Deciding Emptiness of min-automata

Szymon Toruńczyk joint work with Mikołaj Bojańczyk

LSV Cachan / University of Warsaw

Plan

- 1. Introduction to the problem
- 2. Reduce emptiness of min-automata to the *finite section problem*, via a Ramsey-type theorem
- Solve the finite section problem using Simon's factorization theorem

deterministic automata with counters transitions invoke counter operations:

c:=c+1 c:=min(d,e)

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c := c + 1-when reading b, do d := min(c,c); c := min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min*(*d*,*e*)

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c := c + 1-when reading b, do d := min(c,c); c := min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1

c:=min(d,e)

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=c+1 c:=min(d,e)

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e)*

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c := c + 1-when reading b, do d := min(c,c); c := min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=c+1 c:=min(d,e)

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}} \infty$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c := c + 1-when reading b, do d := min(c,c); c := min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to ∞''}}} \infty$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to ∞''}}} \infty$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b...: n_1, n_2... \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b...: n_1, n_2... \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)d

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to ∞''} \end{array}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b...: n_1, n_2... \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to ∞''} \end{array}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c := c + 1-when reading b, do $d := min(c,c); \ c := min(z,z)$ Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to ∞''} \end{array}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c := c+1-when reading b, do $d := min(c,c); \ c := min(z,z)$ Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c := c+1-when reading b, do $d := min(c,c); \ c := min(z,z)$ Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to ∞''} \end{array}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c := c+1-when reading b, do $d := min(c,c); \ c := min(z,z)$ Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c := c+1-when reading b, do d := min(c,c); c := min(z,z)Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to ∞''} \end{array}$

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to ∞''} \end{array}$

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n1}b \ a^{n2}b \ a^{n3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c:=c+1-when reading b, do $d:=min(c,c); \ c:=min(z,z)$ cccdd</

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

• No states, just counters with values $\{0, 1, 2, ..., \top\}$

- No states, just counters with values $\{0, 1, 2, ..., \top\}$
- \top is the undefined counter value

- No states, just counters with values $\{0, 1, 2, ..., \top\}$
- \top is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters

- No states, just counters with values $\{0, 1, 2, ..., \top\}$
- \top is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on {0,1,2,..., ⊤}, where *min* with respect to 0<1<2<...< ⊤ is addition and + is multiplication

- No states, just counters with values $\{0, 1, 2, ..., \top\}$
- \top is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on {0,1,2,..., ⊤}, where *min* with respect to 0<1<2<...< ⊤ is addition and + is multiplication

In Example 1, c = c + 1 can be written as:

- No states, just counters with values $\{0, 1, 2, ..., \top\}$
- \top is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0, 1, 2, ..., \top\}$, where *min* with respect to $0 < 1 < 2 < ... < \top$ is addition and + is multiplication

In Example 1, c = c + 1 can be written as:

$$\begin{pmatrix} c & d & z \end{pmatrix} := \begin{pmatrix} c & d & z \end{pmatrix} \cdot \begin{pmatrix} 1 & \top & \top \\ \top & 0 & \top \\ \top & \top & 0 \end{pmatrix}$$

- No states, just counters with values $\{0, 1, 2, ..., \top\}$
- \top is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2,..., \top\}$, where *min* with respect to $0 < 1 < 2 < ... < \top$ is addition and + is multiplication

In Example 1, c = c + 1 can be written as:

$$\begin{pmatrix} c & d & z \end{pmatrix} := \begin{pmatrix} c & d & z \end{pmatrix} \cdot \begin{pmatrix} 1 & \top & \top \\ \top & 0 & \top \\ \top & \top & 0 \end{pmatrix} = \begin{pmatrix} c+1 & d & z \end{pmatrix}$$

- No states, just counters with values $\{0, 1, 2, ..., \top\}$
- \top is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2,..., \top\}$, where *min* with respect to $0 < 1 < 2 < ... < \top$ is addition and + is multiplication

In Example 1, c = c + 1 can be written as:

$$\begin{pmatrix} c & d & z \end{pmatrix} := \begin{pmatrix} c & d & z \end{pmatrix} \cdot \begin{pmatrix} 1 & \top & \top \\ \top & 0 & \top \\ \top & \top & 0 \end{pmatrix} = \begin{pmatrix} c+1 & d & z \end{pmatrix}$$

d:=min(c,c); c:=min(z,z) can be written as:

- No states, just counters with values $\{0, 1, 2, ..., \top\}$
- \top is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2,..., \top\}$, where *min* with respect to $0 < 1 < 2 < ... < \top$ is addition and + is multiplication

In Example 1, c = c + 1 can be written as:

$$\begin{pmatrix} c & d & z \end{pmatrix} := \begin{pmatrix} c & d & z \end{pmatrix} \cdot \begin{pmatrix} 1 & \top & \top \\ \top & 0 & \top \\ \top & \top & 0 \end{pmatrix} = \begin{pmatrix} c+1 & d & z \end{pmatrix}$$

d:=min(c,c); c:=min(z,z) can be written as:

$$\left(\begin{array}{cccc}c & d & z\end{array}\right) \quad := \quad \left(\begin{array}{cccc}c & d & z\end{array}\right) \cdot \left(\begin{array}{cccc}\top & 0 & \top \\ \top & \top & \top \\ 0 & \top & 0\end{array}\right)$$

- No states, just counters with values $\{0, 1, 2, ..., \top\}$
- \top is the undefined counter value
- In each step, automaton applies a single matrix operation to all counters
- A matrix transforms the counters by multiplication which stems from semiring structure on $\{0,1,2,..., \top\}$, where *min* with respect to $0 < 1 < 2 < ... < \top$ is addition and + is multiplication

In Example 1, c = c + 1 can be written as:

$$\begin{pmatrix} c & d & z \end{pmatrix} := \begin{pmatrix} c & d & z \end{pmatrix} \cdot \begin{pmatrix} 1 & \top & \top \\ \top & 0 & \top \\ \top & \top & 0 \end{pmatrix} = \begin{pmatrix} c+1 & d & z \end{pmatrix}$$

d:=min(c,c); c:=min(z,z) can be written as:

$$\left(\begin{array}{cccc} c & d & z \end{array} \right) := \left(\begin{array}{cccc} c & d & z \end{array} \right) \cdot \left(\begin{array}{cccc} \top & 0 & \top \\ \top & \top & \top \\ 0 & \top & 0 \end{array} \right) = \left(\begin{array}{cccc} z & c & z \end{array} \right)$$

Emptiness of min-automata

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.
Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

initial counter

0 T T *a*: T 1 T T T 1

Initial valuation:

Acceptance condition:

 $\neg \operatorname{liminf}(c_3) = \infty$

What are the values of the counters after reading *baab*?

What are the values of the counters after reading *baab*?

What are the values of the counters after reading *baab*?

initial counter

0 T T *a*: T 1 T T T 1

Initial valuation:

Acceptance condition:

 $\neg \operatorname{liminf}(c_3) = \infty$

initial counter

00Т b: ТТ0 ТТ1

Initial valuation:

Acceptance condition:

Т

Т

0

Input: $w = a_1 a_2 a_3 a_4 a_5 a_6 \dots$

initial counter

Initial valuation:

Acceptance condition:

Т

Т

0

Input: $w = a_1 a_2 a_3 a_4 a_5 a_6 \dots$ $\neg \operatorname{liminf}(c_3) = \infty$ holds

initial counter

Initial valuation:

Acceptance condition:

Т

Т

0

initial counter

Initial valuation:

Acceptance condition:

Т

Т

0

Input: $w = a_1 a_2 a_3 a_4 a_5 a_6 \dots$ $\neg \operatorname{liminf}(c_3) = \infty$ holds iff $val(c_3)$ has a bounded subsequence

initial counter

Initial valuation:

Acceptance condition:

Т

Т

0

Input: $w = a_1 a_2 a_3 a_4 a_5 a_6...$ $\neg \operatorname{liminf}(c_3) = \infty$ holds iff $val(c_3)$ has a bounded subsequence iff

Monday, November 30, 2009

initial counter

Initial valuation:

Acceptance condition:

Т

0

Input: $w = a_1 a_2 a_3 a_4 a_5 a_6 \dots$ \neg liminf(c_3) = ∞ holds iff $val(c_3)$ has a bounded subsequence iff

there exist arbitrarily long paths labeled by a prefix of w,

initial counter

Initial valuation:

Acceptance condition:

Т

0

Input: $w = a_1 a_2 a_3 a_4 a_5 a_6 \dots$ \neg liminf(c_3) = ∞ holds iff $val(c_3)$ has a bounded subsequence

iff

initial counter

Initial valuation:

Acceptance condition:

Т

0

 $a ba^2 ba^3 ba^4 ba^5 \dots$

 $val(c_3)$ has a bounded subsequence iff

Input: $w = a_1 a_2 a_3 a_4 a_5 a_6 \dots$

 \neg liminf(c_3) = ∞ holds

iff

initial counter

Initial valuation:

Acceptance condition:

Т

0

 \times a ba²ba³ba⁴ba⁵....

 $val(c_3)$ has a bounded subsequence iff

Input: $w = a_1 a_2 a_3 a_4 a_5 a_6 \dots$

 \neg liminf(c_3) = ∞ holds

iff

starting in c_1 , ending in c_3 with a *bounded* number of 1's

 $a^{n}ba^{n+1}b$:

X a $ba^2ba^3ba^4ba^5$Input: $w = a_1a_2a_3a_4a_5a_6$
 $\neg \liminf(c_3) = \infty$ holds

iffa $baba^2baba^3baba^4ba$ $val(c_3)$ has a bounded subsequence

iffiffthere exist arbitrarily long paths labeled by a prefix of w,

starting in c_1 , ending in c_3 with a bounded number of 1's

 $\times a ba^{2}ba^{3}ba^{4}ba^{5}...$ Input: $w = a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}...$ $\neg \liminf(c_{3}) = \infty \text{ holds} ababa^{2}baba^{3}baba^{4}ba... \checkmark$ iff $val(c_{3}) \text{ has a bounded subsequence}$ iff

X a $ba^2ba^3ba^4ba^5$...Input: $w = a_1a_2a_3a_4a_5a_6$
 $\neg \liminf(c_3) = \infty \text{ holds}$
iffa $baba^2baba^3baba^4ba^5$

 $a^n b a b$:

val(*c*₃) *has a bounded subsequence* iff

starting in c_1 , ending in c_3 with a *bounded* number of 1's

 $\times a ba^{2}ba^{3}ba^{4}ba^{5}...$ Input: $w = a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}...$ $\neg \liminf(c_{3}) = \infty \text{ holds} ababa^{2}baba^{3}baba^{4}ba... \checkmark$ iff $val(c_{3}) \text{ has a bounded subsequence}$ iff

iff

An example a,b:1 a , b a:1 b b C_1 a^wba^wb 0 *n*+1 0 $\begin{array}{c} a^{n}ba^{n+1}b \vdots \\ \top & \top & 2^{n+2} \end{array} \longrightarrow \\ T & \top & 2^{n+3} \end{array}$

 $\times a ba^{2}ba^{3}ba^{4}ba^{5}...$ Input: $w = a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}...$ $\neg \liminf(c_{3}) = \infty \text{ holds} ababa^{2}baba^{3}baba^{4}ba... \checkmark$ iff $val(c_{3}) \text{ has a bounded subsequence}$

iff

 $\times a ba^{2}ba^{3}ba^{4}ba^{5}...$ Input: $w = a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}...$ $\neg \liminf(c_{3}) = \infty \text{ holds} ababa^{2}baba^{3}baba^{4}ba... \checkmark$ $ababa^{2}baba^{3}baba^{4}ba... \checkmark$ $ababa^{2}baba^{3}baba^{4}ba... \checkmark$

iff

Plan

- 1. Introduction to the problem
- 2. Reduce emptiness of min-automata to the *finite section problem*, via a Ramsey-type theorem
- Solve the finite section problem using Simon's factorization theorem

Plan

- \checkmark 1. Introduction to the problem
 - 2. Reduce emptiness of min-automata to the *finite section problem*, via a Ramsey-type theorem
 - Solve the finite section problem using Simon's factorization theorem

The tropical semiring

The tropical semiring

$$T = \{0, 1, 2, ..., \infty, \top\}$$
$T = \{0, 1, 2, ..., \infty, \top\}$ with operations +, min ordered by $0 < 1 < 2 < \ldots < \infty < \top$ where $\top + x = x + \top = \top$

 $T = \{0, 1, 2, ..., \infty, \top\}$ with operations +, min ordered by $0 < 1 < 2 < \ldots < \infty < \top$ where $\top + x = x + \top = \top$

 $T = \{0, 1, 2, ..., \infty, \top\}$ with operations +, min ordered by $0 < 1 < 2 < \ldots < \infty < \top$ where $\top + x = x + \top = \top$

$$M_k T - k by k$$
 matrices over T with matrix multiplication

 $T = \{0, 1, 2, ..., \infty, \top\}$ with operations +, min ordered by $0 < 1 < 2 < \ldots < \infty < \top$ where $\top + x = x + \top = \top$

$$M_k T - k by k$$
 matrices over T with matrix multiplication

Topology

$T = \{0, 1, 2,, \infty, \top\}$ with operations +, min	$M_k T - k by k$ matrices over T with matrix multiplication
ordered by $0 < 1 < 2 < \dots < \infty < \top$ where $\top + x = x + \top = \top$	$ \begin{bmatrix} 3 & 32 & \top \\ & 11 & 1 \end{bmatrix} $
Тор	ology
2 <u>34567∞</u> T	product topology on <i>T^{kxk}</i>
d(m,n) = 1/m-1/n	

$T = \{0, \\ \text{with o} \}$	1,2,, ∞, T} perations +, min		$M_k T - k by k$ matrices over T with matrix multiplication
ordered by	0<1<2<<∞<⊤		3 32 T
where	+ x = x + =		T 11 1
		Topolog	2 7 ∞
2	3 4 567∞∞	Т	product topology on <i>T^{kxk}</i>
d(m,n) = 1/m	1-1/n		$d(M,N) = \max_{i,j} M[i,j] - N[i,j] $

$T = \{0\}$ with	,1,2,,∞, ⊤ operations +, min	}	$M_kT - k by k$ matrice with matrix multipl						
ordered b where	by $0 < 1 < 2 < \dots < \infty < \top$ $\top + x = x + \top = \top$			3	32	Т			
				Т	11	1			
		Topolog	ЗУ	2	7	∞			
2	3 4 567.00	Т	product	to	polc	ogy (on T ^{kxk}		
d(m,n) = 1/r	n-1/n		d(M,N)=t	na	$\mathbf{X}_{i,j}$	M[t]	;,j]-N[i,j]		

3	1	0	3	38	Т	3	32	Т	3	32	Т	3	32	Т			3	32	Т
5	1	1	4	11	1	Т	11	1	Т	11	1	T	11	1	•••	\rightarrow	Т	11	1
2	7	10	2	7	20	2	7	35	2	7	45	2	7	59			2	7	∞

$T = \{0, 1, 2, \dots, \infty, T\}$ with operations +, min	$M_k T - k by k$ matrices over T with matrix multiplication							
ordered by $0 < 1 < 2 < \dots < \infty < \top$		3 32 T						
where $1 + \lambda - \lambda + 1 = 1$		T 11 1						
	Topolog	y 2 7 ∞						
$2 3 4 5 67 \infty$	Т	product topology on <i>T^{kxk}</i>						
d(m,n) = 1/m-1/n		$d(M,N) = \max_{i,j} M[i,j] - N[i,j]$						
profinite semigroup								

$T = \{0, 1, 2, \dots, \infty, \top\}$ with operations +, min	$M_kT - k by k$ matrices over T with matrix multiplication								
ordered by $0 < 1 < 2 < < \infty < \top$		3	32	Т					
where $\top + x = x + \top = \top$		Т	11	1					
	Topology	2	7	∞					
2 3 4 5 $67 \times \infty$	\top product topology on $T^{k \times k}$								
d(m,n) = 1/m-1/n	d(M,N)=1	max	X _{i,j} I	M[i]	i,j]-N[i,j]				
profi	nite semigroup								
• compac	ct space								

$T = \{0, 1, 2, \dots, \infty, \top\}$ with operations +, min	- -	$M_k T - k by k$ matrices over T with matrix multiplication						
ordered by $0 < 1 < 2 < \dots < \infty < \top$ where $\top + x = x + \top = \top$			3 3	2 Т				
			Τ 1	1 1				
	Topology	-	2 7	7 ∞				
2 <u>34567</u> »∞	Т	product	topc	ology	on <i>T^{kxk}</i>			
d(m,n) = 1/m-1/n		d(M,N)=1	nax _{i,}	$_{j} M[x]$	i,j]-N[i,j]			
profi	nite semi	group						
• compac	et space							
• matrix i	multiplicatio	on is contin	uous					

$T = \{0, 1, 2, \dots, \infty, \top\}$ with operations +, min	$M_k T - k by k$ matrices over T with matrix multiplication							
ordered by $0 < 1 < 2 < \dots < \infty < \top$			3 32	Т				
where $1 + x = x + 1 = 1$			⊤ 11	1				
	Topolog	V	2 7	∞				
$2 3 4 5 6_{7 \text{ sc}}$	Т	product	topole		on Tkxk			
	I	product	topole)gy				
d(m,n) = 1/m-1/n		d(M,N)=n	$\max_{i,j}$	M[i	i,j]-N[<i>i</i> ,j]			
profi	nite sem	igroup						
• compac • matrix	ct space multiplicat	ion is continu	uous					
1	1 •							

• naturally equipped with the ω -power

Monday, November 30, 2009

Monday, November 30, 2009

Monday, November 30, 2009

Monday, November 30, 2009

Plan

- \checkmark 1. Introduction to the problem
 - 2. Reduce emptiness of min-automata to the *finite section problem*, via a Ramsey-type theorem
 - Solve the finite section problem using Simon's Factorization Theorem

Plan

- \checkmark 1. Introduction to the problem
- ✓ 2. Reduce emptiness of min-automata to the *finite* section problem, via a Ramsey-type theorem
 - Solve the finite section problem using Simon's Factorization Theorem

semigroup with stabilization

$$(S, \cdot, \#)$$

semigroup with stabilization

•
$$(s t)^{\#} s = s (t s)^{\#}$$

•
$$(s t)^{\#} s = s (t s)^{\#}$$

•
$$S^{\#}S^{\#} = S^{\#}$$

Example (infinite) ($\{0, 1, 2, ..., \infty\}, +, \omega$), $0^{\omega} = 0, \quad 1^{\omega} = 2^{\omega} = ... = \infty$

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

St

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

Example (finite) $T_N = (\{0, 1, 2, ..., N, \infty\}, +, \#),$ $N+1=N, 0^{\#}=0, x^{\#}=\infty^{\#}=\infty$

Theorem. For any finite stabilization semigroup *S* and word $w \in S^+$ there exists a factorization tree over *w* of height $\leq 9|S|^2$.

More examples of semigroups with stabilization

More examples of semigroups with stabilization

Example (infinite) $(M_k T, \cdot, \omega)$

More examples of semigroups with stabilization

Example (infinite) (M_kT, \cdot, ω)

Example (finite) $(M_k T_N, \cdot, \#)$

More examples of semigroups with stabilization

Example (infinite) $(M_k T, \cdot, \omega)$

 $N+1, N+2, \dots \rightarrow N$ α_N

Example (finite) $(M_k T_N, \cdot, \#)$

More examples of semigroups with stabilization

Lemma.

Monday, November 30, 2009

Monday, November 30, 2009

Theorem.

Theorem. Let **a**, **b** be matrices over the (min,+)-semiring.

Theorem. Let **a**, **b** be matrices over the (min,+)-semiring.

Theorem. Let **a**, **b** be matrices over the (min,+)-semiring.

Theorem. Let
$$(a, b)$$
 be matrices over the (min,+)-semiring.
Then $\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$
 $x, \langle |x| < N \leq ?$
Let $r_1, r_2, r_3, \dots \in (a, b)^+$
such that $x = \lim r_n$
Wlog, we can assume that
 $\cdot r_n[i,j] = x[i,j]$ if $x[i,j] \neq \infty$
 $\cdot r_n[i,j] > n$ if $x[i,j] = \infty$

Theorem. Let
$$a$$
, b be matrices over the (min,+)-semiring.
Then $\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$
 $x, |x| < N \subseteq ?$
Let $r_1, r_2, r_3, \dots \in (a, b)^+$
such that $x = \lim r_n$
Wlog, we can assume that
 $\cdot r_n[i,j] = x[i,j] < N$ if $x[i,j] \neq \infty$
 $\cdot r_n[i,j] > n$ if $x[i,j] = \infty$

Theorem. Let
$$a$$
, b be matrices over the (min,+)-semiring.
Then $\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$
 $x, [x] < N \subseteq ?$
Let $r_1, r_2, r_3, \dots \in (a, b)^+$
such that $x = \lim r_n$
Wlog, we can assume that
 $\cdot r_n[i,j] = x[i,j] < N$ if $x[i,j] \neq \infty$
 $\cdot r_n[i,j] > n$ if $x[i,j] = \infty$
consider α_N : $M_kT \to M_kT_N$

Theorem. Let (a), (b) be matrices over the (min,+)-semiring.

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array}$$
Then $\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$
 $x, (x) < N = \alpha_N((a, b)^+, \omega)$
 $x, (x) < N = \alpha_N((a, b)^+, \omega)$
Let $r_1, r_2, r_3, \dots \in (a, b)^+$
such that $x = \lim r_n$
Wlog, we can assume that
 $\cdot r_n[i,j] = x[i,j] < N$ if $x[i,j] \neq \infty$
 $\cdot r_n[i,j] > n$ if $x[i,j] = \infty$ finite semigroup
with stabilization
consider α_N : $M_kT \to M_kT_N$ for a stabilization
every word has
fact. forest of height b

Theorem. Let
$$a$$
, b be matrices over the (min,+)-semiring.

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array}$$
Then $\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$
 $x, (a, b)^+) = \alpha_N((a, b)^+, \omega)$
 $x, (a, b)^+, \omega)$
Let $r_1, r_2, r_3, \dots \in (a, b)^+$
such that $x = \lim r_n$
Wlog, we can assume that
 $\cdot r_n[i,j] = x[i,j] < N$ if $x[i,j] \neq \infty$
 $\cdot r_n[i,j] > n > 2^h$ if $x[i,j] = \infty$ finite semigroup
with stabilization
every word has
fact. forest of height h

Theorem. Let
$$(a, b)$$
 be matrices over the (min,+)-semiring.
Then $\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$
 $x, (a, b)^+, \omega) = \alpha_N((a, b)^+, \omega)$
 $x, (x) = (x)$

.....

Theorem. Let
$$(a, b)$$
 be matrices over the (min,+)-semiring.
Then $\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$
 $x, (x) |x| < N \subseteq ?$
Let $r_1, r_2, r_3, ... \in (a, b)^+$
such that $x = \lim r_n$
Wlog, we can assume that
 $\cdot r_n[i,j] = x[i,j] < N$ if $x[i,j] \neq \infty$
 $\cdot r_n[i,j] > n > 2^b$ if $x[i,j] = \infty$ finite semigroup
with stabilization
every word has
fact. forest of height b
 $f = abbbbab....aaab$
 $f \in M_k T_N$
result of
fact. forest of height b

Theorem. Let (a), (b) be matrices over the (min,+)-semiring.
Then
$$\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$$

 $x_i^{(c)}|x| < N \subseteq ?$
Let $r_1, r_2, r_3, ... \in (a, b)^+$
such that $x = \lim r_n$
Wlog, we can assume that
 $\cdot r_n[i,j] = x[i,j] < N$ if $x[i,j] \neq \infty$
 $\cdot r_n[i,j] > n > 2^h$ if $x[i,j] = \infty$ finite semigroup
with stabilization
consider α_N : $M_kT \to M_kT_N$ finite semigroup
with stabilization
every word has
fact. forest of height h
 \cdot agree on values $\{0,1,...,N-1, T\}$
 \cdot if $s[i,j] = N$ then $N \leq r[i,j] \leq 2^h$

Theorem. Let
$$(a, b)$$
 be matrices over the (min,+)-semiring.
Then $\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$
 $x, (a, b)^+, \omega) \subseteq ?$
Let $r_1, r_2, r_3, \dots \in (a, b)^+$
such that $x = \lim r_n$
Wlog, we can assume that
 $\cdot r_n[i,j] = x[i,j] < N$ if $x[i,j] \neq \infty$
 $\cdot r_n[i,j] > n > 2^h$ if $x[i,j] = \infty$ finite semigroup
with stabilization
consider α_N : $M_kT \to M_kT_N$ finite semigroup
with stabilization
every word has
fact. forest of height h
 \circ fact. forest of height h

Theorem. Let (a), (b) be matrices over the (min,+)-semiring.
Then
$$\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$$

 $x, (x) |x| < N \subseteq ?$
Let $r_1, r_2, r_3, ... \in (a, b)^+$
such that $x = \lim r_n$
Wlog, we can assume that
 $\cdot r_n[i,j] = x[i,j] < N$ if $x[i,j] \neq \infty$
 $\cdot r_n[i,j] > n > 2^h$ if $x[i,j] = \infty$ finite semigroup
with stabilization
consider α_N : $M_kT \to M_kT_N$ for every word has
fact. forest of height h
 $\alpha_N(x) = \infty$
Wreatly Newsen 2000

Theorem. Let (a), (b) be matrices over the (min,+)-semiring.
Then
$$\alpha_N((a, b)^+) = \alpha_N((a, b)^+, \omega)$$

 $x, (a, b)^+, \omega)$
 $x, (a, b)^+, \omega)$
Let $r_1, r_2, r_3, \dots \in (a, b)^+$
such that $x = \lim r_n$
Wlog, we can assume that
 $\cdot r_n[i,j] = x[i,j] < N$ if $x[i,j] \neq \infty$
 $\cdot r_n[i,j] > n > 2^h$ if $x[i,j] = \infty$ finite semigroup
consider α_N : $M_kT \to M_kT_N$ finite semigroup
 $\cdot r_n[i,j] = n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] > n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] = n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] = n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] = n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] = n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] = n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] = n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] = n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] = n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] = n > 2^h$ if $x[i,j] = \infty$ finite semigroup
 $\cdot r_n[i,j] = 2^h$ if $x[i,j] = N$ then $N \leq r[i,j] \leq 2^h$
 $\cdot r_n(x) = s \in \alpha_N((a, b)^+, \omega)$

Plan

- \checkmark 1. Introduction to the problem
- ✓ 2. Reduce emptiness of min-automata to the *finite* section problem, via a Ramsey-type theorem
 - Solve the finite section problem using Simon's Factorization Theorem

Plan

- \checkmark 1. Introduction to the problem
- ✓ 2. Reduce emptiness of min-automata to the *finite* section problem, via a Ramsey-type theorem
- ✓ 3. Solve the finite section problem using Simon's Factorization Theorem

Plan

- \checkmark 1. Introduction to the problem
- ✓ 2. Reduce emptiness of min-automata to the *finite* section problem, via a Ramsey-type theorem
- ✓ 3. Solve the finite section problem using Simon's Factorization Theorem

Thank you for your attention!