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Plan

1. Introduction to the problem

2. Reduce emptiness of min-automata to the !nite 
section problem, via a Ramsey-type theorem

3. Solve the #nite section problem using Simon’s 
factorization theorem
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“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞
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More examples 
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Example (#nite)    
(MkTN, ·, # )     

Example (in#nite)   
(MkT, ·, ω )     

N+1,N+2,... → N

αN

y:
0 1 ⊤

⊤ ⊤ 1
1 ⊤ 1

yω:
0 1 2
2 3 4
1 2 3

α3 (y):
0 1 ⊤

⊤ ⊤ 1
1 ⊤ 1

α3(y)# = α3 (yω):
0 1 2
2 3 3
1 2 3
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ank you for your attention!
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