
Assembly & shortest common superstring
Ben Langmead

You are free to use these slides.  If you do, please sign the 
guestbook (www.langmead-lab.org/teaching-materials), or email 
me (ben.langmead@gmail.com) and tell me brie!y how you’re 
using them.  For original Keynote "les, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com


Input DNA

Reads Reference genome

+

Assembly

X
How to assemble 
puzzle without the 
bene!t of knowing 
what the !nished 
product looks like?



Assembly

Whole-genome “shotgun” sequencing starts by copying and 
fragmenting the DNA

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA	
  	
  TATCTCGG	
  	
  CTCTAGGCCCTC	
  	
  ATTTTTT
GGC	
  	
  GTCTATAT	
  	
  CTCGGCTCTAGGCCCTCA	
  	
  TTTTTT
GGCGTC	
  	
  TATATCT	
  	
  CGGCTCTAGGCCCT	
  	
  CATTTTTT
GGCGTCTAT	
  	
  ATCTCGGCTCTAG	
  	
  GCCCTCA	
  	
  TTTTTT

(“Shotgun” refers to the random fragmentation of the whole 
genome; like it was !red from a shotgun)



Assembly

Assume sequencing produces such a large # fragments that almost 
all genome positions are covered by many fragments...

Reconstruct 
this From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CTAGGCCCTCAATTTTT
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CTCTAGGCCCTCAATTTTT
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  GGCTCTAGGCCCTCATTTTTT
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CTCGGCTCTAGCCCCTCATTTT
	
  	
  	
  	
  	
  	
  	
  	
  TATCTCGACTCTAGGCCCTCA
	
  	
  	
  	
  	
  	
  	
  	
  TATCTCGACTCTAGGCC
	
  	
  	
  	
  TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT



Assembly

...but we don’t know what came from where

From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

Reconstruct 
this



Assembly

Key term: coverage.  Usually it’s short for average coverage: the average 
number of reads covering a position in the genome.

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CTAGGCCCTCAATTTTT
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CTCTAGGCCCTCAATTTTT
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  GGCTCTAGGCCCTCATTTTTT
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CTCGGCTCTAGCCCCTCATTTT
	
  	
  	
  	
  	
  	
  	
  	
  TATCTCGACTCTAGGCCCTCA
	
  	
  	
  	
  	
  	
  	
  	
  TATCTCGACTCTAGGCC
	
  	
  	
  	
  TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

177 nucleotides

35 nucleotides

Average coverage = 177 / 35 ≈ 7x 



Assembly

Coverage could also refer to the number of reads covering a particular 
position in the genome:

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CTAGGCCCTCAATTTTT
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CTCTAGGCCCTCAATTTTT
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  GGCTCTAGGCCCTCATTTTTT
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CTCGGCTCTAGCCCCTCATTTT
	
  	
  	
  	
  	
  	
  	
  	
  TATCTCGACTCTAGGCCCTCA
	
  	
  	
  	
  	
  	
  	
  	
  TATCTCGACTCTAGGCC
	
  	
  	
  	
  TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Coverage at this position = 6



Assembly

Basic principle: the more similarity there is between the end of one 
read and the beginning of another... 

...the more likely they are to have originated from overlapping 
stretches of the genome:

	
  	
  	
  	
  	
  	
  	
  	
  TATCTCGACTCTAGGCC
	
  	
  	
  	
  	
  	
  	
  	
  |||||||	
  |||||||
	
  	
  	
  	
  TCTATATCTCGGCTCTAGG

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

	
  	
  	
  	
  	
  	
  	
  	
  TATCTCGACTCTAGGCC
	
  	
  	
  	
  TCTATATCTCGGCTCTAGG



Assembly

Say two reads truly originate from overlapping stretches of the 
genome.  Why might there be differences?

	
  	
  	
  	
  	
  	
  	
  	
  TATCTCGACTCTAGGCC
	
  	
  	
  	
  	
  	
  	
  	
  |||||||	
  |||||||
	
  	
  	
  	
  TCTATATCTCGGCTCTAGG

1. Sequencing error

2. Difference between inhereted copies of a chromosome
E.g. humans are diploid; we have two copies of each chromosome, 
one from mother, one from father.  The copies can differ:

	
  	
  	
  	
  	
  	
  	
  	
  TATCTCGACTCTAGGCC
	
  	
  	
  	
  	
  	
  	
  	
  |||||||	
  |||||||
	
  	
  	
  	
  TCTATATCTCGGCTCTAGG

We’ll mostly ignore ploidy, but 
real tools must consider it

TCTATATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGGCC

Sequence from Mother:
Sequence from Father:

Read from Mother:

Read from Father:



Overlaps

Finding all overlaps is like building a directed graph where directed 
edges connect overlapping nodes (reads)

CTAGGCCCTCAATTTTT

GGCGTCTATATCT

CTCTAGGCCCTCAATTTTT

TCTATATCTCGGCTCTAGG

GGCTCTAGGCCCTCATTTTTT

CTCGGCTCTAGCCCCTCATTTT

TATCTCGACTCTAGGCCCTCA

GGCGTCGATATCT

TATCTCGACTCTAGGCC

GGCGTCTATATCTCG

CTCGGCTCTAGCCCCTCATTTT
	
  	
  	
  ||||||||	
  ||||||||||
	
  	
  	
  GGCTCTAGGCCCTCATTTTTT

Suffix of source is 
similar to pre!x of sink



Directed graph review

Directed graph G(V, E) consists of set of vertices, V and set of 
directed edges, E

Edge is drawn as a line with an arrow 
connecting two circles

Directed edge is an ordered pair of vertices.  
First is the source, second is the sink.

Vertex is drawn as a circle

a b

c d

V =  { a, b, c, d }
E =  { (a, b), (a, c), (c, b) }

Vertex also called node or point

Edge also called arc or line
Source Sink

Directed graph also called digraph



Overlap graph

Below: overlap graph, where an overlap is a suffix/pre!x match 
of at least 3 characters

A vertex is a read, a directed edge is an overlap between suffix of 
source and pre!x of sink

a: CTCTAGGCC b: GCCCTCAAT c: CAATTTTT

CTCTAGGCC
	
  	
  	
  	
  	
  	
  |||
	
  	
  	
  	
  	
  	
  GCCCTCAAT

GCCCTCAAT
	
  	
  	
  	
  	
  ||||
	
  	
  	
  	
  	
  CAATTTTT

Vertices (reads): { a: CTCTAGGCC, b: GCCCTCAAT, c: CAATTTTT  }

Edges (overlaps): { (a, b), (b, c) }

3 4



Overlap graph

Overlap graph could contain cycles.  A cycle is a path beginning 
and ending at the same vertex.

a: CTCTAGGCC b: GCCCTCACT c: CACTCTAGG

These happen when the DNA string 
itself is circular.  E.g. bacterial 
genomes are often circular; 
mitochondrial DNA is circular.

Cycles could also be due to repetitive 
DNA, as we’ll see

3 4

7



Finding overlaps

How do we build the overlap graph?

What constitutes an overlap?

Assume for now an “overlap” is when a suffix of X of 
length ≥ l exactly matches a pre!x of Y, where k is given

a: CTCTAGGCC b: GCCCTCAAT c: CAATTTTT



Finding overlaps

Overlap: length-l suffix of X matches length-l pre!x of Y, where l is given

Simple idea: look in Y for occurrences of length-l suffix of X.   Extend 
matches to the left to con!rm whether entire pre!x of Y matches.

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say k = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in Y, 
going right-to-left

Found it

CTCTAGGCC

TAGGCCCTC

X:

Y:

Extend to left; in this case, we 
con!rm that a length-6 pre!x 
of Y matches a suffix of X



Finding overlaps: implementation

def	
  suffixPrefixMatch(x,	
  y,	
  k):
	
  	
  	
  	
  '''	
  Return	
  length	
  of	
  longest	
  suffix	
  of	
  x	
  of	
  length	
  at	
  least	
  k	
  that
	
  	
  	
  	
  	
  	
  	
  	
  matches	
  a	
  prefix	
  of	
  y.	
  	
  Return	
  0	
  if	
  there	
  no	
  suffix/prefix
	
  	
  	
  	
  	
  	
  	
  	
  match	
  has	
  length	
  at	
  least	
  k.	
  '''
	
  	
  	
  	
  if	
  len(x)	
  <	
  k	
  or	
  len(y)	
  <	
  k:
	
  	
  	
  	
  	
  	
  	
  	
  return	
  0
	
  	
  	
  	
  idx	
  =	
  len(y)	
  #	
  start	
  at	
  the	
  right	
  end	
  of	
  y
	
  	
  	
  	
  #	
  Search	
  right-­‐to-­‐left	
  in	
  y	
  for	
  length-­‐k	
  suffix	
  of	
  x
	
  	
  	
  	
  while	
  True:
	
  	
  	
  	
  	
  	
  	
  	
  hit	
  =	
  string.rfind(y,	
  x[-­‐k:],	
  0,	
  idx)
	
  	
  	
  	
  	
  	
  	
  	
  if	
  hit	
  ==	
  -­‐1:	
  #	
  not	
  found
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  return	
  0
	
  	
  	
  	
  	
  	
  	
  	
  ln	
  =	
  hit	
  +	
  k
	
  	
  	
  	
  	
  	
  	
  	
  #	
  See	
  if	
  match	
  can	
  be	
  extended	
  to	
  include	
  entire	
  prefix	
  of	
  y
	
  	
  	
  	
  	
  	
  	
  	
  if	
  x[-­‐ln:]	
  ==	
  y[:ln]:
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  return	
  ln	
  #	
  return	
  length	
  of	
  prefix
	
  	
  	
  	
  	
  	
  	
  	
  idx	
  =	
  hit	
  +	
  k	
  -­‐	
  1	
  #	
  keep	
  searching	
  to	
  left	
  in	
  Y
	
  	
  	
  	
  return	
  -­‐1

Python example: http://nbviewer.ipython.org/7089885

http://nbviewer.ipython.org/7089885
http://nbviewer.ipython.org/7089885


Finding overlaps

Example overlap graph with l = 3

ACGGCGC

CGCGTAC

3

CGCCGCT

3

GCGTACG3 GTACGGC5

ATATTGC

ATTGCGC

5

GCCGCTA

6
4

ATTATAT 4

TATATTG

5 6
4GCATTAT

5

3 6

3

3

5

Original string: GCATTATATATTGCGCGTACGGCGCCGCTACA

Edge label is 
overlap length



Formulating the assembly problem

Finding overlaps is important, and we’ll return to it, but our ultimate 
goal is to recreate (assemble) the genome

How do we formulate this problem?

First attempt: the shortest common superstring (SCS) problem



Shortest common superstring

Given a collection of strings S, !nd SCS(S): the shortest string that 
contains all strings in S as substrings

Without requirement of “shortest,” it’s easy: just concatenate them

Example: BAA	
  AAB	
  BBA	
  ABA	
  ABB	
  BBB	
  AAA	
  BAB

BAAAABBBAABAABBBBBAAABABConcatenation:

S:

SCS(S): AAABBBABAA

AAA
	
  AAB
	
  	
  ABB
	
  	
  	
  BBB
	
  	
  	
  	
  BBA
	
  	
  	
  	
  	
  BAB
	
  	
  	
  	
  	
  	
  ABA
	
  	
  	
  	
  	
  	
  	
  BAA

24

10



Shortest common superstring

Can we solve it?
SCS(S): AAABBBA

AAA
	
  AAB
	
  	
  ABB
	
  	
  	
  BBB
	
  	
  	
  	
  BBAAAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -2

-1

Imagine a modi!ed overlap 
graph where each edge has 
cost = - (length of overlap)

SCS corresponds to a path that 
visits every node once, minimizing 
total cost along path

That’s the Traveling Salesman 
Problem (TSP), which is NP-hard!

S: AAA	
  AAB	
  ABB	
  BBB	
  BBA

-2



Shortest common superstring

Say we disregard edge weights and 
just look for a path that visits all the 
nodes exactly once

S: AAA	
  AAB	
  ABB	
  BBB	
  BBA

That’s the Hamiltonian Path problem: 
NP-complete

SCS(S): AAABBBA
AAA
	
  AAB
	
  	
  ABB
	
  	
  	
  BBB
	
  	
  	
  	
  BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS 
is NP-hard



Shortest common superstring & friends

For refreshers on Traveling Salesman, Hamiltonian Path, NP-hardness 
and NP-completeness, see Chapters 34 and 35 of “Introduction to 
Algorithms” by Cormen, Leiserson, Rivest and Stein, or Chapters 8 and 9 
of “Algorithms” by Dasgupta, Papadimitriou and Vazirani (free online: 
http://www.cs.berkeley.edu/~vazirani/algorithms)

Traveling Salesman, Hamiltonian Path, and Shortest Common Superstring 
are all NP-hard

http://www.cs.berkeley.edu/~vazirani/algorithms
http://www.cs.berkeley.edu/~vazirani/algorithms


Shortest common superstring

Let’s take the hint give up on !nding the shortest possible superstring

Non-optimal superstrings can be found with a greedy algorithm

At each step, the greedy algorithm “greedily” chooses longest 
remaining overlap, merges its source and sink



Shortest common superstring: greedy

Greedy-SCS algorithm in action (l = 1):

	
  	
  ABA	
  ABB	
  AAA	
  AAB	
  BBB	
  BBA	
  BAB	
  BAA
2	
  BAAB	
  ABA	
  ABB	
  AAA	
  BBB	
  BBA	
  BAB
2	
  BABB	
  BAAB	
  ABA	
  AAA	
  BBB	
  BBA
2	
  BBAAB	
  BABB	
  ABA	
  AAA	
  BBB
2	
  BBBAAB	
  BABB	
  ABA	
  AAA
2	
  BBBAABA	
  BABB	
  AAA
2	
  BABBBAABA	
  AAA
1	
  BABBBAABAAA
	
  	
  BABBBAABAAA

Input strings

Superstring

Rounds of merging, one merge per line.
Number in !rst column = length of overlap merged before that round.

Greedy answer: 
BABBBAABAAA

Actual SCS:
AAABBBABAA

In red are strings that get 
merged before the next round



Shortest common superstring: greedy

But greedy algorithm is a good approximation; i.e. the superstring 
yielded by the greedy algorithm won’t be more than ~2.5 times longer 
than true SCS (see Gus!eld 16.17.1)

Greedy algorithm is not guaranteed to choose overlaps yielding SCS



Shortest common superstring: greedy

	
  	
  ATTATAT	
  CGCGTAC	
  ATTGCGC	
  GCATTAT	
  ACGGCGC	
  TATATTG	
  GTACGGC	
  GCGTACG	
  ATATTGC
6	
  TATATTGC	
  ATTATAT	
  CGCGTAC	
  ATTGCGC	
  GCATTAT	
  ACGGCGC	
  GTACGGC	
  GCGTACG
6	
  CGCGTACG	
  TATATTGC	
  ATTATAT	
  ATTGCGC	
  GCATTAT	
  ACGGCGC	
  GTACGGC
5	
  CGCGTACG	
  TATATTGCGC	
  ATTATAT	
  GCATTAT	
  ACGGCGC	
  GTACGGC
5	
  CGCGTACGGC	
  TATATTGCGC	
  ATTATAT	
  GCATTAT	
  ACGGCGC
5	
  CGCGTACGGCGC	
  TATATTGCGC	
  ATTATAT	
  GCATTAT
5	
  CGCGTACGGCGC	
  GCATTATAT	
  TATATTGCGC
5	
  CGCGTACGGCGC	
  GCATTATATTGCGC
3	
  GCATTATATTGCGCGTACGGCGC
	
  	
  GCATTATATTGCGCGTACGGCGC

Input strings

Superstring

Greedy-SCS algorithm in action again (l = 3):



Shortest common superstring: greedy
Another setup for Greedy-SCS: assemble all substrings of length 6 
from string a_long_long_long_time.  l = 3.

	
  	
  ng_lon	
  _long_	
  a_long	
  long_l	
  ong_ti	
  ong_lo	
  long_t	
  g_long	
  g_time	
  ng_tim
5	
  ng_time	
  ng_lon	
  _long_	
  a_long	
  long_l	
  ong_ti	
  ong_lo	
  long_t	
  g_long
5	
  ng_time	
  g_long_	
  ng_lon	
  a_long	
  long_l	
  ong_ti	
  ong_lo	
  long_t
5	
  ng_time	
  long_ti	
  g_long_	
  ng_lon	
  a_long	
  long_l	
  ong_lo
5	
  ng_time	
  ong_lon	
  long_ti	
  g_long_	
  a_long	
  long_l
5	
  ong_lon	
  long_time	
  g_long_	
  a_long	
  long_l
5	
  long_lon	
  long_time	
  g_long_	
  a_long
5	
  long_lon	
  g_long_time	
  a_long
5	
  long_long_time	
  a_long
4	
  a_long_long_time
	
  	
  a_long_long_time

I only got back: a_long_long_time (missing a _long )

What happened?



Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
_long_

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4

5
ng_tim

3

a_long

5

4

3

3

4

4 5

3

g_time

4
5

5

3

4

5

3

4

5

4

3

3

4

5



Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
_long_

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4

5
ng_tim

3

a_long

5

4

3

3

4

4 5

3

g_time

4
5

5

3

4

5

3

4

5

4

3

3

4

5

a_long_long_long_time
Total overlap: 39



Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
_long_

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4

5
ng_tim

3

a_long

5

4

3

3

4

4 5

3

g_time

4
5

5

3

4

5

3

4

5

4

3

3

4

5

a_long_long_time
Total overlap: 44 Better than the 

correct path!



Shortest common superstring: greedy

Same example, but increased the substring length from 6 to 8

	
  	
  long_lon	
  ng_long_	
  _long_lo	
  g_long_t	
  ong_long	
  g_long_l	
  ong_time	
  a_long_l	
  _long_ti	
  long_tim
7	
  long_time	
  long_lon	
  ng_long_	
  _long_lo	
  g_long_t	
  ong_long	
  g_long_l	
  a_long_l	
  _long_ti
7	
  _long_time	
  long_lon	
  ng_long_	
  _long_lo	
  g_long_t	
  ong_long	
  g_long_l	
  a_long_l
7	
  _long_time	
  a_long_lo	
  long_lon	
  ng_long_	
  g_long_t	
  ong_long	
  g_long_l
7	
  _long_time	
  ong_long_	
  a_long_lo	
  long_lon	
  g_long_t	
  g_long_l
7	
  g_long_time	
  ong_long_	
  a_long_lo	
  long_lon	
  g_long_l
7	
  g_long_time	
  ong_long_	
  a_long_lon	
  g_long_l
7	
  g_long_time	
  ong_long_l	
  a_long_lon
7	
  g_long_time	
  a_long_long_l
3	
  a_long_long_long_time
	
  	
  a_long_long_long_time

Got the whole thing: a_long_long_long_time



Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to !gure 
out there are 3 copies of long?

a_long_long_long_time

One length-8 substring spans all three longs

g_long_l



Repeats

Repeats often foil assembly.  They certainly foil SCS, with its 
“shortest” criterion!

Reads might be too short to “resolve” repetitive sequences.  This is 
why sequencing vendors try to increase read length.

Algorithms that don’t pay attention to repeats (like our greedy 
SCS algorithm) might collapse them

a_long_long_long_time

a_long_long_time

collapse

The human genome is ~ 50% repetitive!



Repeats

Basic principle: repeats foil assembly

Another example using Greedy-SCS:

the_worst_of_times_it_was_the_best_o3, 5

it_was_the_best_of_times_it_was_the_worst_of_timesInput:

l, k output

s_the_worst_of_times_it_was_the_best_of_t3, 7
_was_the_best_of_times_it_was_the_worst_of_tim3, 10

it_was_the_best_of_times_it_was_the_worst_of_times3, 13

Extract every substring of length k, then run Greedy-SCS.  
Do this for various l (min overlap length) and k.



Repeats

Basic principle: repeats foil assembly

Longer and longer substrings allow us to “anchor” more of the 
repeat to its non-repetitive context:

swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells

ringing_of_the_bells_bells_bells_bells_bells_to_the_rhyhming

Often we can “walk in” from both sides.  When we meet in the 
middle, the repeat is resolved:



Repeats

Basic principle: repeats foil assembly

Yet another example using Greedy-SCS:

swinging_and_the_ringing_of_the_bells_bells3, 7

swinging_and_the_ringing_of_the_bells_bells_bells_bells_bellsInput:

l, k output

swinging_and_the_ringing_of_the_bells_bells_bells3, 13
swinging_and_the_ringing_of_the_bells_bells_bells_bells_b3, 19
swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells3, 25

longer and longer substrings allow 
us to “reach” further into the repeat



Repeats

Picture the portion of the overlap graph involving repeat A

Assume A is longer 
than read length

Repeat A

Lots of overlaps 
among reads from A

Even if we avoid collapsing copies of A, we can’t know which paths 
in correspond to which paths out

L1
L2
L3
L4

R1
R2

R3

R4

L1
L2
L3
L4

R1

R2

R3

R4

St
re

tc
he

s o
f 

ge
no

m
e

Re
ad

s



Shortest common superstring: post mortem

SCS is &awed as a way of formulating the assembly problem

No tractable way to !nd optimal SCS

SCS spuriously collapses repetitive sequences

Had to use Greedy-SCS.  Answers might be too long.

Answers might be too short, by a lot!

Need formulations that are (a) tractable, and (b) handle repeats as 
gracefully as possible

Remember: repeats foil assembly no matter the algorithm.  This is a 
property of read length and repetitiveness of the genome.



Taxonomy of assembly approaches

Search for most parsimonious explanation of the reads (shortest 
superstring)

Exact solutions are intractable (e.g. TSP), but a greedy 
approximation is possible

Any solution will collapse repeats spuriously

Search for “maximum likelihood” explanation of the reads; i.e. force 
solution to be consistent with uniform coverage

No solutions (that I know of ) are tractable

Give up on unresolvable repeats and use a tractable algorithm to 
assemble the resolvable portions.  This is what real tools do.


