Genome-scale technologies 2/ Algorithmic and statistical aspects of DNA sequencing ChIP-Seq data analysis

Ewa Szczurek szczurek@mimuw.edu.pl

Instytut Informatyki Uniwersytet Warszawski

Model-based Analysis of ChIP-Seq data (MACS)

Input parameters:

bandwidth a sonication size, 0.5 size of a sliding window mFold tag enrichment

Steps:

- 1. slide 2bandwidth windows across the genome
- 2. find peaks: regions with tags > mfold enriched to random
- 3. randomly sample 1,000 of these high-quality peaks and
 - separate their Watson and Crick tags
 - align them by the midpoint (if the Watson tag center is left of the Crick center)
- 4. let d = the distance between the Watson and Crick modes
- 5. shift all the tags by d/2 toward the 3' ends

Output:

Shifted tags are at the most likely protein-DNA binding sites.

MACS model for FoxA1 ChIP-Seq.

- ▶ 5' ends of strand-separated tags from a random sample of 1,000 model peaks, aligned by:
 - a) the center of their Watson and Crick peaks
 - b) the FKHR motif (precise FoxA1 binding place)

Finding peaks in MACS

- For experiments with a control
 - linearly scale the total control tag count to be the same as the total ChIP tag count.
 - remove duplicate tags in excess of what is warranted by the sequencing depth
- ▶ Model tag counts with Poisson distribution (λ_{BG})
- ▶ Peaks: significant deviation of counts from $Poiss(\lambda_{BG})$
- ► Shift tags by *d*/2
- Merge overlapping peaks
- ► Summit: fragment with the highest tag pileup ↔ precise prediction of binding site

Significance of peaks in MACS

- ► Tag distribution in control
 - has local biases and correlates with ChIP samples

Tag count in ChIP versus control (10 kb windows across genome)

Tag density in control samples around FoxA1 ChIP-Seq peaks

red dots: windows containing ChIP peaks black dots: windows containing control peaks

Significance of peaks in MACS

- ▶ The uniform, whole-genome λ_{BG} not used
- ▶ Instead, λ_{local} (estimated from c.a. 5KB around the peak in the control)

Definition (Empirical FDR)

For each detected peak, MACS uses the same parameters to find ChIP peaks over control and control peaks over ChIP (that is, a sample swap). The empirical FDR is defined as:

Number of control peaks

Number of ChIP peaks

ChIP Peak calling algorithms: a comparison¹

¹Wilbanks et al., Plos One (2010)

Bibliography

Y. Zhang et al., Model-based Analysis of ChIP-Seq (MACS). Genome Biology 2008.