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Chromatin organization

« Compression: 2 meters DNA — 10 micrometers nucleus
* Accessibility: for protein machineries that regulate:

* Replication Chromosome Territories

* Repair e ?
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http://atlasgeneticsoncology.org/Educ/ChromatinEducEng.html  Rosa and Shaw, Biology 2013, 2(4), 1378-1410



Impact on gene req: far enhancers brought to promoters
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Promoter choice mediated
by CTCF—cohesin DNA
looping between the distal
enhancer and distinct
promoters at the gene
cluster.

Active promoters
distinguished by H3K4me3
and depletion of DNA
methylation.

Chin-Tong Ong & Victor G. Corces Nature Reviews Genetics 15, 234—-246 (2014)
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History: Chromosome Conformation Capture
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Now: Hi-C

A Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;  Sequence using
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 DNA digested with a restriction enzyme that leaves a 5' overhang;

» the 5' overhang filled, including a biotinylated residue;

» the blunt-end fragments ligated (ligation of the cross-linked DNA)

» Resulting DNA sample: fragments that were originally in close
spatial proximity in the nucleus, marked with biotin at the junction.

« Hi-C library: shearing the DNA and selecting the biotin-containing
fragments with streptavidin beads.

« The library massively parallel DNA sequenced — a catalogue of
interacting fragments

Lieberman-Aiden et al. 2009



Hi-C produces a genome-wide contact matrix
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« Each pixel: all interactions between 1-Mb locuses
» Intensity: the total number of reads (0 to 50).
« Tick marks every 10 Mb.

C) a biological repeat using the same restriction enzyme
D) a different restriction enzyme

Lieberman-Aiden et al. 2009



The presence and organization of chromosome territories
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(A) Contact prob. decreases with distance.
- Contacts more probable within than between chromosomes.
(B) Observed/expected number of interchromosomal contacts
- Red: enrichment, blue: depletion (range from 0.5 to 2).
- Small, gene-rich chromosomes interact more with one another,
suggesting that they cluster together in the nucleus.

Lieberman-Aiden et al. 2009



Nucleus is segregated into to open & closed chromatin

A Observed B Observed/Expected C Pearson correlation

‘I[e [ ‘ Ch#l' 14e + i 1 J‘II i + + Chr 144 [ + 4 1 ‘ ‘- 1—0—0—0&&—%‘—0—1

Y-

u { —

Chr 14
Chr 14
rChr 14

A

(A) Substructure: intense diagonal, a constellation of large blocks
(B) Observed/expected matrix: each entry divided by the genome-wide

average contact probability for loci at same genomic distance
more (red) or less (blue) interactions than would be expected,

given their genomic distance (range from 0.2 to 5).
(C) Correlation matrix: entry ijj = cor(row i, column j), from -1 (blue) to +1

(red)
The pattern indicates two compartments within the chromosome

Contacts within each compartment enriched and contacts
between depleted

Lieberman-Aiden et al. 2009



The less packed compartment correlates with active DNA

Less packed: more contacts (red)
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Intrachromosomal contact prob / as a function of distance s

« Power law relation: y = a x*
* Plotting power law on log — log scale gives a line: Y = -k X +b, where

Y =log(y), X = log(x), b=log(a)

I(s) plotted on log-log scale shows power law distribution with k = -1,
I(s) = s1,between 500 kb and 7 Mb
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Different models of chromatin organization

DNA is a polymer: a large molecule composed of many repeated
subunits.
“equilibrium globule”: a compact configuration originally used to
describe a polymer in a poor solvent at equilibrium. They
« are highly knotted
* have linear and spatial positions largely decorrelated after a few
megabases
« predict that contact probability will scale as s-3/2
“fractal globule”: highly compact, globule-of- globules-of-globules that
densely fills 3D space without crossing itself. They:
* lack knots
 facilitate unfolding and refolding, e.g, during gene activation
« contiguous regions of the genome form spatial sectors whose
size corresponds to the length of the original region
« predict that contact probability will scale as s

* Poor solvent: one in which the solute precipitates
Lieberman-Aiden et al. 2009



Chromatin is a fractal globule
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Topological association domains (TADs)
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Directionality index

* A:number of reads that map from a given 40kb bin to the upstream
2Mb (upstream mapping bias)

B :no. of reads that map from the same 40kb bin to the downstream
2Mb (downstream mapping bias)

« E=(A+B)/2 (average of A and B)

B-AN[ (A-E)°  (B-E)
o= (—|B-A|)(—E PE )

» Useful to detect boundaries of TADs: more biased bins have a higher
magnitude of DI.
« A HMM model to infer the “true” biases in the data

Dixon et al. 2012



Markov chain

= Let{X,, ..., X,} be discrete r. v. with common state space [K] = {1, ..., K}.
= We always have the factorization
P(a:l,...,xL) — P(xl,...,xL_l)P(a:L|a:L_1,...,a:1)
= P(Zl?l,...,CEL_Q)P(CUL_l | CEL_Q,...,CE]_)P(Q’:L I .’L‘L_]_,...,CC]_)
= P(z1)P(zp | z1)P(z3 |20, 21) ... P(zL | zp—1,-..,21)

= {X,}Is a Markov chain if the Markov property holds, i.e., if
P(Xn|X,—1,...,.X7) = P(Xn|X,,—1)

foralln=2, ..., L.

@© Niko Beerenwinkel, ETH Zurich



Transition matrix

= A Markov chain {X,} is homogeneous, if
P(Xn| X,—1) =P(Xo| X;) foralln>2

= A homogeneous Markov chain is determined by
the initial state distribution 17 € A,_, defined by

M, = P(X1=k)
and the K x K transition matrix 7 = (T7,,) given by
Ty =P(Xpp1 =1l Xn=k)

© Niko Beerenwinkel, ETH Zurich




Markov chain model

= The probability of an observation x = (x4, ..., X|) in the
Markov chain model MC(II, T) is

L—1
P(X=z) = P(X1=z1) |] P(Xp+1=2pt1| Xn=zn)

n=1

L—1
rlw]_ H T$n,$.n+1

n=—1

OO —@ @

© Niko Beerenwinkel, ETH Zurich S




HMM for Hi C

« Hidden states: “Upstream Bias”, “Downstream Bias” or “No Bias”

« Y ={Y1,...,Yn}: observed directionality index, modeled as mixtures of
Gaussians

« Q={Q1,...,Qn} : the true hidden directionality biases
« M={M1,...,Mn}: mixtures
* PCY =y [ Q=i M=m) = N(ysHi ms 2im)

« P(M,=m|Q,=i)=C(i,m),
where C encodes the mixture weights for each state i.

 Baum-Welch algorithm [EM] to compute maximum likelihood estimates

Dixon et al. 2012



DNA example

A C G T
0 A[.3) A(3 1 3 .3)

q— C|4| p_ C|4 1 1 .4
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= \We consider DNA sequences
x € {A,C,G,T} as observations of a
homogeneous Markov chain {X3}.

= For example,
P(ACCTA)=03-0.1-0.1-04-0.3

© Niko Beerenwinkel, ETH Zurich 6




CpG islands

= CpG islands are stretches of mammalian genomes
enriched for the dinucleotide CG, typically 300 to 3,000
bases long.

= CG tends to mutate to CT, so in general P(CG) < P(C)P(G)

= But in promoter regions, this effect is suppressed and
hence CpG islands are more common.

© Niko Beerenwinkel, ETH Zurich 1



How can we find CpG islands in a genome?

~ACTTCGCGCGCCGATGCCACTGCACATGCATGCATCGCGCGCCGCGCGACAGACTTACG..

| © Niko Beerenwinkel, ETH Zurich | 12




Annotating genomic sequences

o e e e e ++++++++ - - -
ACTTCGCGCGCCGATGCCACTGCACATG CATGCATCGCGCGCCGCGCGACAGACTTACG

© Niko Beerenwinkel, ETH Zurich




Two Markov chain models

e 2 2 ++++++H+H+HH - - - .
ACTTCGCGCGCCGATGCCACTGCACATGCATGCATCGCGCGCCGCGCGACAGACTTACG...
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CpG island Non-CpG island

© Niko Beerenwinkel, ETH Zurich




Hidden Markov model (HMM)

= Hidden (non-observable) random variables {Z,} form a

homogeneous Markov chain (the annotation).

For example, Z, indicates whether sequence position n belongs to a
CpGisland or not, Z, € {+, -}.

* Observed random variables X, € {A,C,G, T} result from
hidden states emitting symbols.

S SN SN ) P NPANPS
©® ® © @ xixizme

© Niko Beerenwinkel, ETH Zurich



Definitions

= |nitial state probabilities: M, = P(Z1 = k)

= Transition probabilities:

= Emission probabilities:

%

states

symbols

Ty =P(Zn=1|2,_1=k)

@© Niko Beerenwinkel, ETH Zurich




Joint probability
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where P(ZL+1 | ZL) — TZLeZL-I-l =1

| ® Niko Beerenwinkel, ETH Zurich l 19



State path

= We observe the DNA sequence X, but we are interested in
the hidden states Z of the Markov chain (the annotation).

= Eachz=(z,, ..., z) is called a state path. There are K-
possible paths, where K is the number of (hidden) states.

= Different state path can give rise to the same sequence of
observed symbols, but with different probabilities.

© Niko Beerenwinkel, ETH Zurich



Decoding

O

= For given parameters, the decoding problem is to find the
most probable state path z for a given observation x:

z¥ =argmaxP(X =z, Z = z)
Z

@© Niko Beerenwinkel, ETH Zurich




Viterbi algorithm: basic idea
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Viterbi algorithm

= |nitialization:

Vo(0) = 1
v,(0) =0 for all k > 1
= Recursion:forn=1, ..., L,
vi(n) = Ei, max, v (n-1)T, foralll=1,...,K

ptr.(I) = argmax, v,(n-1)T,, foralll=1, ..., K
= Termination (assuming an end state):
P(x, z*) = max, v, (L)T,,
z* = argmax, V,(L)T,q
= Traceback:forn=1L, ..., 1,
Z*n—1 = ptrn(z*n)

= Dynamic programming, O(LK?) despite K- paths!

© Niko Beerenwinkel, ETH Zurich



Summary

* Markov chains can model temporal or spatial (linear)
dependencies.

= HMMs consist of a hidden state space with a Markov chain
structure emitting observable symbols.

= HMMs are frequently used for genome annotation, for
example, CpG islands, gene finding, etc.

* The Viterbi algorithm computes the most probable state
path and the forward and backward algorithms the
likelihood in an efficient way.

= Parameter estimation can be performed using the EM
algorithm (Baum-Welch algorithm).

© Niko Beerenwinkel, ETH Zurich




HMM for Hi C

“Hidden” DB “Hidden” DB “Hidden” DB
(State 1,2, 0r 3) (State 1,2,0r 3) (State 1,2, 0r 3)

Mixture of Mixture of Mixture of
Gaussians Gaussians Gaussians

Dixon et al. 2012



Boundaries of TADs ~ insulator (barrier) elements

* Insulator: genetic boundary element that blocks the interaction
between enhancers and promoters.

looping of DNA
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Boundaries of TADs ~ insulator (barrier) elements

* Insulator: genetic boundary element that blocks the interaction
between enhancers and promoters.
 Eg. The Hoxa locus
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Boundaries of TADs ~ insulator (barrier) elements

« Many known insulator or barrier elements bound by the zincfinger-
containing protein CTCF

« Strong enrichment of CTCF at the topological boundary regions

« CTCF binds also outside of the boundary regions

 How to show enrichment?

Dixon et al. 2012
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CTCF enrichment at topological boundary regions

Average enrichment plot of CTCF over topological domains.
« Each TAD divided into 100 equal size bins (+/- 10 bins from each
end of the domain).
* log2 ratio of CTCF RPKM over Input (control) calculated for each
bin, shown as an average over TADs.
 CTCF enriched on the edges.

a 1.6-

1.2+

o
o
]

o
s

Log2(CTCF RPKM/Input RPKM)* 10"

o
1

04+
o I, 0

+
Dixon et al. 2012 Domain Start Domain End



CTCF enrichment at topological boundary regions

Number of boundaries with an associated CTCF site for varying

window size cut offs.

 Blue: For each distance D, the number of boundaries with a CTCF
within +/- D.

« Gray: the number expected at random at the same distance cut-off.
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CTCF enrichment at topological boundary regions

The empirical cumulative density distribution of the distance between

the domain border and the nearest CTCF binding site (in bp).

« Blue: The distance between the actual boundaries and the nearest
CTCF site

« Gray: The distance to randomized boundaries
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