Genome-scale technologies 2 / Algorithmic and statistical aspects of DNA sequencing

Introduction to next generation sequencing and its applications

Ewa Szczurek szczurek@mimuw.edu.pl

Instytut Informatyki Uniwersytet Warszawski

Organisational remarks

Organisation of this course

- ► In English
- ▶ 1.5 hrs lecture
- ▶ Up to 2×1.5 hrs lab
- ► Homework 15% of your grade

Final assesment

- Data analysis project
- ightharpoonup Successful completion of the project \Rightarrow 85% of the final grade
- Oral exam

Scope of this course

- Next generation sequencing (NGS) data
- ► Its analysis and applications

Short biological introduction

DNA sequence determines how cells work

lacktriangle DNA sequence ightarrow Gene expression ightarrow Protein function.

Short biological introduction

Short biological introduction

Sequencing methods

- 1. First generation sequencing: Sanger sequencing
- Next (second) generation sequencing: 454, Solid, Illumina/Solexa
- 3. Third generation sequencing: IonTorrent, Single molecule sequencing

The focus of this course: NGS

Two big names in sequencing history

Frederick Sanger

Craig Venter

Sequencing history: the race for throughput and money

- 1958 Sanger's 1st Nobel prize for the sequence of insulin (51 bp)
- 1980 Sanger's 2nd Nobel prize for the dideoxy method of sequencing DNA
- 1990 The Human Genome Project plan for 15 yrs and \$3 billion
- 1998 Craig Venter (Celera Genomics) plan for 3 yrs and \$300 million
- 2001 HGP and Celera genome drafts published (3 billion bp; 3GB)
- 2003 HGP publishes the final sequence
- 2008 1000 Genomes project launched
- 2012 1092 Human genome sequences published
- 2014 Illumina HiSeq X Ten Sequencer \$1,000 genome

First individuals sequenced include Craig Venter, James Watson, Seong-Jin Kim, and Steve Jobs (\$100K).

The ever dropping cost of sequencing

Applications of NGS

- ► de novo sequencing, e.g. genome assembly
- calling single nucleotide and structural variants in genomes
- personalized medicine, knowledge discovery, e.g. cancer genomics
- metagenomics
- ChIP-Seq measuring expression control (TF binding)
- RNA-Seq measuring gene expression
- DNASE-Seq marking open chromatin regions
- ► CLIP- Seq, FAIRE-Seq, BiSulfite-Seq.. and many more

Plan of the course (but don't feel attached to it)

- 6.X.15 **01**. NGS, quality control
- 13.X.15 **02**. Genome assembly
- 20.X.15 **03.** Genome assembly
- 27.X.15 **04.** Read mapping
- 3.XI.15 **05.** Read mapping
- 10.XI.15 06. Variant calling
- 17.XI.15 **07**. Variant calling
- 24.XI.15 08. Cancer genomics
- 01.XII.15 **09.** Metagenomics
- 08.XII.15 10. ChIP-Seq
- 15.XII.15 **11**. RNA-Seq
- 22.XII.15 **12.** RNA-Seq
 - 12.I.16 **13**. DNASE-Seq
 - 19.1.16 **14**. Hi-C
 - 26.1.16 **15**. Project presentations

How does NGS work?

Next-generation DNA sequencing

How does NGS work? A focus on Illumina (Solexa) sequencing.

Preprocessing steps

- 1. Cleave the input sample into short fragments
- 2. Ligate the fragments to generic adaptors
- 3. Anneal the fragments to a slide using the adaptors
- 4. Amplify the reads with PCR ightarrow many copies of each read
- 5. Separate into single strands for sequencing

How does NGS work? A focus on Illumina (Solexa) sequencing.

Sequencing steps

- 1. Flood the slide with nucleotides and DNA polymerase.
- 2. Nucleotides:
 - fluorescently labelled, with colour \sim base.
 - lacktriangle have a terminator ightarrow only one base added at a time.

How does NGS work?

A focus on Illumina (Solexa) sequencing.

Sequencing steps cd

- Take an image of each slide. Each read location ↔ fluorescent signal ↔ added base.
- 2. Remove the terminators, allowing the next base to be added
- 3. Remove the fluorescent signal, preventing contamination of the next image.

How does NGS work? A focus on Illumina sequencing.

How does NGS work?

- We will watch a very simplistic video
 - ▶ https://www.youtube.com/watch?v=-7GK1HXwCtE
- To watch at home
 - ▶ https://www.youtube.com/watch?v=jFCD8Q6qSTM

Parameters of sequencing technologies

First generation sequencing: Sanger

- ▶ large read length (700 1000bp),
- ▶ large sequencing cost (500\$/Mb),
- high accuracy (read error rate 0.001%),
- ▶ low throughput.

Parameters of sequencing technologies

Table 1 Technical specifications of Next Generation Sequencing platforms utilised in

this study					
Platform	Illumina MiSeq	Ion Torrent PGM	PacBio RS	Illumina GAIIx	Illumina HiSeq 2000
Instrument Cost*	\$128K	\$80K**	\$695K	\$256K	\$654K
		20-50Mb on 314			
		chip, 100-200Mb on			
Sequence yield per		316 chip, 1Gb on 318			
run	1.5-2Gb	chip	100Mb	30Gb	600Gb
Sequencing cost per					
Gb*	\$502	\$1000 (318 chip)	\$2000	\$148	\$41
Run Time	27 hours***	2 hours	2 hours	10 days	11 days
				Mostly >	
Reported Accuracy	Mostly > Q30	Mostly Q20	<q10< td=""><td>Q30</td><td>Mostly > Q30</td></q10<>	Q30	Mostly > Q30
Observed Raw Error					
Rate	0.80%	1.71%	12.86%	0.76%	0.26%
			Average		
			1500		
			bases****		
	upto 150		(C1	upto 150	
Read length	bases	~200 bases	chemistry)	bases	upto 150 bases
Paired reads	Yes	Yes	No	Yes	Yes
	upto 700			upto 700	
Insert size	bases	upto 250 bases	upto 10kb	bases	upto 700 bases
Typical DNA					
requirements	50-1000ng	100-1000ng	∼1µg	50-1000ng	50-1000ng

ments 50-1000ng 100-1000ng ~1μg 50-1000ng 50-1000ng

* All cost calculations are based on list price quotations obtained from the manufacturer and assume expected sequence yield stated

^{**} System price including PGM, server, OneTouch and OneTouch ES

^{***} Includes two hours of cluster generation

^{****} Mean mapped read length includes adapter and reverse strand sequences. Subread lengths, i.e. the individual stretches of sequence originating from the sequenced fragment, are significantly shorter

Key concepts: coverage

Theoretical coverage

$$c = \frac{L \times N}{G}$$

where L is the read length, N is the number of reads, and G is the length of the genome.

Key concepts: coverage

Theoretical coverage

$$c = \frac{L \times N}{G}$$

where L is the read length, N is the number of reads, and G is the length of the genome.

Empirical coverage

The exact number of times that a base in the reference is covered by a high-quality aligned read from a given sequencing experiment.

Both called simply coverage or depth and understood from the context.

Key concepts: coverage

Key concepts: single- and paired-end reads

Single-read sequencing

Sequencing DNA from only one end: simple, economical.

Paired-read sequencing

Sequencing both ends of a fragment: higher quality data. Facilitates detection of genomic rearrangements, repetitive sequence elements, gene fusions and novel transcripts.

The FastQ format

Consecutive lines:

- ▶ Identifyier
- ► Sequence
- ► Identifyier
- Quality scores

Quality report

Phred score

- let P be the base-calling error probability,
- $P = -10 \log_{10}(P) \Rightarrow P = 10^{-Q/10}$.

For example

- $ightharpoonup Q = 10 \Rightarrow P = 0.1$
- ▶ $Q = 20 \Rightarrow P = 0.01$
- ▶ $Q = 30 \Rightarrow P = 0.001$
- $Q = 40 \Rightarrow P = 0.0001$

Phred scores reported by different platforms

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopqrstuvwxyz{|}~
33
                                                             104
                                                                                126
                     ...26....31.........40
                            0.....40
0.2.....41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
   with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Quality control

- FastQC
- ► Tracks errors both from the sequencer and of the material
- http://www.bioinformatics.babraham.ac.uk/projects/ fastqc/

Quality-based filtering

- Trimmomatic for Illumina data
- a variety of useful trimming tasks for illumina paired-end and single ended data.
- ▶ http://www.usadellab.org/cms/?page=trimmomatic/
- ILLUMINACLIP: Cut adapter and other illumina-specific sequences from the read.
- SLIDINGWINDOW: Perform a sliding window trimming, cutting once the average quality within the window falls below a threshold.
 - LEADING: Cut bases off the start of a read, if below a threshold quality
 - TRAILING: Cut bases off the end of a read, if below a threshold quality
 - CROP: Cut the read to a specified length
 - HEADCROP: Cut the specified number of bases from the start of the read
 - MINLEN: Drop the read if it is below a specified length
 - TOPHRED33: Convert quality scores to Phred-33
 - TOPHRED 64: Convert quality scores to Phred-64

Acknowledgements

For input to these and the remaining slides of this course thanks to

- ► Norbert Dojer
- ► Jerzy Tiuryn
- Bartosz Wilczyński