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The problem

We need to assess relative levels of transcript abundances in
multiple samples This requires:

» Sample collection (gene arrays, tiling arrays or RNASeq)

» Signal normalization (bringing the measured signals to
comparable values)

» Assessment of differential expression significance
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Tiling arrays
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subtype of microarray chips.

differ in the nature of the
probes

short fragments, designed to
cover the entire genome or
contiguous regions of the
genome

depending on probe lengths
and spacing, different
degrees of resolution can be
achieved



Tiling arrays

Genomic DNA on the chromosome

Platform  Probe length Resolution

Affymetrix 25-mer 35bp
NimbleGen 50-mer 100 bp

Agilent 60-mer 195 bp

Arrays in
whole genome set
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For Affymetrix tiling arrays:

4222008

» contain 25-nt probes tiled every 35 bp of DNA sequence.

» whole genome arrays (2.0R) are comprised of 7 chips covering
entire human or mouse genome that is masked of repeat

sequences.



RNA-seq data preparation
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Read count matrix
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UCSC Gene Prdiction: UnProt, GenBani

» A n x m count matrix N, where Ng, is the number of reads
assigned to gene g in sample s

Produced from alignment data (eg using HTSeq, or Picard)
Not a direct measure of gene expression!
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Rather, Ngs o< lgjigs, where [y is the gene g length, and jigs is
the expected expression.



Normalization

Definition (Normalization)

Normalization is a process designed to identify and correct technical
biases removing the least possible biological signal. This step is
technology and platform-dependant.



Nomenclature

sample material with a specific source, e.g. culture or tissue.
replicates several independent samples with the same material
type and origin
condition environment in which samples are prepared (e.g.
added chemicals). There can be several samples per
condition
flow cell a glass slide where the sequencing takes place
line one of eight independent sequencing areas that a flow
cell is made up from
library contains cDNAs representative of the RNA molecules
that are extracted from a given sample, pre-processed
and deposited on lanes in order to be sequenced
library size the number of mapped short reads obtained from
sequencing of the library.

Here, one sample < one line < one library < one condition.

Dillies et al. A comprehensive evaluation of normalization ... Brief. in Bioinformatics 2012.



Two issues calling for normalization

1. Bias in sample size

2. Bias in over-represented genes - genes whose counts dominate
the sample size



Normalization by scaling factor

Total count (TC)

mean(); Njj) across samples j

> j Njs

Ngs X (1)

Upper Quartile (UQ)

mean upper quartile of Nj; # 0 across samples j

N, % i
& mean upper quartile of Njs

(2)
Median (Med)
med(Nj; # 0) across samples j
med(Njs # 0)

Ngs X (3)



Normalization by scaling factor — cont.

Hypothesis: most genes are not DE, should have similar read
counts across samples.

DESeq

eometric mean(/N;;) across samples j
Ngs x med (g (V) P J),

Nis
(4)
across genes |.
Trimmed Mean of M-values (TMM) Similar to DESeq but uses
means and removes outliers.



RPKM/FPKM normalization

Reads/Fragments Per
» Kilobase of transcript sequence

» Million base pairs sequenced



RPKM/FPKM normalization

Reads/Fragments Per
» Kilobase of transcript sequence

» Million base pairs sequenced

correction for gene/transcript length

+ +

correction for sequencing depth

— no correction for difference in expression distribution between
samples

— relation between read number and variation is lost



Quantile normalization (Q)

A technique for making two distributions identical in statistical
properties.

Sort columns of original
matrix

Take averages across rows|
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Comparison of normalization methods on real data -

normalized data distribution

When large differences in library size, TC and RPKM do not

improve over the raw counts.
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Comparison of normalization methods on real data -
within-condition variability

Example: Mus musculus, condition D dataset

Coeficient of variation

TC [u]e] ed DESeqy Thoiht F& RPKM RawCount

M.-A. Gillies et al. A comprehensive evaluation of normalization [\'.. Brief. in Bioinformatics'2012" 16/35



Comparison of normalization methods by DE gene number

T [8[8) Med DESeq  TMM FC) RPKM RO

TC 548 547 54T 543 HaT 543 399 175

(W[N] 1.213  1.195 1,160 1,172 1,054 416 124

Med 1.218 1,147 1,160 1,043 416 183
DESeq 1,249 1,169 1,058 413 154
TNIM 1,190 1,051 416 124

FQ) 1,092 414 184
RPKA 417 149
RawCount 184

M.-A. Gillies et al. A comprehensive evaluation of normalization [\'.. Brief. in Bioinformatics'2012"
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Comparison of normalization methods on simulated data -
error rate and power

(a) Equivalent library sizes / Presence of high count genes
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So the winner is...?

> in most cases, the methods give similar results

» the differences appear in data characteristics

Method  Distribution  Intra-Variance Housekeeping  Clustering  False-positive rate

TC - + + - -
uQ ++ 4+ + ++ -
Med 4+ 1+ = +t =
DESeq -+ - - ++ +4
TMMN ++ ++ ++ e ++

++ - + ++ -

FQ
RPKM - + + - =




Interpretation

RawCount Often fewer differential expressed genes (e.g. A.
fumigatus: no DE gene)

TC, RPKM  » Sensitive to the presence of predominant genes
> Less effective stabilization of distributions
Ineffective (similar to RawCount)

v

D
v

Can increase between group variance
Is based on a (too) strong assumption (similar
distributions)

v

Med High variability of housekeeping genes

TC, RPKM, Q, Med, UQ Adjustment of distributions, implies a
similarity between RNA repertoires expressed



Concusions on normalization

» RNA-seq data are affected by technical biaises (total number
of mapped reads per lane, gene length, composition bias)

» Normalization is needed and has a great impact on the DE
genes

» Detection of differential expression in RNA-seq data is
inherently biased (more power to detect DE of longer genes)

» Do not normalise by gene length in a context of differential
analysis.

» TMM and DESeq : performant and robust methods in a DE
analysis context on the gene scale.



Differential analysis

Aim : To detect differentially expressed genes between two
conditions

» Discrete quantitative data
» Few replicates

» Overdispersion problem



Differential analysis
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Differential analysis
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Poisson distribution
For X Poisson-distributed

Ake=A
P(X =k)= o

> expresses the probability of a given number of events occurring
in a fixed interval of time or space

» assumes these events occur with a known average rate and
independently of the time since the last event.

» variance equal to the mean ()
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Overdispersion

» Poisson distribution was proposed to model read count data

» No need to estimate the variance. This is convenient

» E.g., Wang et al (2010), Bloom et a/ (2009), Kasowski et al
(2010), ...

» however, when models are fit, the observed variance is higher
than the variance of theoretical models = overdispersion =
type-l errors (false DE discoveries).
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Negative binomial distribution

» Suppose a sequence of independent Bernoulli trials.
» The probability of success is p and of failure is (1 — p).
» We observe this sequence until r failures occurr.

Then for the random number of successes we have seen,

k+r—1
— — r ok
with mean p = % and variance 02 = ﬁ.
o Negative Binomial Distribution {r=20)
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Negative binomial distribution re-parametrized

Let

and mean as before pr

:1_p'

1

Then the mean for NB is 1 and variance p + a .



edgeR

» Model count data with NB distributions

» The number of replicates in read count data is often too small
to reliably estimate mean p and variance o parameters reliably

» Assume mean and variance are related by 02 = u + au?, with
a single proportionality constant «, estimated for each gene.

Robinson and Smyth, 2010



DEseq

2
Ngs = NB(Mgs#Tgs)
Three assumptions:
L. pgs = qg p(s)fs, where
> p(s) denotes the experimental condition of sample s

> gg.p(s) is proportional to the expectation value of the true (but
unknown) concentration of reads from gene g under condition

p(s)
» f, is the DEseq normalization factor.
2. aés. = ftgs + .vg7p(s)f52. Here f1g, is th.e technical,
Poisson-distributed variance (shot noise), and v, ;) refers
to raw variance.

3. Vg, is a smooth function of gs ,: Ve.pls) = ‘{P(qgmp(S))' .This
allows to pool the data from genes with similar expression
strength for the purpose of variance estimation.

Anders and Huber, 2010



DEseq model fitting
Assume n genes and m samples, and k experimental conditions.
We have the following parameters estimated:

1. m size factors f; (expected values of all counts from sample s
proportional to f;)

2. kn expression strength parameters qg ,, for each condition p
and gene g, (expected values of counts for gene g in condition
p are proportional to gz ,):

. 1 Ng,s
qg,p = mi Z f‘s )

P s:p(s)=p

i.e., the averaged normalized counts from samples for
condition p, with m, = the number of samples for condition p.

3. k smooth functions v, : R* = R™. For each condition p, v,
models the dependence of the raw variance v, , on the
expected mean gy .

Anders and Huber, 2010



DEseq model fitting

For estimation of raw variance vg ,:

1. Calculate normalized condition variance estimates

1 Ngs . \?
Wg’p*mp_l Z <fs qg,p)

s:p(s)=p
2. define A )
q )
Zg,p = :;p Z I
P sip(s)=p °

3. Theorem: wg , — zg , is an unbiased estimator of raw variance.

4. For small m, not useful. Instead regress on (g, Wg,p) to
obtain a smooth function w,(q) and estimate raw variance
with

o(dg.0) = Wp(Gg.p) — Zg.p-

Anders and Huber, 2010



DEseq model fitting
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DEseq DE calling

» For gene g and two conditions, 1 and 2, we want to evaluate
whether gene g is differentially expressed between 1 and 2

» Hypothesis testing: Hp: the means gz 1 = g equal.



