Genome-scale technologies 2/
Algorithmic and statistical aspects

of DNA sequencing
DNase I-seq

Ewa Szczurek
University of Warsaw, MIMUW

szczurek@mimuw.edu.pl



Deoxyribonuclease | (DNase |)

= cleaves DNA adjacent to a pyrimidine nucleotide.
= a waste-management endonuclease

= one of the deoxyribonucleases responsible for DNA fragmentation
during apoptosis.

= DNase | hypersensitive sites ~
» open, accessible chromatin;
» regions of the genome are likely to contain active genes

Ho-Ryun Chung



The project

= http://students.mimuw.edu.pl/~szczurek/TSG2 Project/project.html
= Report deadline: 20.01.2016

= Presentations: 26.01.2016




Deoxyribonuclease | (DNase I) hypersensitive sites

= Short region of chromatin.
= Super sensitivity to Dnase | cleavage
= Nucleosomal structure less compacted
* Increased availability of the DNA to binding by proteins:
» transcription factors and
nucleosome-free
» DNase | enhancer region
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DNase | hypersensitive sites: location

= Hypersensitive sites (HS) found:
» On every active gene (often >1 HS per gene)
» Exclusively on chromatin of cells in which the gene is expressed
» Before transcription begins, in regions preceding active promoters.

= HS generated as a result of the binding of transcription factors that
displace histone octamers.
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DNase-seq: a high-resolution technique for
mapping active gene regulatory elements
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Dnase | peak calling

= Peaks:
» Within HS
» drop of cleavage relative to surrounding



F-seq

= Aim: visually display and summarize tag data in an intuitive way
= generates a continuous tag sequence density estimation

= allowing identification of biologically meaningful sites

= output can be displayed directly in the UCSC Genome Browser.
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Histogram

= Introduced by Karl Pearson
= Bin (divide) the range of values into
» consecutive
» Adjacent
> (Equal size)
» non overlapping intervals
= Count how many values end up in each bin



Histograms can be fooled by sparse sequencing data
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= Blue dots: sample positions

= Locations of the histogram bins can cause data to look
» unimodal (A) or
» bimodal (B)

» depending on starting positions (here 1.5 or 1.75)



Kernel density estimation

A non-parametric way to estimate the probability density function of a
random variable

Inference about a population from a sample
Let (x,, ..., x,) iid samples from a distribution with density f
Kernel density estimator:

A 1 © 1 X—X
f(x)=— YK, (x-x.)=— YK L,
() nz i ) nhg ( h )

1 (x
K,(x)= ZK(Z)

K(*) - the kernel, a non-negative function that integrates to one and
has mean zero

Popular K(x) = standard normal
h > 0 - a smoothing parameter called the bandwidth.




Bandwidth selection

A random sample of 100 points
from a standard normal
distribution.

Grey: true density (standard
normal).

Red: KDE with h=0.05
undersmoothed.

Black: KDE with h=0.337 optimal.

Green: KDE with h=2
oversmoothed.

Bandwidths chosen to minimize
the mean integrated squared err.
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Kernels vs histograms

= 6 samples: x,=-2.1,x,=-1.3,%x;=-04,x,=1.9, x5 =5.1, X; = 6.2.
= Histogram:

» 6 bins width 2

» For each data point in a bin, but a box of height 1/12
= Kernel estimate:

» For each data point put a normal kernel with var =2.25

» Sum the kernels
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Bandwidth affects the density estimaiton

= (B) Over and undersmoothing

= (D) Example of how distributions over each point are combined to
create the final distribution.

= Each of the samples are represented by Gaussian distributions which
are summed to create the final density estimation
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F-seq

= n sample points, over chromosome length L
= Gaussian standard kernel estimator with bandwidth b

X 1 <& X—X;
'O(X)ZEZK< b )

= User provides feature length (default 600), the larger the smoother
= Use a sliding window w to avoid comp. precision problems such that

| 1 (w)2
e 2 (%) > min(floating point).
A gPp




F-seq

= Compute a significance threshold, with parameters k and s
1. Compute an average number of features for window w as n, =nw/L.

2. Calculate the kernel density (kd) at a fixed point x_ within w,
assuming a random uniform distribution of the n , features.

3. Repeat (2) k times to obtain a distribution of the kd estimates for x..
For large k the kd-es become normally distributed.

4. The threshold is s SDs above the mean of this normal distribution.



F-seq

= Input: BED file
= - determine point representatives of aligned sequences
= - QOutput:
» a continuous probability wiggle format
(http://genome.ucsc.edu/goldenPath/help/wiggle.html) or

» Discrete-scored regions BED format: where the continuous
probability is above the threshold s SDs above the background
mean.

= - Import into the UCSC Genome Browser (Kent et al., 2002)
(http://genome.ucsc.edu).



F-seq on ChIP seq

39885000 | chr8: 39890000 | 398950001

Known STAT1 Binding Sites |

‘ Histogram Generated STAT1 Site

F-Seq Generated STAT1 Site

Fig. 2. View of 10 kb region of Chromosome 8 shows an accurate duplication
of windowing technique in STAT1 data (Robertson et al., 2007). Note that
the histogram generated sites from Robertson ef al. only display sites above
a cutoff.



Comparison of DNase I-seq peak callers
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€96303. doi:10.1371/journal.pone.0096303
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DNase footprinting assay

= DNA footprinting: investigating the sequence specificity of DNA-
binding proteins in vitro

= Elucidating gene regulation: binding of regulatory proteins to
enhancers, promoters.

= DNase footprinting assay:
» DNA footprinting technique

» Using the fact that a protein bound to DNA will often protect
that DNA from enzymatic cleavage.

» Locates protein binding sites
» DNase cuts the radioactively end-labeled DNA
» Gel electrophoresis used to detect the resulting cleavage pattern.

Brenowitz M, Senear DF, Shea MA, Ackers GK (1986). "Quantitative DNase footprint titration: a method for studying protein-DNA
interactions". Methods in Enzymology 130: 132—81. doi:10.1016/0076-6879(86)30011-9. PMID 3773731.

Galas DJ, Schmitz A (Sep 1978).
"DNAse footprinting: a simple method for the detection of protein-DNA binding specificity". Nucleic Acids Research 5 (9): 3157—70. doi:

10.1093/nar/5.9.3157. PMC 342238. PMID 212715.




DNase | HS footprinting

= Regulatory factor binding to DNA
= - depletion of canonical nucleosomes

= - markedly increased accessibility of the DNA template around the
factor binding regions

= This accessibility is manifest as DNase | hypersensitive sites

=  Within hypersensitive sites, cleavages accumulate at nucleotides that
are not protected by protein binding.

= Binding sites detectable provided sufficiently dense local sampling of
DNase | cleavage sites.

= - DNase | leaves footprints that demarcate transcription factor
occupancy at nucleotide resolution



DNase | footprinting
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NRF1 motif CCJ C C“

Neph et al., Nature, 2012



Footprints are quantitative markers of factor occupancy

DNase | cleavage ©
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DNase | cleavage
patterns surrounding all
4,262 NRF1 motifs
contained within DHSs

Ranked by footprint

occupancy score (FOS):

relating the density of
DNase | cleavages
within the motif to the
flanking regions

FOS:

» sequence-specific
regulatory factor
occupancy

» evolutionary
constraint

» ChlP-seq signal
intensity

4,262 NRF1 motif instances in DHSs

DNase | cleavage
(per nucleotide)

Low i ]High

2,351 of 4,262
motifs coinciding
with footprints
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Footprints harbour functional SNVs

T allele

Allele-specific DNase |
cleavages at SNV rs4144593
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De novo motif finding

41 cell types

\

~1.1 million DNase |
footprints
identified per cell type
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The Wellington algorithm

= Detects Protein—DNA binding sites as
» Short sites within DNase | HS
» with depletion of cuts
» compared with a large number of cuts in the surrounding region
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Piper et al. (2013)



The Wellington algorithm

= Detects Protein—DNA binding sites as
» Short sites within DNase | HS
» with depletion of cuts
» compared with a large number of cuts in the surrounding region

upstream shoulder
region, + strand

Footprint region
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The Wellington algorithm

= FP*: # cuts on the forward reference strand inside the possible footprint
= SH*: in the upstream shoulder region on the forward reference strand

= FP*:on the backward reference strand inside the possible footprint

= SH™*: in the downstream shoulder region on the backward strand

= 1 : the length (in base pairs) of the possible footprint

= l¢y- the length (in base pairs) of the shoulder region

= Test each strand separately
= Binomial test: null hypothesis is that the number of reads is proportional
to the region length:

» Let F[k, n, p]: the binomial cumulative distribution function (the
probability of achieving at least k out of n successes with the
probability of each success being p)

P-value={1 - F[FP*, FP*+SH*, lpp/(lp+lgp)] }{1-F[FP-, FP- +SH-, 1op/(Lpp+lgp)1}



Strand imbalance improves TF binding localization

= Large numbers of sequencing fragments align to
» the + strand upstream of the protein—DNA binding site and
» the - strand downstream of the protein—DNA binding site

NRF1 Sp
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Strand imbalance improves TF binding localization

= Repeated using reversed imbalance (testing FP* vs SH downstream
on the + strand, and FP- vs SH upstream on the -strand)

= Lower evolutionary conservation
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PyDNAse

DNase | digestion

High throughput
sequencing
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PyDNAse

Align to reference
genome
Alignment
(BAM file)
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PyDNAse

pyDNase @ |- = = = = = =

Non-sequentially load
DNase-seq data from
BAM file

Generate CSV file with Run Wellington Calculate average

cut information algorithm on DHSs DNase activity

Heatmans Footprints Average
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