
Assembly & shortest common superstring
Ben Langmead

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me brie!y how you’re
using them. For original Keynote "les, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

Input DNA

Reads Reference genome

+

Assembly

X
How to assemble
puzzle without the
bene!t of knowing
what the !nished
product looks like?

Assembly

Whole-genome “shotgun” sequencing starts by copying and
fragmenting the DNA

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA	 	 TATCTCGG	 	 CTCTAGGCCCTC	 	 ATTTTTT
GGC	 	 GTCTATAT	 	 CTCGGCTCTAGGCCCTCA	 	 TTTTTT
GGCGTC	 	 TATATCT	 	 CGGCTCTAGGCCCT	 	 CATTTTTT
GGCGTCTAT	 	 ATCTCGGCTCTAG	 	 GCCCTCA	 	 TTTTTT

(“Shotgun” refers to the random fragmentation of the whole
genome; like it was !red from a shotgun)

Assembly

Assume sequencing produces such a large # fragments that almost
all genome positions are covered by many fragments...

Reconstruct
this From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 CTAGGCCCTCAATTTTT
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 CTCTAGGCCCTCAATTTTT
	 	 	 	 	 	 	 	 	 	 	 	 	 	 GGCTCTAGGCCCTCATTTTTT
	 	 	 	 	 	 	 	 	 	 	 CTCGGCTCTAGCCCCTCATTTT
	 	 	 	 	 	 	 	 TATCTCGACTCTAGGCCCTCA
	 	 	 	 	 	 	 	 TATCTCGACTCTAGGCC
	 	 	 	 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Assembly

...but we don’t know what came from where

From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

Reconstruct
this

Assembly

Key term: coverage. Usually it’s short for average coverage: the average
number of reads covering a position in the genome.

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 CTAGGCCCTCAATTTTT
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 CTCTAGGCCCTCAATTTTT
	 	 	 	 	 	 	 	 	 	 	 	 	 	 GGCTCTAGGCCCTCATTTTTT
	 	 	 	 	 	 	 	 	 	 	 CTCGGCTCTAGCCCCTCATTTT
	 	 	 	 	 	 	 	 TATCTCGACTCTAGGCCCTCA
	 	 	 	 	 	 	 	 TATCTCGACTCTAGGCC
	 	 	 	 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

177 nucleotides

35 nucleotides

Average coverage = 177 / 35 ≈ 7x

Assembly

Coverage could also refer to the number of reads covering a particular
position in the genome:

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 CTAGGCCCTCAATTTTT
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 CTCTAGGCCCTCAATTTTT
	 	 	 	 	 	 	 	 	 	 	 	 	 	 GGCTCTAGGCCCTCATTTTTT
	 	 	 	 	 	 	 	 	 	 	 CTCGGCTCTAGCCCCTCATTTT
	 	 	 	 	 	 	 	 TATCTCGACTCTAGGCCCTCA
	 	 	 	 	 	 	 	 TATCTCGACTCTAGGCC
	 	 	 	 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Coverage at this position = 6

Assembly

Basic principle: the more similarity there is between the end of one
read and the beginning of another...

...the more likely they are to have originated from overlapping
stretches of the genome:

	 	 	 	 	 	 	 	 TATCTCGACTCTAGGCC
	 	 	 	 	 	 	 	 |||||||	 |||||||
	 	 	 	 TCTATATCTCGGCTCTAGG

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

	 	 	 	 	 	 	 	 TATCTCGACTCTAGGCC
	 	 	 	 TCTATATCTCGGCTCTAGG

Assembly

Say two reads truly originate from overlapping stretches of the
genome. Why might there be differences?

	 	 	 	 	 	 	 	 TATCTCGACTCTAGGCC
	 	 	 	 	 	 	 	 |||||||	 |||||||
	 	 	 	 TCTATATCTCGGCTCTAGG

1. Sequencing error

2. Difference between inhereted copies of a chromosome
E.g. humans are diploid; we have two copies of each chromosome,
one from mother, one from father. The copies can differ:

	 	 	 	 	 	 	 	 TATCTCGACTCTAGGCC
	 	 	 	 	 	 	 	 |||||||	 |||||||
	 	 	 	 TCTATATCTCGGCTCTAGG

We’ll mostly ignore ploidy, but
real tools must consider it

TCTATATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGGCC

Sequence from Mother:
Sequence from Father:

Read from Mother:

Read from Father:

Overlaps

Finding all overlaps is like building a directed graph where directed
edges connect overlapping nodes (reads)

CTAGGCCCTCAATTTTT

GGCGTCTATATCT

CTCTAGGCCCTCAATTTTT

TCTATATCTCGGCTCTAGG

GGCTCTAGGCCCTCATTTTTT

CTCGGCTCTAGCCCCTCATTTT

TATCTCGACTCTAGGCCCTCA

GGCGTCGATATCT

TATCTCGACTCTAGGCC

GGCGTCTATATCTCG

CTCGGCTCTAGCCCCTCATTTT
	 	 	 ||||||||	 ||||||||||
	 	 	 GGCTCTAGGCCCTCATTTTTT

Suffix of source is
similar to pre!x of sink

Directed graph review

Directed graph G(V, E) consists of set of vertices, V and set of
directed edges, E

Edge is drawn as a line with an arrow
connecting two circles

Directed edge is an ordered pair of vertices.
First is the source, second is the sink.

Vertex is drawn as a circle

a b

c d

V = { a, b, c, d }
E = { (a, b), (a, c), (c, b) }

Vertex also called node or point

Edge also called arc or line
Source Sink

Directed graph also called digraph

Overlap graph

Below: overlap graph, where an overlap is a suffix/pre!x match
of at least 3 characters

A vertex is a read, a directed edge is an overlap between suffix of
source and pre!x of sink

a: CTCTAGGCC b: GCCCTCAAT c: CAATTTTT

CTCTAGGCC
	 	 	 	 	 	 |||
	 	 	 	 	 	 GCCCTCAAT

GCCCTCAAT
	 	 	 	 	 ||||
	 	 	 	 	 CAATTTTT

Vertices (reads): { a: CTCTAGGCC, b: GCCCTCAAT, c: CAATTTTT }

Edges (overlaps): { (a, b), (b, c) }

3 4

Overlap graph

Overlap graph could contain cycles. A cycle is a path beginning
and ending at the same vertex.

a: CTCTAGGCC b: GCCCTCACT c: CACTCTAGG

These happen when the DNA string
itself is circular. E.g. bacterial
genomes are often circular;
mitochondrial DNA is circular.

Cycles could also be due to repetitive
DNA, as we’ll see

3 4

7

Finding overlaps

How do we build the overlap graph?

What constitutes an overlap?

Assume for now an “overlap” is when a suffix of X of
length ≥ l exactly matches a pre!x of Y, where k is given

a: CTCTAGGCC b: GCCCTCAAT c: CAATTTTT

Finding overlaps

Overlap: length-l suffix of X matches length-l pre!x of Y, where l is given

Simple idea: look in Y for occurrences of length-l suffix of X. Extend
matches to the left to con!rm whether entire pre!x of Y matches.

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say k = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in Y,
going right-to-left

Found it

CTCTAGGCC

TAGGCCCTC

X:

Y:

Extend to left; in this case, we
con!rm that a length-6 pre!x
of Y matches a suffix of X

Finding overlaps: implementation

def	 suffixPrefixMatch(x,	 y,	 k):
	 	 	 	 '''	 Return	 length	 of	 longest	 suffix	 of	 x	 of	 length	 at	 least	 k	 that
	 	 	 	 	 	 	 	 matches	 a	 prefix	 of	 y.	 	 Return	 0	 if	 there	 no	 suffix/prefix
	 	 	 	 	 	 	 	 match	 has	 length	 at	 least	 k.	 '''
	 	 	 	 if	 len(x)	 <	 k	 or	 len(y)	 <	 k:
	 	 	 	 	 	 	 	 return	 0
	 	 	 	 idx	 =	 len(y)	 #	 start	 at	 the	 right	 end	 of	 y
	 	 	 	 #	 Search	 right-‐to-‐left	 in	 y	 for	 length-‐k	 suffix	 of	 x
	 	 	 	 while	 True:
	 	 	 	 	 	 	 	 hit	 =	 string.rfind(y,	 x[-‐k:],	 0,	 idx)
	 	 	 	 	 	 	 	 if	 hit	 ==	 -‐1:	 #	 not	 found
	 	 	 	 	 	 	 	 	 	 	 	 return	 0
	 	 	 	 	 	 	 	 ln	 =	 hit	 +	 k
	 	 	 	 	 	 	 	 #	 See	 if	 match	 can	 be	 extended	 to	 include	 entire	 prefix	 of	 y
	 	 	 	 	 	 	 	 if	 x[-‐ln:]	 ==	 y[:ln]:
	 	 	 	 	 	 	 	 	 	 	 	 return	 ln	 #	 return	 length	 of	 prefix
	 	 	 	 	 	 	 	 idx	 =	 hit	 +	 k	 -‐	 1	 #	 keep	 searching	 to	 left	 in	 Y
	 	 	 	 return	 -‐1

Python example: http://nbviewer.ipython.org/7089885

http://nbviewer.ipython.org/7089885
http://nbviewer.ipython.org/7089885

Finding overlaps

Example overlap graph with l = 3

ACGGCGC

CGCGTAC

3

CGCCGCT

3

GCGTACG3 GTACGGC5

ATATTGC

ATTGCGC

5

GCCGCTA

6
4

ATTATAT 4

TATATTG

5 6
4GCATTAT

5

3 6

3

3

5

Original string: GCATTATATATTGCGCGTACGGCGCCGCTACA

Edge label is
overlap length

Formulating the assembly problem

Finding overlaps is important, and we’ll return to it, but our ultimate
goal is to recreate (assemble) the genome

How do we formulate this problem?

First attempt: the shortest common superstring (SCS) problem

Shortest common superstring

Given a collection of strings S, !nd SCS(S): the shortest string that
contains all strings in S as substrings

Without requirement of “shortest,” it’s easy: just concatenate them

Example: BAA	 AAB	 BBA	 ABA	 ABB	 BBB	 AAA	 BAB

BAAAABBBAABAABBBBBAAABABConcatenation:

S:

SCS(S): AAABBBABAA

AAA
	 AAB
	 	 ABB
	 	 	 BBB
	 	 	 	 BBA
	 	 	 	 	 BAB
	 	 	 	 	 	 ABA
	 	 	 	 	 	 	 BAA

24

10

Shortest common superstring

Can we solve it?
SCS(S): AAABBBA

AAA
	 AAB
	 	 ABB
	 	 	 BBB
	 	 	 	 BBAAAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -2

-1

Imagine a modi!ed overlap
graph where each edge has
cost = - (length of overlap)

SCS corresponds to a path that
visits every node once, minimizing
total cost along path

That’s the Traveling Salesman
Problem (TSP), which is NP-hard!

S: AAA	 AAB	 ABB	 BBB	 BBA

-2

Shortest common superstring

Say we disregard edge weights and
just look for a path that visits all the
nodes exactly once

S: AAA	 AAB	 ABB	 BBB	 BBA

That’s the Hamiltonian Path problem:
NP-complete

SCS(S): AAABBBA
AAA
	 AAB
	 	 ABB
	 	 	 BBB
	 	 	 	 BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS
is NP-hard

Shortest common superstring & friends

For refreshers on Traveling Salesman, Hamiltonian Path, NP-hardness
and NP-completeness, see Chapters 34 and 35 of “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein, or Chapters 8 and 9
of “Algorithms” by Dasgupta, Papadimitriou and Vazirani (free online:
http://www.cs.berkeley.edu/~vazirani/algorithms)

Traveling Salesman, Hamiltonian Path, and Shortest Common Superstring
are all NP-hard

http://www.cs.berkeley.edu/~vazirani/algorithms
http://www.cs.berkeley.edu/~vazirani/algorithms

Shortest common superstring

Let’s take the hint give up on !nding the shortest possible superstring

Non-optimal superstrings can be found with a greedy algorithm

At each step, the greedy algorithm “greedily” chooses longest
remaining overlap, merges its source and sink

Shortest common superstring: greedy

Greedy-SCS algorithm in action (l = 1):

	 	 ABA	 ABB	 AAA	 AAB	 BBB	 BBA	 BAB	 BAA
2	 BAAB	 ABA	 ABB	 AAA	 BBB	 BBA	 BAB
2	 BABB	 BAAB	 ABA	 AAA	 BBB	 BBA
2	 BBAAB	 BABB	 ABA	 AAA	 BBB
2	 BBBAAB	 BABB	 ABA	 AAA
2	 BBBAABA	 BABB	 AAA
2	 BABBBAABA	 AAA
1	 BABBBAABAAA
	 	 BABBBAABAAA

Input strings

Superstring

Rounds of merging, one merge per line.
Number in !rst column = length of overlap merged before that round.

Greedy answer:
BABBBAABAAA

Actual SCS:
AAABBBABAA

In red are strings that get
merged before the next round

Shortest common superstring: greedy

But greedy algorithm is a good approximation; i.e. the superstring
yielded by the greedy algorithm won’t be more than ~2.5 times longer
than true SCS (see Gus!eld 16.17.1)

Greedy algorithm is not guaranteed to choose overlaps yielding SCS

Shortest common superstring: greedy

	 	 ATTATAT	 CGCGTAC	 ATTGCGC	 GCATTAT	 ACGGCGC	 TATATTG	 GTACGGC	 GCGTACG	 ATATTGC
6	 TATATTGC	 ATTATAT	 CGCGTAC	 ATTGCGC	 GCATTAT	 ACGGCGC	 GTACGGC	 GCGTACG
6	 CGCGTACG	 TATATTGC	 ATTATAT	 ATTGCGC	 GCATTAT	 ACGGCGC	 GTACGGC
5	 CGCGTACG	 TATATTGCGC	 ATTATAT	 GCATTAT	 ACGGCGC	 GTACGGC
5	 CGCGTACGGC	 TATATTGCGC	 ATTATAT	 GCATTAT	 ACGGCGC
5	 CGCGTACGGCGC	 TATATTGCGC	 ATTATAT	 GCATTAT
5	 CGCGTACGGCGC	 GCATTATAT	 TATATTGCGC
5	 CGCGTACGGCGC	 GCATTATATTGCGC
3	 GCATTATATTGCGCGTACGGCGC
	 	 GCATTATATTGCGCGTACGGCGC

Input strings

Superstring

Greedy-SCS algorithm in action again (l = 3):

Shortest common superstring: greedy
Another setup for Greedy-SCS: assemble all substrings of length 6
from string a_long_long_long_time. l = 3.

	 	 ng_lon	 _long_	 a_long	 long_l	 ong_ti	 ong_lo	 long_t	 g_long	 g_time	 ng_tim
5	 ng_time	 ng_lon	 _long_	 a_long	 long_l	 ong_ti	 ong_lo	 long_t	 g_long
5	 ng_time	 g_long_	 ng_lon	 a_long	 long_l	 ong_ti	 ong_lo	 long_t
5	 ng_time	 long_ti	 g_long_	 ng_lon	 a_long	 long_l	 ong_lo
5	 ng_time	 ong_lon	 long_ti	 g_long_	 a_long	 long_l
5	 ong_lon	 long_time	 g_long_	 a_long	 long_l
5	 long_lon	 long_time	 g_long_	 a_long
5	 long_lon	 g_long_time	 a_long
5	 long_long_time	 a_long
4	 a_long_long_time
	 	 a_long_long_time

I only got back: a_long_long_time (missing a _long)

What happened?

Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
long

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4

5
ng_tim

3

a_long

5

4

3

3

4

4 5

3

g_time

4
5

5

3

4

5

3

4

5

4

3

3

4

5

Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
long

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4

5
ng_tim

3

a_long

5

4

3

3

4

4 5

3

g_time

4
5

5

3

4

5

3

4

5

4

3

3

4

5

a_long_long_long_time
Total overlap: 39

Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
long

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4

5
ng_tim

3

a_long

5

4

3

3

4

4 5

3

g_time

4
5

5

3

4

5

3

4

5

4

3

3

4

5

a_long_long_time
Total overlap: 44 Better than the

correct path!

Shortest common superstring: greedy

Same example, but increased the substring length from 6 to 8

	 	 long_lon	 ng_long_	 _long_lo	 g_long_t	 ong_long	 g_long_l	 ong_time	 a_long_l	 _long_ti	 long_tim
7	 long_time	 long_lon	 ng_long_	 _long_lo	 g_long_t	 ong_long	 g_long_l	 a_long_l	 _long_ti
7	 _long_time	 long_lon	 ng_long_	 _long_lo	 g_long_t	 ong_long	 g_long_l	 a_long_l
7	 _long_time	 a_long_lo	 long_lon	 ng_long_	 g_long_t	 ong_long	 g_long_l
7	 _long_time	 ong_long_	 a_long_lo	 long_lon	 g_long_t	 g_long_l
7	 g_long_time	 ong_long_	 a_long_lo	 long_lon	 g_long_l
7	 g_long_time	 ong_long_	 a_long_lon	 g_long_l
7	 g_long_time	 ong_long_l	 a_long_lon
7	 g_long_time	 a_long_long_l
3	 a_long_long_long_time
	 	 a_long_long_long_time

Got the whole thing: a_long_long_long_time

Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to !gure
out there are 3 copies of long?

a_long_long_long_time

One length-8 substring spans all three longs

g_long_l

Repeats

Repeats often foil assembly. They certainly foil SCS, with its
“shortest” criterion!

Reads might be too short to “resolve” repetitive sequences. This is
why sequencing vendors try to increase read length.

Algorithms that don’t pay attention to repeats (like our greedy
SCS algorithm) might collapse them

a_long_long_long_time

a_long_long_time

collapse

The human genome is ~ 50% repetitive!

Repeats

Basic principle: repeats foil assembly

Another example using Greedy-SCS:

the_worst_of_times_it_was_the_best_o3, 5

it_was_the_best_of_times_it_was_the_worst_of_timesInput:

l, k output

s_the_worst_of_times_it_was_the_best_of_t3, 7
_was_the_best_of_times_it_was_the_worst_of_tim3, 10

it_was_the_best_of_times_it_was_the_worst_of_times3, 13

Extract every substring of length k, then run Greedy-SCS.
Do this for various l (min overlap length) and k.

Repeats

Basic principle: repeats foil assembly

Longer and longer substrings allow us to “anchor” more of the
repeat to its non-repetitive context:

swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells

ringing_of_the_bells_bells_bells_bells_bells_to_the_rhyhming

Often we can “walk in” from both sides. When we meet in the
middle, the repeat is resolved:

Repeats

Basic principle: repeats foil assembly

Yet another example using Greedy-SCS:

swinging_and_the_ringing_of_the_bells_bells3, 7

swinging_and_the_ringing_of_the_bells_bells_bells_bells_bellsInput:

l, k output

swinging_and_the_ringing_of_the_bells_bells_bells3, 13
swinging_and_the_ringing_of_the_bells_bells_bells_bells_b3, 19
swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells3, 25

longer and longer substrings allow
us to “reach” further into the repeat

Repeats

Picture the portion of the overlap graph involving repeat A

Assume A is longer
than read length

Repeat A

Lots of overlaps
among reads from A

Even if we avoid collapsing copies of A, we can’t know which paths
in correspond to which paths out

L1
L2
L3
L4

R1
R2

R3

R4

L1
L2
L3
L4

R1

R2

R3

R4

St
re

tc
he

s o
f

ge
no

m
e

Re
ad

s

Shortest common superstring: post mortem

SCS is &awed as a way of formulating the assembly problem

No tractable way to !nd optimal SCS

SCS spuriously collapses repetitive sequences

Had to use Greedy-SCS. Answers might be too long.

Answers might be too short, by a lot!

Need formulations that are (a) tractable, and (b) handle repeats as
gracefully as possible

Remember: repeats foil assembly no matter the algorithm. This is a
property of read length and repetitiveness of the genome.

Taxonomy of assembly approaches

Search for most parsimonious explanation of the reads (shortest
superstring)

Exact solutions are intractable (e.g. TSP), but a greedy
approximation is possible

Any solution will collapse repeats spuriously

Search for “maximum likelihood” explanation of the reads; i.e. force
solution to be consistent with uniform coverage

No solutions (that I know of) are tractable

Give up on unresolvable repeats and use a tractable algorithm to
assemble the resolvable portions. This is what real tools do.

