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The problem

We need to assess relative levels of transcript abundances in
multiple samples This requires:

I Sample collection (gene arrays, tiling arrays or RNASeq)

I Signal normalization (bringing the measured signals to
comparable values)

I Assessment of di�erential expression signi�cance
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Microarrays

I designed to look at gene
expression

I use a few probes for each
known or predicted gene

I prehistory
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Tiling arrays

I subtype of microarray chips.

I di�er in the nature of the
probes

I short fragments, designed to
cover the entire genome or
contiguous regions of the
genome

I depending on probe lengths
and spacing, di�erent
degrees of resolution can be
achieved
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Tiling arrays

For A�ymetrix tiling arrays:

I contain 25-nt probes tiled every 35 bp of DNA sequence.

I whole genome arrays (2.0R) are comprised of 7 chips covering
entire human or mouse genome that is masked of repeat
sequences.
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Read count matrix

I A n ×m count matrix N, where Ngs is the number of reads
assigned to gene g in sample s

I Produced from alignment data (eg using HTSeq, or Picard)

I Not a direct measure of gene expression!

I Rather, Ngs ∝ lgµgs , where lg is the gene g length, and µgs is
the expected expression.



8/35

Normalization

De�nition (Normalization)

Normalization is a process designed to identify and correct technical
biases removing the least possible biological signal. This step is
technology and platform-dependant.
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Nomenclature

sample material with a speci�c source, e.g. culture or tissue.

replicates several independent samples with the same material
type and origin

condition environment in which samples are prepared (e.g.
added chemicals). There can be several samples per
condition

�ow cell a glass slide where the sequencing takes place

line one of eight independent sequencing areas that a �ow
cell is made up from

library contains cDNAs representative of the RNA molecules
that are extracted from a given sample, pre-processed
and deposited on lanes in order to be sequenced

library size the number of mapped short reads obtained from
sequencing of the library.

Here, one sample ⇔ one line ⇔ one library ⇔ one condition.
Dillies et al. A comprehensive evaluation of normalization . . . . Brief. in Bioinformatics 2012.
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Two issues calling for normalization

1. Bias in sample size

2. Bias in over-represented genes - genes whose counts dominate
the sample size
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Normalization by scaling factor

Total count (TC)

Ngs ×
mean(

∑
i Nij) across samples j∑

j Njs
(1)

Upper Quartile (UQ)

Ngs×
mean upper quartile of Nij 6= 0 across samples j

mean upper quartile of Njs

(2)

Median (Med)

Ngs ×
med(Nij 6= 0) across samples j

med(Njs 6= 0)
(3)
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Normalization by scaling factor � cont.

Hypothesis: most genes are not DE, should have similar read
counts across samples.

DESeq

Ngs ×med

(
geometric mean(Nij) across samples j

Nis

)
,

(4)
across genes i .

Trimmed Mean of M-values (TMM) Similar to DESeq but uses
means and removes outliers.
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RPKM/FPKM normalization

Reads/Fragments Per

I Kilobase of transcript sequence

I Million base pairs sequenced

+ correction for gene/transcript length

+ correction for sequencing depth

− no correction for di�erence in expression distribution between
samples

− relation between read number and variation is lost
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Quantile normalization (Q)

A technique for making two distributions identical in statistical
properties.
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Comparison of normalization methods on real data -
normalized data distribution

When large di�erences in library size, TC and RPKM do not
improve over the raw counts.

M.-A. Gillies et al. A comprehensive evaluation of normalization . . . . Brief. in Bioinformatics 2012.
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Comparison of normalization methods on real data -
within-condition variability

Example: Mus musculus, condition D dataset

M.-A. Gillies et al. A comprehensive evaluation of normalization . . . . Brief. in Bioinformatics 2012.
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Comparison of normalization methods by DE gene number

M.-A. Gillies et al. A comprehensive evaluation of normalization . . . . Brief. in Bioinformatics 2012.
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Consensus dendogram

M.-A. Gillies et al. A comprehensive evaluation of normalization . . . . Brief. in Bioinformatics 2012.
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Comparison of normalization methods on simulated data -
error rate and power

M.-A. Gillies et al. A comprehensive evaluation of normalization . . . . Brief. in Bioinformatics 2012.
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So the winner is...?

I in most cases, the methods give similar results

I the di�erences appear in data characteristics
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Interpretation

RawCount Often fewer di�erential expressed genes (e.g. A.
fumigatus: no DE gene)

TC, RPKM I Sensitive to the presence of predominant genes
I Less e�ective stabilization of distributions
I Ine�ective (similar to RawCount)

Q I Can increase between group variance
I Is based on a (too) strong assumption (similar

distributions)

Med High variability of housekeeping genes

TC, RPKM, Q, Med, UQ Adjustment of distributions, implies a
similarity between RNA repertoires expressed
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Concusions on normalization

I RNA-seq data are a�ected by technical biaises (total number
of mapped reads per lane, gene length, composition bias)

I Normalization is needed and has a great impact on the DE
genes

I Detection of di�erential expression in RNA-seq data is
inherently biased (more power to detect DE of longer genes)

I Do not normalise by gene length in a context of di�erential
analysis.

I TMM and DESeq : performant and robust methods in a DE
analysis context on the gene scale.
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Di�erential analysis

Aim : To detect di�erentially expressed genes between two
conditions

I Discrete quantitative data

I Few replicates

I Overdispersion problem



24/35

Di�erential analysis
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Di�erential analysis
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Poisson distribution
For X Poisson-distributed

P(X = k) =
λke−λ

k!

I expresses the probability of a given number of events occurring
in a �xed interval of time or space

I assumes these events occur with a known average rate and
independently of the time since the last event.

I variance equal to the mean (λ)
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Overdispersion
I Poisson distribution was proposed to model read count data
I No need to estimate the variance. This is convenient
I E.g., Wang et al (2010), Bloom et al (2009), Kasowski et al

(2010), ...
I however, when models are �t, the observed variance is higher

than the variance of theoretical models ⇒ overdispersion ⇒
type-I errors (false DE discoveries).
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Negative binomial distribution
I Suppose a sequence of independent Bernoulli trials.
I The probability of success is p and of failure is (1− p).
I We observe this sequence until r failures occurr.

Then for the random number of successes we have seen,

P(X = k) =

(
k + r − 1

k

)
(1− p)rpk ,

with mean µ = pr
1−p

and variance σ2 = pr
(1−p)2

.
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Negative binomial distribution re-parametrized

Let

α =
1

r
,

and mean as before
µ =

pr

1− p
.

Then the mean for NB is µ and variance µ+ αµ2.
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edgeR

I Model count data with NB distributions

I The number of replicates in read count data is often too small
to reliably estimate mean µ and variance σ2 parameters reliably

I Assume mean and variance are related by σ2 = µ+ αµ2, with
a single proportionality constant α, estimated for each gene.

Robinson and Smyth, 2010
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DEseq

Ngs = NB(µgs , σ
2
gs)

Three assumptions:

1. µgs = qg ,ρ(s)fs , where
I ρ(s) denotes the experimental condition of sample s
I qg ,ρ(s) is proportional to the expectation value of the true (but

unknown) concentration of reads from gene g under condition
ρ(s)

I fs is the DEseq normalization factor.

2. σ2gs = µgs + vg ,ρ(s)f
2
s . Here µgs is the technical,

Poisson-distributed variance (shot noise), and vg ,ρ(s)f
2
s refers

to raw variance.

3. vg ,ρ is a smooth function of qs,ρ: vg ,ρ(s) = vρ(qg ,ρ(s)). This
allows to pool the data from genes with similar expression
strength for the purpose of variance estimation.

Anders and Huber, 2010
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DEseq model �tting
Assume n genes and m samples, and k experimental conditions.
We have the following parameters estimated:

1. m size factors fs (expected values of all counts from sample s

proportional to fs)

2. kn expression strength parameters qg ,ρ, for each condition ρ
and gene g , (expected values of counts for gene g in condition
ρ are proportional to qg ,ρ):

q̂g ,ρ =
1

mρ

∑
s:ρ(s)=ρ

Ng ,s

fs
,

i.e., the averaged normalized counts from samples for
condition ρ, with mρ = the number of samples for condition ρ.

3. k smooth functions vρ : R
+ ⇒ R+. For each condition ρ, vρ

models the dependence of the raw variance vg ,ρ on the
expected mean qg ,ρ.

Anders and Huber, 2010
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DEseq model �tting

For estimation of raw variance vg ,ρ:

1. Calculate normalized condition variance estimates

wg ,ρ =
1

mρ − 1

∑
s:ρ(s)=ρ

(
Ng ,s

fs
− q̂g ,ρ

)2

2. de�ne

zg ,ρ =
q̂g ,ρ

mρ

∑
s:ρ(s)=ρ

1

fs

3. Theorem: wg ,ρ − zg ,ρ is an unbiased estimator of raw variance.

4. For small mρ not useful. Instead regress on (q̂g ,ρ,wg ,ρ) to
obtain a smooth function wρ(q) and estimate raw variance
with

v̂ρ(q̂g ,ρ) = wρ(q̂g ,ρ)− zg ,ρ.

Anders and Huber, 2010
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DEseq model �tting

Orange line regression wρ of y -axis: condition variance estimator
wg ,ρ, on x-axis: means estimator q̂g ,ρ.

Dashed orange line edgeR variance estimator

Violet line Poisson variance (=mean)

Anders and Huber, 2010
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DEseq DE calling

I For gene g and two conditions, 1 and 2, we want to evaluate
whether gene g is di�erentially expressed between 1 and 2

I Hypothesis testing: H0: the means qg ,1 = qg ,2 equal.


