w.r.t α_{N}.

Lemma. Let (a), be be matrices over the (min,+)-semiring. Let w be a word over a, b and let $\in \mathrm{M}_{k} T$ be the "real" product of w and let $\mathrm{s} \in \mathrm{M}_{k} T_{N}$ be the result of a factorization tree w.r.t α_{N}.

Lemma. Let (a), be matrices over the (min,+)-semiring. Let w be a word over a, b and let $\in \mathrm{M}_{k} T$ be the "real" product of w and let $s \in \mathrm{M}_{k} T_{N}$ be the result of a factorization tree w.r.t α_{N}.

Lemma. Let (a), be matrices over the (min,+)-semiring. Let w be a word over a, b and let $\in \mathrm{M}_{k} T$ be the "real" product of w and let $s \in \mathrm{M}_{k} T_{N}$ be the result of a factorization tree w.r.t α_{N}.

Lemma. Let a , b be matrices over the (min,+)-semiring. Let w be a word over a, b and let $\in \mathrm{M}_{k} T$ be the "real" product of w and let $\mathrm{s} \in \mathrm{M}_{k} T_{N}$ be the result of a factorization tree w.r.t α_{N}.

- agree on values $\{0,1, \ldots, N-1, T\}$
- if $\quad s[i, j]=N \quad$ then $\quad N \leq r[i, j] \leq 2^{h}$

Theorem.

Theorem. Let a , b be matrices over the (min,+)-semiring.

Theorem. Let (a, b be matrices over the ($\mathrm{min},+$)-semiring.

Then

Theorem. Let (a, b be matrices over the ($\mathrm{min},+$)-semiring.

Then

- ○

Theorem. Let a , b be matrices over the (min,+)-semiring.

Then

$(a, b)^{+}$

Theorem. Let (a, b be matrices over the (min, t)-semiring.

 Then $\overline{(a, b)^{+}}$
Theorem. Let (a, b be matrices over the (min, t)-semiring.

 Then $\overline{(a, b)^{+}}=$
Theorem. Let (a, b be matrices over the (min, t)-semiring.

 Then $\overline{(a, b)^{+}}=$a bTheorem. Let (a), b be matrices over the (min,+)-semiring.
Then $\overline{(a, b)^{+}}=(a, b)^{+, \omega}$

Theorem. Let (a, b) be matrices over the ($\mathrm{min},+$)-semiring.〕 Then $\overline{(a, b)^{+}}=(a, b)^{+, \omega}$

Theorem. Let a , b be matrices over the (min,+)-semiring. \geq Then $\overline{(a, b)^{+}}=(a, b)^{+, \omega}$

Theorem. Let (a, b be matrices over the ($\mathrm{min},+$)-semiring.〕
 Then
 $\begin{aligned} \overline{(a, b)^{+}} & = \\ & \underline{C} ?\end{aligned}$

Theorem. Let a , b be matrices over the (min,+)-semiring. Then
 $$
\begin{array}{ll} (a, b)^{+} & = \\ = & (a, b)^{+, \omega} \\ x,|x|<N & \subseteq ? \end{array}
$$

Theorem. Let (a), b be matrices over the ($\min ,+$)-semiring.

$$
\begin{aligned}
\alpha_{N}\left(\overline{(a, b)^{+}}\right) & \left.=\alpha_{N}((a, b))^{+, \omega}\right) \\
x,|x|<N & \subseteq ?
\end{aligned}
$$

Theorem. Let (a), b be matrices over the ($\min ,+$)-semiring.

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Theorem. Let (a), b be matrices over the ($\min ,+$)-semiring.
Then

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Wlog, we can assume that

- $r_{n}[i, j]=x[i, j]$
if $x[i, j] \neq \infty$
- $r_{n}[i, j]>n$
if $x[i, j]=\infty$

Theorem. Let (a), b be matrices over the ($\min ,+$)-semiring.
Then

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Wlog, we can assume that

$$
\begin{array}{lll}
-r_{n}[i, j]=x[i, j]<N & \text { if } & x[i, j] \neq \infty \\
-r_{n}[i, j]>n & \text { if } & x[i, j]=\infty
\end{array}
$$

Theorem. Let (a), b be matrices over the ($\min ,+$)-semiring.
Then

$$
\begin{aligned}
& x,|x|<N \quad \subseteq ? \\
& \text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, \text { b })^{+} \\
& \text {such that } x=\lim r_{n}
\end{aligned}
$$

Wlog, we can assume that

- $r_{n}[i, j]=x[i, j]<N \quad$ if $\quad x[i, j] \neq \infty$
- $r_{n}[i, j]>n \quad$ if $\quad x[i, j]=\infty$
consider $\alpha_{N}: \mathrm{M}_{k} T \rightarrow \mathrm{M}_{k} T_{N}$

Theorem. Let a , b be matrices over the ($\mathrm{min},+$)-semiring.
Then

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Wlog, we can assume that

- $r_{n}[i, j]=x[i, j]<N \quad$ if $\quad x[i, j] \neq \infty$
- $r_{n}[i, j]>n \quad$ if $\quad x[i, j]=\infty \quad$ finite semigroup
consider $\alpha_{N}: \mathrm{M}_{k} T \rightarrow \mathrm{M}_{k} T_{N} \quad$ every word has fact. forest of height b

Theorem. Let a , b be matrices over the ($\mathrm{min},+$)-semiring.
Then

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Wlog, we can assume that

- $r_{n}[i, j]=x[i, j] \quad$ if $\quad x[i, j] \neq \infty$
- $r_{n}[i, j]>n>2^{h} \quad$ if $\quad x[i, j]=\infty \quad$ finite semigroup consider $\alpha_{N}: \mathrm{M}_{k} T \rightarrow \mathrm{M}_{k} T_{N} \quad$ every word has fact. forest of height b

Theorem. Let a , b be matrices over the (min,+)-semiring.
Then

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Wog, we can assume that

- $r_{n}[i, j]=x[i, j]<N \quad$ if $\quad x[i, j] \neq \infty$
- $r_{n}\left[i_{i, j}\right]>n \quad>2^{h} \quad$ if $\quad x[i, j]=\infty \quad$ finite semigroup with stabilization consider $\alpha_{N}: \mathrm{M}_{k} T \rightarrow \mathrm{M}_{k} T_{N}$
every word has fact. forest of height h
r $=a b b b b a b \ldots a a a b$

Theorem. Let a , b be matrices over the ($\mathrm{min},+$)-semiring.
Then

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Wog, we can assume that

$$
\text { - } r_{n}[i, j]=x[i, j]<N \quad \text { if } \quad x[i, j] \neq \infty
$$

$$
\text { - } r_{n}[i, j]>n>2^{h} \quad \text { if } \quad x[i, j]=\infty \quad \begin{gathered}
\text { finite semigroup }
\end{gathered}
$$

with stabilization

$$
\text { consider } \alpha_{N}: \mathrm{M}_{k} T \rightarrow \mathrm{M}_{k} T_{N} \quad \begin{gathered}
\text { ever wort has } \\
\text { fact forest of height }
\end{gathered}
$$ fact. forest of height b

r $=a b b b b a b . \ldots a a a b$
s. $\in \mathrm{M}_{k} T_{N}$
result of
fact. forest of height h

Theorem. Let a , b be matrices over the (min,+)-semiring.

Then

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Wog, we can assume that

$$
\text { - } r_{n}[i, j]=x[i, j]<N \quad \text { if } \quad x[i, j] \neq \infty
$$

$$
\text { - } r_{n}[i, j]>n>2^{h} \quad \text { if } \quad x[i, j]=\infty \quad \text { finite semigroup }
$$

with stabilization

$$
\text { consider } \alpha_{N}: \mathrm{M}_{k} T \rightarrow \mathrm{M}_{k} T_{N} \quad \begin{gathered}
\text { every wort has } \\
\text { fact. forest of height }
\end{gathered}
$$ fact. forest of height b

r $=a b b b b a b . \ldots a a a b$
s $\in \mathrm{M}_{k} T_{N}$

- agree on values $\{0,1, \ldots, N-1, T\}$
- if $s[i, j]=N$ then $N \leq r[i, j] \leq 2^{b}$
result of
fact. forest of height h

Theorem. Let a , b be matrices over the (min,+)-semiring.

Then

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Wog, we can assume that

$$
\text { - } r_{n}[i, j]=x[i, j]<N \quad \text { if } \quad x[i, j] \neq \infty
$$

$$
\text { - } r_{n}[i, j]>n>2^{h} \quad \text { if } \quad x[i, j]=\infty \quad \text { finite semigroup }
$$

with stabilization

$$
\text { consider } \alpha_{N}: \mathrm{M}_{k} T \rightarrow \mathrm{M}_{k} T_{N} \quad \begin{gathered}
\text { every wort has } \\
\text { fact forest } f \text { high }
\end{gathered}
$$ fact. forest of height b

r $=a b b b b a b \ldots a a a b$
s) $\in \mathrm{M}_{k} T_{N}$ has no $N s!!!$

- agree on values $\{0,1, \ldots, N-1, T\}$
- if $s[i, j]=N$ then $N \leq r[i, j] \leq 2^{b}$
result of
fact. forest of height h

Theorem. Let a , b be matrices over the (min,+)-semiring.

Then

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Wog, we can assume that

$$
\text { - } r_{n}[i, j]=x[i, j]<N \quad \text { if } \quad x[i, j] \neq \infty
$$

$$
\text { - } r_{n}[i, j]>n>2^{h} \quad \text { if } \quad x[i, j]=\infty \quad \text { finite semigroup }
$$

with stabilization

$$
\text { consider } \alpha_{N}: \mathrm{M}_{k} T \rightarrow \mathrm{M}_{k} T_{N} \quad \begin{gathered}
\text { ever wort has } \\
\text { fact. forest of high }
\end{gathered}
$$ fact. forest of height b

r $=a b b b b a b . \ldots a a a b$

- agree on values $\{0,1, \ldots, N-1, T\}$
s $\in \mathrm{M}_{k} T_{N}$ has no $N s!!!$
- if $s[i, j]=N \quad$ then $\quad N \leq r[i, j] \leq 2^{h}$
result of fact. forest of height b

$$
\alpha_{N}(x)=s
$$

Theorem. Let a , b be matrices over the (min,+)-semiring.

Then

$$
\begin{gathered}
\alpha_{N}\left(\overline{\left.(a, b)^{+}\right)}=\alpha_{N}\left((a, b)^{+, \omega}\right)\right. \\
x,|x|<N \quad \subseteq ? \\
\text { Let } r_{1}, r_{2}, r_{3}, \ldots \in(a, b)^{+} \\
\text {such that } x=\lim r_{n}
\end{gathered}
$$

Wog, we can assume that

$$
\text { - } r_{n}[i, j]=x[i, j]<N \quad \text { if } \quad x[i, j] \neq \infty
$$

$$
\text { - } r_{n}[i, j]>n>2^{h} \quad \text { if } \quad x[i, j]=\infty \quad \text { finite semigroup }
$$

with stabilization

$$
\text { consider } \alpha_{N}: \mathrm{M}_{k} T \rightarrow \mathrm{M}_{k} T_{N} \quad \begin{gathered}
\text { every word } h a s \\
\text { fact forest of height }
\end{gathered}
$$ fact. forest of height b

r $=a b b b b a b \ldots a a a b$

- agree on values $\{0,1, \ldots, N-1, T\}$
s. $\in \mathrm{M}_{k} T_{N}$ has no $N s!!!$
- if $s[i, j]=N$ then $N \leq r[i, j] \leq 2^{h}$
result of fact. forest of height h

$$
\alpha_{N}(x)=s \in \alpha_{N}\left((a, b)^{+, \omega}\right)
$$

Plan

\checkmark 1. Introduction to the problem
\checkmark 2. Reduce emptiness of min-automata to the finite section problem, via a Ramsey-type theorem
3. Solve the finite section problem using Simon's Factorization Theorem

Plan

$\checkmark 1$. Introduction to the problem
\checkmark 2. Reduce emptiness of min-automata to the finite section problem, via a Ramsey-type theorem
$\checkmark 3$. Solve the finite section problem using Simon's Factorization Theorem

Plan

\checkmark 1. Introduction to the problem
$\checkmark 2$. Reduce emptiness of min-automata to the finite section problem, via a Ramsey-type theorem
$\checkmark 3$. Solve the finite section problem using Simon's Factorization Theorem

Thank you for your attention!

