
1/36

Genome-scale technologies 2 /
Algorithmic and statistical aspects of DNA

sequencing

Sequencing read mapping

Ewa Szczurek
szczurek@mimuw.edu.pl

Instytut Informatyki
Uniwersytet Warszawski

mailto:szczurek@mimuw.edu.pl

2/36

Read mapping

3/36

Read mapping data
I sequencing data

I reference genome – long sequence over alphabet {A,C ,G ,T}

4/36

The FastQ format

@SRR001666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=36
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC
+SRR001666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=36
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9IC

Consecutive lines:
I Identifyier
I Sequence
I Identifyier
I Quality scores

5/36

Quality report

Phred score
I let P be the base-calling error probability,
I Q = −10 log10(P)⇒ P = 10−Q/10.

For example
I Q = 10⇒ P = 0.1
I Q = 20⇒ P = 0.01
I Q = 30⇒ P = 0.001
I Q = 40⇒ P = 0.0001

6/36

Read mapping

Problem
For each read find a corresponding genome fragment.

Kind of approximate string matching problem
I models

I Hamming distance: (the minimum number of substitutions
required to transform one string into the other)

I edit distance (the minimum number of operations required to
transform one string into the other: insertion, deletion,
substitution of one character)

I alignment score with gap penalty

I match should be unique (or have assigned quality)
I fixed length of patterns (25-250bp)
I huge amount of data
I repetitions and unknown fragments in a reference text

6/36

Read mapping

Problem
For each read find a corresponding genome fragment.

Kind of approximate string matching problem
I models

I Hamming distance: (the minimum number of substitutions
required to transform one string into the other)

I edit distance (the minimum number of operations required to
transform one string into the other: insertion, deletion,
substitution of one character)

I alignment score with gap penalty

I match should be unique (or have assigned quality)
I fixed length of patterns (25-250bp)
I huge amount of data
I repetitions and unknown fragments in a reference text

7/36

Technical issues with indexing
Ambiguous bases

7% of human genome sequence is unknown

Possible approaches

I skip long ambiguous fragments
I replace short ambiguous fragments with random nucleotides

7/36

Technical issues with indexing
Ambiguous bases

7% of human genome sequence is unknown

Possible approaches

I skip long ambiguous fragments
I replace short ambiguous fragments with random nucleotides

8/36

Technical issues with indexing
Repetitive elements

Alu repetitive element has ∼ 1 million occurrences in human
genome (∼ 10%)

Alignment of Alu-subfamily consensus sequences.

9/36

Technical issues with indexing
low complexity regions

number of occurences of 20bp-long substrings in human genome

> 3Mbp (∼ 0.1% of human genome) consists of long sequences of
the form

I aaaa. . . (tttt. . .)
I caca. . . (gtgt. . .)

9/36

Technical issues with indexing
low complexity regions

number of occurences of 20bp-long substrings in human genome

> 3Mbp (∼ 0.1% of human genome) consists of long sequences of
the form

I aaaa. . . (tttt. . .)
I caca. . . (gtgt. . .)

10/36

Technical issues with indexing
repetitions

Most popular substrings of length 20 in human genome GRCh37

Substring Occurrences
TTTTTTTTTTTTTTTTTTTT 451296
AAAAAAAAAAAAAAAAAAAA 447468
GTGTGTGTGTGTGTGTGTGT 246066
ACACACACACACACACACAC 243148
TGTGTGTGTGTGTGTGTGTG 241608
CACACACACACACACACACA 238826
CTCCCAAAGTGCTGGGATTA 170026
TAATCCCAGCACTTTGGGAG 169758
CCTCCCAAAGTGCTGGGATT 166855
AATCCCAGCACTTTGGGAGG 166726

Possible approach

I Mask and skip repetitive fragments

10/36

Technical issues with indexing
repetitions

Most popular substrings of length 20 in human genome GRCh37

Substring Occurrences
TTTTTTTTTTTTTTTTTTTT 451296
AAAAAAAAAAAAAAAAAAAA 447468
GTGTGTGTGTGTGTGTGTGT 246066
ACACACACACACACACACAC 243148
TGTGTGTGTGTGTGTGTGTG 241608
CACACACACACACACACACA 238826
CTCCCAAAGTGCTGGGATTA 170026
TAATCCCAGCACTTTGGGAG 169758
CCTCCCAAAGTGCTGGGATT 166855
AATCCCAGCACTTTGGGAGG 166726

Possible approach

I Mask and skip repetitive fragments

11/36

Mapping tools

BFAST, Bowtie, BWA, ELAND, Exonerate, GenomeMapper,
GMAP, gnumap, MAQ, MOSAIK, MrFAST, MUMmer, Novocraft,
PASS, RMAP, SeqMap, SHRiMP, Slider, SOAP, SSAHA, SOCS,
SWIFT, SXOligoSearch, Vmatch, Zoom . . .

General schema
1. Build an index of one dataset (genome or reads) allowing

effective substring searching.
2. Process the other dataset against the index to find potential

mappings.
3. Verify potential mappings.

11/36

Mapping tools

BFAST, Bowtie, BWA, ELAND, Exonerate, GenomeMapper,
GMAP, gnumap, MAQ, MOSAIK, MrFAST, MUMmer, Novocraft,
PASS, RMAP, SeqMap, SHRiMP, Slider, SOAP, SSAHA, SOCS,
SWIFT, SXOligoSearch, Vmatch, Zoom . . .

General schema
1. Build an index of one dataset (genome or reads) allowing

effective substring searching.
2. Process the other dataset against the index to find potential

mappings.
3. Verify potential mappings.

12/36

Main differences between mapping tools

Index type
I hash table

I q-gram index (all q-mers in a dataset)
I q-sample index (selected q-mers in a dataset)

I suffix index

Indexed dataset
I reference genome
I sequenced reads

Filtering strategy

12/36

Main differences between mapping tools

Index type
I hash table

I q-gram index (all q-mers in a dataset)
I q-sample index (selected q-mers in a dataset)

I suffix index
Indexed dataset

I reference genome
I sequenced reads

Filtering strategy

12/36

Main differences between mapping tools

Index type
I hash table

I q-gram index (all q-mers in a dataset)
I q-sample index (selected q-mers in a dataset)

I suffix index
Indexed dataset

I reference genome
I sequenced reads

Filtering strategy

13/36

Hash tables
I Data structure mapping keys to values.
I A hash function simply converts a string ("key") to an integer

("value")
I The integer is then used as an index in an array, for fast look

up.
I Space: O(n), Operations: average O(1), worst case O(n).

A small phone book as a hash table

13/36

Hash tables
I Data structure mapping keys to values.
I A hash function simply converts a string ("key") to an integer

("value")
I The integer is then used as an index in an array, for fast look

up.
I Space: O(n), Operations: average O(1), worst case O(n).

A small phone book as a hash table

14/36

Example: 3-gram hash table

Query word hash table constructed by BLAST.

15/36

Mapping with Q-gram index

Mosaik, BFAST, PASS use BLAST-like technique
I build a q-gram index of a genome
I find seeds with index
I extend (sequences of) seeds to full alignment
I spaced seeds are often used

Performance

− huge memory required
− relatively slow for low error rates
+ easy to handle higher error rates

15/36

Mapping with Q-gram index

Mosaik, BFAST, PASS use BLAST-like technique
I build a q-gram index of a genome
I find seeds with index
I extend (sequences of) seeds to full alignment
I spaced seeds are often used

Performance

− huge memory required
− relatively slow for low error rates
+ easy to handle higher error rates

16/36

Q-sample index

. . . is a hash table with positions of all non-overlapping text
substrings of length q.

17/36

Partitioning into exact search

Consider distance k = 2, and divide the searched string of length L
into 3 equal parts.

pgflastimage

I Three "worst case"placements of mutations
I In each case there is a perfect match with substring of length

L/3

18/36

Partitioning into exact search

Let A = A1 . . .Ak+s , where each Ai is a substring of length
|A|/(k + s) and B be two strings such that d(A,B) ≤ k , where d
is Hamming/edit distance. Then at least s substrings Ai1 . . .Ais
appear in B without errors. Moreover:

I when d is Hamming distance, their positions in B are the same
as in A,

I when d is edit distance, their relative distances in B cannot
differ from those in A by more than k .

19/36

Read mapping with q-sample indexes

Eland, MAQ, SeqMap, RMAP:
I Each read is split into substrings
I Use hashing to index read substrings, then scan with reference

sequence
I Hits are potential mappings with up to ≤ 2 errors.
I Very fast, but at the cost of accuracy (ungapped)

ZOOM uses spaced q-samples.

Performance

+ Read dataset may be split into subsets to fit into available
memory.

− Aligning with gaps decreases efficiency.

19/36

Read mapping with q-sample indexes

Eland, MAQ, SeqMap, RMAP:
I Each read is split into substrings
I Use hashing to index read substrings, then scan with reference

sequence
I Hits are potential mappings with up to ≤ 2 errors.
I Very fast, but at the cost of accuracy (ungapped)

ZOOM uses spaced q-samples.

Performance

+ Read dataset may be split into subsets to fit into available
memory.

− Aligning with gaps decreases efficiency.

19/36

Read mapping with q-sample indexes

Eland, MAQ, SeqMap, RMAP:
I Each read is split into substrings
I Use hashing to index read substrings, then scan with reference

sequence
I Hits are potential mappings with up to ≤ 2 errors.
I Very fast, but at the cost of accuracy (ungapped)

ZOOM uses spaced q-samples.

Performance

+ Read dataset may be split into subsets to fit into available
memory.

− Aligning with gaps decreases efficiency.

20/36

Suffix indexes

Suffix tree suffixes = paths from root to leaves
I index size: ≥ 10 · |genome| bytes
I exact mapping time: O(|read |+ |occurences|)

Suffix array lexicographic order on suffixes
I index size: ≥ 4 · |genome| bytes
I exact mapping time:
O(|read | · log |genome|+ |occurences|)

FM index self-index based on Burrows-Wheeler transform
I index size: < 1 · |genome| bytes
I exact mapping time: 2-1000× slower than suffix

arrays

20/36

Suffix indexes

Suffix tree suffixes = paths from root to leaves
I index size: ≥ 10 · |genome| bytes
I exact mapping time: O(|read |+ |occurences|)

Suffix array lexicographic order on suffixes
I index size: ≥ 4 · |genome| bytes
I exact mapping time:
O(|read | · log |genome|+ |occurences|)

FM index self-index based on Burrows-Wheeler transform
I index size: < 1 · |genome| bytes
I exact mapping time: 2-1000× slower than suffix

arrays

20/36

Suffix indexes

Suffix tree suffixes = paths from root to leaves
I index size: ≥ 10 · |genome| bytes
I exact mapping time: O(|read |+ |occurences|)

Suffix array lexicographic order on suffixes
I index size: ≥ 4 · |genome| bytes
I exact mapping time:
O(|read | · log |genome|+ |occurences|)

FM index self-index based on Burrows-Wheeler transform
I index size: < 1 · |genome| bytes
I exact mapping time: 2-1000× slower than suffix

arrays

21/36

Read mapping with FM-index

Bowtie (does not support gapped alignment), BWA, Bowtie 2
(support gaps)

Neighbourhood generation
All words matching a pattern with 0, 1, 2, . . . errors are generated
and searched in the index.

Backtracking
Partial results of backward searching are recycled in searching words
sharing suffixes.

In practice, only close neighbourhood is considered. . .
. . . the complexity of neighbourhood generation is exponential with
respect to the number of allowed errors, even with backtracking.
Break for a cartoon BWT search.

21/36

Read mapping with FM-index

Bowtie (does not support gapped alignment), BWA, Bowtie 2
(support gaps)

Neighbourhood generation
All words matching a pattern with 0, 1, 2, . . . errors are generated
and searched in the index.

Backtracking
Partial results of backward searching are recycled in searching words
sharing suffixes.

In practice, only close neighbourhood is considered. . .
. . . the complexity of neighbourhood generation is exponential with
respect to the number of allowed errors, even with backtracking.
Break for a cartoon BWT search.

21/36

Read mapping with FM-index

Bowtie (does not support gapped alignment), BWA, Bowtie 2
(support gaps)

Neighbourhood generation
All words matching a pattern with 0, 1, 2, . . . errors are generated
and searched in the index.

Backtracking
Partial results of backward searching are recycled in searching words
sharing suffixes.

In practice, only close neighbourhood is considered. . .
. . . the complexity of neighbourhood generation is exponential with
respect to the number of allowed errors, even with backtracking.

Break for a cartoon BWT search.

21/36

Read mapping with FM-index

Bowtie (does not support gapped alignment), BWA, Bowtie 2
(support gaps)

Neighbourhood generation
All words matching a pattern with 0, 1, 2, . . . errors are generated
and searched in the index.

Backtracking
Partial results of backward searching are recycled in searching words
sharing suffixes.

In practice, only close neighbourhood is considered. . .
. . . the complexity of neighbourhood generation is exponential with
respect to the number of allowed errors, even with backtracking.
Break for a cartoon BWT search.

22/36

Bowtie (Langmead et al. ’09)

I Extends basic FM-index search to handle mismatches
I Will find an exact match if it exists.
I Two innovations:

I quality-aware backtracking
I double indexing

23/36

Bowtie (Langmead et al. ’09)

Seed – high-quality part of the read (default: first 28bp)

Search for read occurrences in the genome with
I limited number of errors in the seed,
I limited sum of quality values of mismatched positions in the

whole read.

Algorithm

I Genome index is searched with k-neighbourhood of the seed of
a read.

I Located occurrences are extended to whole read mappings and
the quality criterion is checked.

23/36

Bowtie (Langmead et al. ’09)

Seed – high-quality part of the read (default: first 28bp)

Search for read occurrences in the genome with
I limited number of errors in the seed,
I limited sum of quality values of mismatched positions in the

whole read.

Algorithm

I Genome index is searched with k-neighbourhood of the seed of
a read.

I Located occurrences are extended to whole read mappings and
the quality criterion is checked.

23/36

Bowtie (Langmead et al. ’09)

Seed – high-quality part of the read (default: first 28bp)

Search for read occurrences in the genome with
I limited number of errors in the seed,
I limited sum of quality values of mismatched positions in the

whole read.

Algorithm

I Genome index is searched with k-neighbourhood of the seed of
a read.

I Located occurrences are extended to whole read mappings and
the quality criterion is checked.

24/36

Bowtie – avoiding excessive backtracking

I Using forward (genome sequence) and mirror (reverse index)
index

I If mutation in first half of read, then the forward index can
walk at least |read| / 2 before backtracking.

I If mutation in second half of read, then the second index can
walk at least |read| / 2 before backtracking.

I Try both the forward and reverse indexes; will avoid a lot of
backtracking because you will have narrowed the BWT range a
lot by the time you start backtracking

25/36

Bowtie – phases

26/36

Bowtie 2

I Supports gapped alignment
I Uses bi-directional BWT instead of two separate BWTs
I Supports paired-end alignment

I Align one end as normal
I Find the window where the other end could go
I Do dynamic programming alignment step to align the other

end of the pair within this window

27/36

BWA (Li and Durbin ’09)

I FM-index of a genome is searched with k-neighbourhood of a
read.

I Supports gapped alignment (can find small indels)
I Avoids excessive backtracking

28/36

Comparison

29/36

SAM files

I Sequence Alignment/Map format
I is a concise file format that contains information about how

sequence reads maps to a reference genome
I Can be further compressed in BAM format, which is a binary

format of SAM.
I Is produced by bowtie, bwa

30/36

SAM files

I Header
I Alignment lines (one per read)

I 11 mandatory fields
I several optional fields (format TAG:TYPE:VALUE)

31/36

SAM files example

32/36

Acknowledgements

For input to these slides of this course thanks to
I Norbert Dojer
I Bartosz Wilczyński
I Ben Langmead
I Michael Schatz

	Existing approaches

