Genome-scale technologies 2/ Algorithmic and statistical aspects of DNA sequencing DNase I-seq

Ewa Szczurek University of Warsaw, MIMUW

Deoxyribonuclease I (DNase I)

- cleaves DNA adjacent to a pyrimidine nucleotide.
- a waste-management endonuclease
- one of the deoxyribonucleases responsible for DNA fragmentation during apoptosis.
- DNase I hypersensitive sites ~
 - open, accessible chromatin;
 - > regions of the genome are likely to contain active genes

The project

http://students.mimuw.edu.pl/~szczurek/TSG2_Project/project.html

Report deadline: 20.01.2016

Presentations: 26.01.2016

Deoxyribonuclease I (DNase I) hypersensitive sites

- Short region of chromatin.
- Super sensitivity to Dnase I cleavage
- Nucleosomal structure less compacted
- Increased availability of the DNA to binding by proteins:

"DNAse hypersensitive site" by Wang Y-M, Zhou P, Wang L-Y, Li Z-H, Zhang Y-N, et al. - Wang Y-M, Zhou P, Wang L-Y, Li Z-H, Zhang Y-N, et al. (2012) Correlation Between DNase I Hypersensitive Site Distribution and Gene Expression in HeLa S3 Cells. PLoS ONE 7(8): e42414. doi:10.1371/journal.pone.0042414.

DNase I hypersensitive sites: location

- Hypersensitive sites (HS) found:
 - On every active gene (often >1 HS per gene)
 - > Exclusively on chromatin of cells in which the gene is expressed
 - Before transcription begins, in regions preceding active promoters.
- HS generated as a result of the binding of transcription factors that displace histone octamers.

DNase I- Seq

Dnase I peak calling

- Peaks:
 - > Within HS
 - drop of cleavage relative to surrounding

- Aim: visually display and summarize tag data in an intuitive way
- generates a continuous tag sequence density estimation
- allowing identification of biologically meaningful sites
- output can be displayed directly in the UCSC Genome Browser.

Boyle et al. (2008)

Histogram

- Introduced by Karl Pearson
- Bin (divide) the range of values into
 - consecutive
 - Adjacent
 - > (Equal size)
 - > non overlapping intervals
- Count how many values end up in each bin

Histograms can be fooled by sparse sequencing data

- Blue dots: sample positions
- Locations of the histogram bins can cause data to look
 - > unimodal (A) or
 - bimodal (B)
 - depending on starting positions (here 1.5 or 1.75)

Kernel density estimation

- A non-parametric way to estimate the probability density function of a random variable
- Inference about a population from a sample
- Let $(x_1, ..., x_n)$ iid samples from a distribution with density f
- Kernel density estimator:

$$\hat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n K_h(x - x_i) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right),$$

$$K_h(x) = \frac{1}{h}K\left(\frac{x}{h}\right)$$

- K(•) the kernel, a non-negative function that integrates to one and has mean zero
- Popular K(x) = standard normal
- h > 0 a smoothing parameter called the bandwidth.

Bandwidth selection

- A random sample of 100 points from a standard normal distribution.
- Grey: true density (standard normal).
- Red: KDE with h=0.05 undersmoothed.
- Black: KDE with h=0.337 optimal.
- Green: KDE with h=2 oversmoothed.
- Bandwidths chosen to minimize the mean integrated squared err.

Kernels vs histograms

- 6 samples: $x_1 = -2.1$, $x_2 = -1.3$, $x_3 = -0.4$, $x_4 = 1.9$, $x_5 = 5.1$, $x_6 = 6.2$.
- Histogram:
 - ≥ 6 bins width 2
 - For each data point in a bin, but a box of height 1/12
- Kernel estimate:
 - > For each data point put a normal kernel with var =2.25
 - > Sum the kernels

Bandwidth affects the density estimaiton

- (B) Over and undersmoothing
- (D) Example of how distributions over each point are combined to create the final distribution.
- Each of the samples are represented by Gaussian distributions which are summed to create the final density estimation

- n sample points, over chromosome length L
- Gaussian standard kernel estimator with bandwidth b

$$\hat{\rho}(x) = \frac{1}{nb} \sum_{i=1}^{n} K\left(\frac{x - x_i}{b}\right)$$

- User provides feature length (default 600), the larger the smoother
- Use a sliding window w to avoid comp. precision problems such that

$$\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{w}{b}\right)^2} > \min(\text{floating point}).$$

- Compute a significance threshold, with parameters k and s
- 1. Compute an average number of features for window w as $n_w = nw/L$.
- 2. Calculate the kernel density (kd) at a fixed point x_c within w, assuming a random uniform distribution of the n_w features.
- 3. Repeat (2) *k* times to obtain a distribution of the kd estimates for x_c. For large *k* the kd-es become normally distributed.
- 4. The threshold is s SDs above the mean of this normal distribution.

- Input: BED file
- → determine point representatives of aligned sequences
- → Output:
 - a continuous probability wiggle format (http://genome.ucsc.edu/goldenPath/help/wiggle.html) or
 - ➤ Discrete-scored regions BED format: where the continuous probability is above the threshold s SDs above the background mean.
- → Import into the UCSC Genome Browser (Kent et al., 2002) (http://genome.ucsc.edu).

F-seq on ChIP seq

Fig. 2. View of 10 kb region of Chromosome 8 shows an accurate duplication of windowing technique in STAT1 data (Robertson *et al.*, 2007). Note that the histogram generated sites from Robertson *et al.* only display sites above a cutoff.

Comparison of DNase I-seq peak callers

Koohy H, Down TA, Spivakov M, Hubbard T (2014) A Comparison of Peak Callers Used for DNase-Seq Data. PLoS ONE 9(5): e96303. doi:10.1371/journal.pone.0096303

http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0096303

DNase footprinting assay

- DNA footprinting: investigating the sequence specificity of DNAbinding proteins in vitro
- Elucidating gene regulation: binding of regulatory proteins to enhancers, promoters.
- DNase footprinting assay:
 - DNA footprinting technique
 - ➤ Using the fact that a protein bound to DNA will often protect that DNA from enzymatic cleavage.
 - Locates protein binding sites
 - DNase cuts the radioactively end-labeled DNA
 - Gel electrophoresis used to detect the resulting cleavage pattern.

Brenowitz M, Senear DF, Shea MA, Ackers GK (1986). "Quantitative DNase footprint titration: a method for studying protein-DNA interactions". *Methods in Enzymology* **130**: 132–81. doi:10.1016/0076-6879(86)30011-9. PMID 3773731.

Galas DJ, Schmitz A (Sep 1978).

"DNAse footprinting: a simple method for the detection of protein-DNA binding specificity". *Nucleic Acids Research* **5** (9): 3157–70. doi: 10.1093/nar/5.9.3157. PMC 342238. PMID 212715.

DNase I HS footprinting

- Regulatory factor binding to DNA
- → depletion of canonical nucleosomes
- markedly increased accessibility of the DNA template around the factor binding regions
- This accessibility is manifest as DNase I hypersensitive sites
- Within hypersensitive sites, cleavages accumulate at nucleotides that are not protected by protein binding.
- Binding sites detectable provided sufficiently dense local sampling of DNase I cleavage sites.
- → DNase I leaves footprints that demarcate transcription factor occupancy at nucleotide resolution

DNase I footprinting

Footprints are quantitative markers of factor occupancy

- DNase I cleavage patterns surrounding all 4,262 NRF1 motifs contained within DHSs
- Ranked by footprint occupancy score (FOS): relating the density of DNase I cleavages within the motif to the flanking regions

FOS:

- sequence-specific regulatory factor occupancy
- evolutionary constraint
- ChIP-seq signal intensity

Footprints harbour functional SNVs

De novo motif finding

41 cell types

~1.1 million DNase I footprints identified per cell type

45 million total footprints

Database independent, de novo motif discovery

683 unique motif models

b

Annotation of 683 de novo motif models

Database covered (%)

The Wellington algorithm

- Detects Protein–DNA binding sites as
 - Short sites within DNase I HS
 - with depletion of cuts
 - compared with a large number of cuts in the surrounding region

The Wellington algorithm

- Detects Protein–DNA binding sites as
 - Short sites within DNase I HS
 - > with depletion of cuts
 - compared with a large number of cuts in the surrounding region

The Wellington algorithm

- FP+: # cuts on the forward reference strand inside the possible footprint
- SH+: in the upstream shoulder region on the forward reference strand
- FP+: on the backward reference strand inside the possible footprint
- SH+: in the downstream shoulder region on the backward strand
- 1_{FP}: the length (in base pairs) of the possible footprint
- 1_{SH}: the length (in base pairs) of the shoulder region
- Test each strand separately
- Binomial test: null hypothesis is that the number of reads is proportional to the region length:
 - ➤ Let F[k, n, p]: the binomial cumulative distribution function (the probability of achieving at least k out of n successes with the probability of each success being p)

$$P-value = \{1 - F[FP^+, FP^+ + SH^+, l_{FP}/(l_{FP} + l_{SH})] \} \{1 - F[FP^-, FP^- + SH^-, l_{FP}/(l_{FP} + l_{SH})] \}$$

Strand imbalance improves TF binding localization

- Large numbers of sequencing fragments align to
 - the + strand upstream of the protein—DNA binding site and
 - the strand downstream of the protein—DNA binding site

Strand imbalance improves TF binding localization

- Repeated using reversed imbalance (testing FP⁺ vs SH downstream on the + strand, and FP⁻ vs SH upstream on the -strand)
- Lower evolutionary conservation

PyDNAse

Bibliography

- Hesselberth et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods. 2009 April; 6(4): 283– 289. doi:10.1038/nmeth.1313.
- Neph et al. An expansive human cis-regulatory lexicon encoded in transcription factor footprints. Nature 489:83-90, 2012
- Piper et al. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data. Nucleic Acids Research, 2013, Vol. 41, No. 21 e201
- Boyle et al. F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics Vol. 24 no. 21 2008, pages 2537–2538