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a b s t r a c t

We present a method for hierarchically generating sound workflow nets by substitution of
nets with multiple inputs and outputs. We show that this method is correct and generalizes
the class of nets generated by other hierarchical approaches. The method involves a new
notion of soundness which is preserved by the generalized type of substitution that is

with the presented type of generalized substitution, since n-soundness is not preserved by it.
It is moreover shown that it is in some sense the optimal notion of soundness for the purpose
of generating sound nets by the presented type of substitution.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Among all the different formalisms for modelling pro-
cesses, Petri nets [13] offer the distinct benefits of combin-
ing an easy-to-understand visual notation with a large body
of practical and theoretical work on efficient and effective
reasoning over them. This has made them very popular
for modelling of and reasoning over complex systems and
specifically business processes and business workflows.

An example of a Petri net modelling the German traffic
lights is presented in Fig. 1(a). It is composed of two kinds of
nodes: circular places and rectangular transitions. Places can
store tokens, depicted by black dots, that represent avail-
ability of some resource or occurrence of some condition.
The transitions are the active components that consume
tokens from their input places and produce tokens into their
output places. Input places of a transition are those that are
connected by an edge leading from the place to the transi-
tion, while the output places are those that are connected by
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),
an edge leading from the transition to the place. In the net
from the example there is one token in the top place
representing a red light and another token in the leftmost
place preventing the transition t1 from firing multiple times
in a row. In such a state only t1 is active, i.e., there are tokens
in each of its input places. When it fires, it consumes tokens
from all its input places, i.e., the top and the leftmost place,
and produces a token into each of its output places, i.e., the
top place and the middle place. The resulting state repre-
sents red and yellow lights turned on simultaneously. Then,
only the transition t2 will be enabled. After it fires, the net
will reach a state with only one token in the bottom place,
which represents the green light being on and all the other
places being empty. Then, only t3 will be enabled and when
it fires, the initial state from the figure is recreated.

For describing business processes and business work-
flows a specific class of Petri nets, called workflow nets,
was introduced which features attractive modelling and
analytic properties such as easy-to-verify notions of cor-
rectness. Workflow nets are Petri nets with one “global”
input and one “global” output place (see Fig. 1(b)), repre-
senting the beginning and the end of the flow, respec-
tively, that become strongly connected when we add
a transition from the output place to the input place. The
workflow starts with one token in the input place and
while the workflow is running, it follows the usual firing
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Fig. 1. (a) An example Petri net simulating the German traffic lights and
(b) workflow nets is a special kind of Petri net.

Fig. 2. An example of a top-down construction of a workflow net.
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rules of a Petri net. It is assumed to have completed
correctly, when the net reaches a state with exactly one
token, which is placed in the output place.

The correctness of any model, and therefore also work-
flow nets, ultimately depends on whether it correctly
models the domain in question. However, certain proper-
ties such as the absence of livelocks, deadlocks, and other
anomalies are desirable and can be checked independent
of the specific domain. Among these the soundness prop-
erty of the workflow net is considered the most important.
This notion was originally proposed by van der Aalst in
[17] and since then several alternative notions of sound-
ness have been proposed and studied. Informally speaking
soundness means two things. First, that if we start with
an initial token in the input place, then no matter how
we proceed with the execution of the workflow, we can
always end up in the final state with one token in the
output place. Second, that every subtask can be potentially
executed, i.e., there is at least one correct run of the
workflow net in which this subtask is executed. An over-
view of the research on soundness of workflow nets with
additional decidability results can be found in [18].

Process modellers have a choice between two main
approaches if they want to produce sound workflow nets.
The first is to design the workflow as they like and then
use the different existing algorithms to determine if the
desired requirements are met, like in [3,2,1] or [9]. The
second is to construct the design step by step and use only
manipulations and combinations of nets that are guaran-
teed to produce sound nets [7]. In this paper we investi-
gate the second approach and in particular focus on a
structural approach where the net is constructed in a top-
down fashion. This means that the system is designed by
first specifying a workflow net that provides a high-level
description of the process by summarizing it at a high
abstraction level in terms of high-level actions, and then
refining this workflow net in a stepwise fashion by repla-
cing nodes that represent high-level actions with work-
flow nets which describe these actions in more detail.
An example of such a top-down construction is given in
Fig. 2. At each step a certain node, marked by an n, is
substituted with another workflow net. As it is illustrated
here the substituted net may also start with a transition,
rather than a place. By restricting the type of nets we can
start from and the type of nets we can substitute with,
it can be guaranteed that the resulting net is always sound.

An additional advantage of such a hierarchical approach
is that it produces workflow nets with an explicit and
natural hierarchical structure, which considerably aids the
understandability of the specification. It can be used in the
design and analysis tools and allow the user to zoom in
and out of specific parts of the net by either expanding or
collapsing nodes according to the hierarchical structure. In
addition the structure can often be matched with the
organizational hierarchy of the organization that hosts the
specified workflow, and therefore be linked with for exam-
ple the levels of management. Moreover, the hierarchical
structure can help with specifying elegantly the handling of
exceptions and recovery from unexpected situations [5,6].
For a more elaborate motivation and description of the
advantages of a hierarchical net design method the reader is
referred to [8,14].

The specific refinement approach that we take in this
paper works as follows. We always start with a simple type
of net that we already know to have the desired soundness
properties. Then we allow the substitution of a single
node, either a place or a transition, with a workflow net
that we also already know to possess the desired proper-
ties. We will show that for suitable soundness properties
and specific types of substitutions it will hold that the
soundness properties are preserved, i.e., the result of the
substitution also has the soundness properties. This allows
us to start from a small set of simple nets that are known
to have the desired properties, and then generate from
them a larger class of nets that also have these properties
by closing the class under substitution, i.e., if two nets are
in the class, then the substitution of one net into the other
is also in the class. This idea of net refinements is quite old,
and the first papers were published in the early 1990's,
like [4]. Methods for stepwise refinements were studied in
numerous papers, including [16,12,11] or [10]. An approach
that we will in particular focus on is the one presented by
van Hee et al. in [20] where two large classes of simple
workflow nets, based on state machines and marked graphs,
are identified which are readily observed to be sound, and
then it is shown that when closed under substitution we get
a larger class of workflow nets, called ST-nets, which also
contains only sound workflow nets.

Another approach for generating sound nets by sub-
stitution that can be found in the literature works as
follows. We always start with a net consisting of a single
place, and allow only the substitution with one of the finite
set of simple nets as for example those shown in Fig. 3.
Strictly speaking these are not workflow nets since they
are allowed to have multiple input and output nodes.
When such a net is substituted, each input and output
node is connected to the surrounding net in the same way



Fig. 4. Examples of nets that are sound in the classical sense but have
problems when initiated with 2 tokens, i.e., are 1-sound but not 2-sound.

Fig. 3. Allowed substitution nets for generating hierarchical nets.

J. Sroka, J. Hidders / Information Systems 40 (2014) 32–4634
as it would have been if it was the only input or output
node. This approach is taken by Wachtel et al. in [5] and
van Hee et al. in [19] and the class of nets that can be
generated this way is referred to as the class of hierarchical
nets. Interestingly enough, this class is slightly different
from the one generated by the approach in [20], and is
neither strictly larger nor smaller. It is the main goal of this
paper to investigate the combination of these two approaches
and see if it allows the generation of even larger classes of
sound nets.

For the approach chosen in this paper we need a special
notion of soundness. This is because, as was observed by
van Hee et al. in [20], it is unfortunately in general not true
that soundness as defined earlier is preserved by substitu-
tion, i.e., if we substitute a sound net in another sound net
the result is not necessarily sound. This is related to the
fact that although if we execute a sound workflow, starting
with a single token, then we will end up with a single
token in the output place and no other tokens anywhere, it
could be that if we start the same workflow with 2 tokens,
it does not necessarily mean that the final marking will
have 2 tokens in the output place. It can therefore happen
that substitution of such a workflow net will lead to
an unsound net. Two classical examples of such nets, which
are sound in classical sense, but have problems when initiated
with 2 tokens, are presented after [20,18] in Fig. 4.

For this reason the notion of k-soundness was intro-
duced by van Hee et al., where k is a parameter for which
whenever we start with k tokens, the net will end without
deadlock having exactly k tokens in the output place, while
all other places will be unmarked. It was proven that
k-soundness forms a strict hierarchy, which means that for
every k there exists a workflow net which is k-sound and
not (kþ1)-sound. The nets in Fig. 4 are 1-sound but not
2-sound. The notion of n-soundness holds for nets, which
are sound for every k. It is shown by van Hee et al. in [20]
that this type of soundness is preserved by substitution for
their kind of nets. In the same paper van Hee et al. define a
large class of nets by starting from very simple classes that
are syntactically easy to identify and can be straightforwardly
shown to be n-sound, and then generating more n-sound
nets by substitution.

Since in this paper we consider a more generalized
notion of substitution that also allows substitution of nets
with multiple input and output places and allows flow
edges that arrive in input places and leave from output
places, our approach requires a slightly generalized notion
of soundness that we call substitution soundness and which
is indeed preserved by the generalized type of substitution
that we propose.

The structure of the paper is as follows. After introdu-
cing the notions of a Petri net, workflow net and sound-
ness we propose new classes of nets, called p-WF nets
and t-WF nets. Informally such nets have the border nodes
being places or transitions respectively. AND-OR nets
being special classes of p-WF nets and t-WF nets are
introduced in Section 3. We make some remarks on their
properties and specify how the substitutions are per-
formed. Next, we address the problem of soundness
preservation during substitution in Section 4 and intro-
duce the notion of substitution-soundness (sub-soundness
for short). The main two theorems of this section state that
soundness is preserved when a sub-sound t-WF net is
substituted for a transition of a sub-sound p-WF net or
t-WF net and when a sub-sound p-WF net is substituted for
a place of a sub-sound p-WF net or t-WF net. In Section 5
we prove that the introduced AND-OR nets are sub-sound in
general.

A preliminary version of this paper was presented in
2011 at the 11th International Conference on Application
of Concurrency to System Design in Newcastle upon Tyne,
United Kingdom, see [15]. Apart from providing a more
elaborate discussion of the results, the main extensions in
this paper include the complete versions of proofs and
discussion on whether substitution soundness is the right
notion of soundness, i.e., is the weakest condition neces-
sary for constructing nets by refinement.
2. Basic terminology

Let S be a set. A bag (multiset) m over S is a function
m : S-N. We use þ and � for the sum and the difference
of two bags and ¼ , o , 4 , r , Z for comparisons of bags,
which are defined in a standard way. We overload the set
notation, writing ∅ for the empty bag and A for the element
inclusion. We list elements of bags between brackets, e.g.
m¼ ½p2; q� for a bag m with mðpÞ ¼ 2, mðqÞ ¼ 1, and mðxÞ ¼ 0
for all x=2fp; qg. The shorthand notation k �m is used to
denote the sum of k bags m. The size of a bag m over S is
defined as jmj ¼ ΣsA SmðsÞ.

Definition 1 (Petri net). A Petri net is a tuple N¼ ðP; T ; FÞ
with P a finite set of places, T a finite set of transitions
such that P \ T ¼ | and FD ðT � PÞ [ ðP � TÞ the set of flow
edges.

A path of a net is a non-empty sequence ðx1;…; xnÞ of
nodes where for all i such that 1r irn�1 it holds that
ðxi; xiþ1ÞAF . Markings are states (configurations) of a net
and the set of markings of N¼ ðP; T ; FÞ is the set of all bags
over P and denoted as MN. Given a transition tAT , the
preset �t and the postset t� of t are the sets fp∣ðp; tÞAFg and
fp∣ðt;pÞAFg, respectively. Analogously we write �p, p� for
pre- and post-sets of places. To emphasize the fact that the
preset/postset is considered within some net N, we write



Fig. 5. A generalized notion of workflow net: (a) pWF net and (b) tWF net.

Fig. 6. The place completion of a tWF net and a transition completion of
a pWF net.

Fig. 7. A counterexample showing that n-soundness is not preserved by
transition completion and also not under substitution.
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�Na, a�N . We overload this notation further allowing to
apply preset and postset operations to a set B of places/
transitions, which is defined as the union of pre-/post-sets
of elements of B. A transition tAT is said to be enabled in
marking m iff �trm. For a net N¼ ðP; T ; FÞ with markings
m1 and m2 and a transition tAT we write m1⟶

t
Nm2, if t is

enabled in m1 and m2 ¼m1��tþt�. For a sequence of
transitions s¼ ðt1;…; tnÞ we write m1⟶

s
Nmn, if m1⟶

t1

Nm2⟶
t2

N⋯⟶
tn

Nmn, and we write m1⟶
n

Nmn, if there exists
such a sequence sATn. We will write m1⟶

t
m2, m1⟶

s
mn

and m1⟶
n
mn, if N is clear from the context.

We generalize the usual notion of workflow net as
introduced by van der Aalst in [17] by allowing multiple
input and output places, allowing transitions as input
and output nodes and also allowing input nodes to have
incoming edges and output nodes to have outgoing edges
(see Fig. 5).

Definition 2 (Workflow net). A place Workflow net (pWF
net) is a tuple N¼ ðP; T ; F; I;OÞ where ðP; T ; FÞ is a Petri net
with a non-empty set IDP of input places and a non-
empty set ODP of output places such that (1) every node
in P [ T is reachable by a path from at least one node in I and
(2) from every node in P [ T we can reach at least one node
in O. A transition Workflow net (tWF net) is similar to a place
Workflow net except that I and O are non-empty subsets of T.
A workflow net (WF net) is either a pWF net or tWF net.

A workflow net is called a one-input workflow net if I
contains one element, and a one-output workflow net if O
contains one element. In [17] workflow nets are restricted
to one-input one-output place Workflow nets. We general-
ize this but define for all workflow nets the corresponding
one-input one-output pWF net as follows. The place-
completion of a tWF net N¼ ðP; T ; F; I;OÞ is denoted as
pcðNÞ and is a one-input one-output pWF net that is
constructed from N by adding places pi and po such that
pi� ¼ I and �po ¼ O and setting the input set and output set
as fpig and fpog, respectively. This is illustrated in Fig. 6(a).
Note that we distinguish I nodes with half unconnected
incoming arrows and O nodes with half unconnected
outgoing arrow. The transition-completion of a pWF net
N¼ ðP; T ; F; I;OÞ is denoted as tcðNÞ and is a one-input one-
output tWF net that is constructed from N by adding
transitions ti and to such that ti� ¼ I and �to ¼ O and setting
the input set and output set as ftig and ftog, respectively.
This is illustrated in Fig. 6(b).

We will focus in this paper on a particular kind of
soundness, namely the soundness that guarantees the
reachability of a proper final state. We generalize this for
the case where there can be more than one input place
and these contain one or more tokens in the initial
marking. We also provide a generalization of soundness
for tWF nets, which intuitively states that, if in total there
are k firings of input transitions, then the computation will
end in an empty marking after in total k firings of the
output transitions.

Definition 3 (k and n-soundness). A pWF net N¼ ðP; T ; F;
I;OÞ is said to be k-sound if for each marking m such that
k � I⟶n

m it holds that m⟶
n
k � O. We call N n-sound if it is

k-sound for all kZ1. We say that these properties hold for
tWF net N if they hold for pcðNÞ.

It would be nice if transition-completion would not
affect the n-soundness of a net just like place-completion
does (by definition). However this is only partially true as
is shown in the following theorem.

Theorem 4. Every pWF net N is n-sound if tcðNÞ is n-sound
but not vice versa.

Proof. Let N¼ ðP; T ; F; I;OÞ and N′¼ pcðtcðNÞÞ ¼ ðP′; T ′; F′;
I′;O′Þ with ti and to being the added input and output
transitions of tcðNÞ, respectively. Recall that by definition
tcðNÞ is n-sound iff pcðtcðNÞÞ is n-sound. We assume that
tcðNÞ is n-sound, that is N′ is n-sound. Observe that
k � I′⟶n

N′k � I by letting input transitions ti of tcðNÞ fire k
times. Assume that k � I⟶n

Nm. Since N is embedded in N′,
it then follows that k � I′⟶n

N′m. From the n-soundness of
N′ it follows that m⟶

s′
N′k � O′ for some s′AðT ′Þn. However,

we can omit the firings of to from s′ and obtain s such that
m⟶

s
N′k � O. Since s cannot contain ti it follows that

m⟶
s

Nk � O and therefore m⟶
n

Nk � O.
The counterexample in Fig. 7 shows that not for every

n-sound pWF net N it holds that tcðNÞ is n-sound. Observe
that N is n-sound. However, the shown pcðtcðNÞÞ is not
since from the marking ½pi� it can reach ½b; c� and therefore
½b;po� after which no transition is enabled. Since pcðtcðNÞÞ
is not 1-sound, then by definition tcðNÞ is also not 1-sound
and thus not n-sound. □

3. AND-OR nets

To generate a large class of nets we will consider
general substitutions where places and transitions are
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replaced with pWF nets and tWF nets, respectively. We
introduce for this purpose a notion of substitution that is
based on the one introduced by van Hee et al. in [20] but
generalized so it can substitute nets with multiple input
nodes and multiple output nodes.
Definition 5 (Place substitution and transition substitution).
Consider two disjoint WF nets N and M, i.e., if N¼ ðP; T ;
F; I;OÞ and M¼ ðP′; T ′; F′; I′;O′Þ, then ðP [ TÞ \ ðP′ [ T ′Þ ¼ |.
Place substitution: If p is a place in N and M is a pWF net,

then we define the result of substituting p in N with M,
denoted as N�pM, as the net that is obtained if in N we
remove p and the edges in which it participates and
replace it with the net M and edges such that �p′¼ �p
for each input place p′A I′ of M and p′� ¼ p� for each
output place p′AO′ of M. If pA I then p is replaced in the
set of input nodes of the resulting net with I′, i.e., the input
set of N�pM is I\fpgð Þ [ I′, and if pAO then p is replaced in
the set of output nodes of the resulting net with O′, i.e., the
output set of N�pM is O\fpgð Þ [ O′. Otherwise, the input
and output sets of N�pM are the same as the respective
sets for N.
Transition substitution: Likewise, if t is a transition in N

and M is a tWF net, then we define the result of substitut-
ing t in N with M, denoted as N� tM, as the net that is
obtained if in N we remove t and the edges in which it
participates and replace it with the net M and edges such
that �t′¼ �t for each input transition t′A I′ ofM and t′� ¼ t�
for each output transition t′AO′ of M. If tA I then t is
replaced in the set of input nodes of the resulting net with
I′, i.e., the input set of N� tM is I\ftgð Þ [ I′, and if tAO then
t is replaced in the set of output nodes of the resulting
net with O′, i.e., the output set of N� tM is O\ftgð Þ [ O′.
Otherwise, the input and output sets of N� tM are the
same as the respective sets for N.

The results of a place substitution and transition sub-
stitution are illustrated in Fig. 8(a) and (b), respectively. It
is not hard to see that if N and M are WF nets and n a node
in N then N�nM is again a WF net. It also holds for all WF
nets A, B and C that ðA�aBÞ�bC ¼ A�aðB�bCÞ if b is a node
in B, and ðA�aBÞ�bC ¼ ðA�aCÞ�bB if a and b are nodes
in A.

We will generate nets by starting from some basic
classes of nets and allowing substitutions of places with
pWF nets and transitions with tWF nets.
Fig. 8. Illustration of place substitution and transition substitution.
Definition 6 (Substitution closure). Given a class C of nets
we defined the substitution closure of C, denoted as SðCÞ, as
the smallest superclass of C that is closed under transition
substitution and place substitution, i.e., the following two
rules hold: if N andM are disjoint nets in SðCÞ then (1) ifM is
a pWF net and p a place in N then N�pM is a net in SðCÞ and
(2) if M is a tWF net and t a transition in N then N� tM is a
net in SðCÞ.

As the basic nets with which we will start the genera-
tion process we will consider the nets that we call pAND
nets, tAND nets, pOR nets and tOR nets, which are all
illustrated in Fig. 9 with input and output nodes on the
left-hand side and right-hand side, respectively. Informally
we can describe AND nets as acyclic nets that consist only
of AND splits and AND joins, and OR nets can be described
as possibly cyclic nets consisting of only OR splits and OR
joins. AND and OR nets are generalizations of marked
graph/T-nets and state machines/S-nets [7], respectively,
which both are restricted to exactly one input and output
node. More formally, the AND and OR nets are defined as
follows.

Definition 7 (AND net). An AND net is an acyclic WF net
ðP; T ; F; I;OÞ such that for every place pAP it holds that
(1) pA I4 j�pj ¼ 0 or p=2 I4 j�pj ¼ 1 and (2) pAO4 jp�j ¼ 0
or p=2O4 jp�j ¼ 1. An AND net that is a pWF net is called a
pAND net, and if it is a tWF net it is called a tAND net.

OR nets are the counterpart of AND nets and are defined
as follows.

Definition 8 (OR net). An OR net is a WF net ðP; T ; F; I;OÞ
such that for every transition tAT it holds that (1)
tA I4 j�tj ¼ 0 or t=2 I4 j�tj ¼ 1 and (2) tAO4 jt�j ¼ 0 or
t=2O4 jt�j ¼ 1. An OR net that is a pWF net is called a
pOR net, and if it is a tWF net it is called a tOR net.
Fig. 9. Examples of pAND, tAND, pOR and tOR nets.

Fig. 10. Examples of tAND and pOR nets that are not n-sound.



Fig. 12. Example nets from classes pAND, 11tAND, 11pOR and tOR.
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Note that OR nets can contain cycles where AND nets
by definition cannot, but otherwise they are each others
dual. Also note that for the requirements over the edges,
being an input node counts as having an input edge, and
being an output node counts as having an output edge. To
illustrate why this is so consider the nets (a) and (b) in
Fig. 11. In (a) we a see a pWF net that would be a pAND net
if we ignored the requirement for input and output places.
However, it will also be clear that this is not a 1-sound net
since the token in the upper-right output place might be
transferred to the lower-left input place, after which we
cannot reach the final state. In (b) we see a tWF net that
would be tOR net if we ignored the requirements for input
and output places. Also here it is easy to see by looking at
its place completion that this is not a 1-sound net. For
tAND and pOR there are no such restrictions on the input
and output nodes, since in AND nets the places are
restricted and in OR nets the transitions are restricted.
The requirement for acyclicity for AND nets is illustrated
by the tWF net (c) in Fig. 11. Clearly this net is not 1-sound
since a run in which the transition fires requires an initial
token in the place. However, its dual where the place is a
transition and vice versa is indeed 1-sound, which explains
the asymmetry between AND and OR nets.

For the AND and OR nets as defined here there are some
straightforward soundness results in that all pAND and tOR
nets are n-sound, and that for tAND and pOR nets this is the
case if they are one-input one-output nets. The n-soundness
of tOR nets follows from the n-soundness of ST-nets of van
Hee et al. given by Theorem 17 in [20] and the definition
of n-soundness for tWF nets by place completion. The
n-soundness of pAND nets follows from Theorem 4 and
the fact that for every pAND net N, its transition completion
tcðNÞ is n-sound because pcðtcðNÞÞ is also an ST-net. Note
that for this reasoning it is crucial that the place completion
of a tOR net results in a net that is still an OR net, and that
transition completion of a pAND net results in a net that is
still an AND net. This is the case since in tOR nets and in
pAND nets input nodes cannot have incoming edges and
output nodes cannot have outgoing edges.

Observe that even without disallowing incoming edges
for input nodes and outgoing edges for output nodes, a
place completion of any tAND net results in an AND net and
a transition completion of any pOR net results in OR net, i.e.,
results in nets that do not have AND splits/joins and OR
splits/joins intermixed in a problematic way. Note also that
for multi-input multi-output pOR nets an unsound transfer
would be possible similarly as for pAND nets, but we limit
the number of input/output places anyway. Finally, even
though for tAND nets we do not limit the number of these
Fig. 11. Unsound nets forbidden by the definition of AND and OR nets. (a) A pW
input/output tokens and (c) a tWF net with a cycle requiring preinitializing tok
edges in the definition, it follows from its acyclicity and
existence of only one input and one output transition.

To understand the restriction to one-input one-output
nets consider the examples of tAND and pOR nets in Fig. 10
which are all nets with either multiple input nodes or
multiple output nodes and which are all not n-sound. For
the presented tAND net examples applying the place
completion, which is required by the definition of sound-
ness, would result in a net with AND splits/joins and
OR splits/joins mixed in a wrong way. For the presented
pOR net examples the problem originates from the nature
of allowed OR splits/joins and the possibility of unequal
numbers of input and output places. This is why, while
generating nets with place and transition substitution, we
limit ourselves to the following classes of nets: the class
of pAND nets represented by pAND, the class of one-input
one-output tAND nets represented by 11tAND, the class of
one-input one-output pOR nets represented by 11pOR,
and the class of tOR nets represented by tOR (see Fig. 12
for examples). For one-input one-output tAND nets the
n-soundness follows immediately from the n-soundness
of pAND nets because performing place completion of
one-input one-output tWF nets does not create OR splits
nor OR joins. For one-input one-output pOR nets we cannot
refer to n-soundness of ST-nets, because they cannot have
incoming edges for input places and outgoing edges for
output places. Yet, by its construction the number of tokens
in the net has to be constant and by reachability of input
and output nodes in the definition of workflow net all
tokens can be forced to reach the output place. Section 5
provides formal proofs of stronger sub-soundness proper-
ties for all the basic classes discussed here.
F net with transfer of input/output tokens, (b) a tWF net with transfer of
ens.
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Definition 9 (AND-OR net). The class SðpAND [ 11tAND[
11pOR [ tORÞ we call the class of AND-OR nets.

An example of the generation of an AND-OR net is
shown in Fig. 13, with the hierarchical decomposition in
(a) and the resulting net in (b).

It can be shown that the one-input one-output tAND
nets are not needed, i.e., we can remove them from the
initial class without changing the set of nets that can be
generated.

Theorem 10. The tAND nets are redundant for generating
AND-OR nets, i.e., SðpAND [ 11tAND [ 11pOR [ tORÞ ¼
SðpAND [ 11pOR [ tORÞ.

Proof. Recall that tAND nets do not contain cycles. Also
note that if we take a one-input one-output tAND net with
input transition ti and output transition to and we remove
the begin and end transition, then we are left with a pAND
net with I¼ ti� and O¼ �to. So every one-input one-output
tAND net can be generated by starting with a tOR
net consisting of a transition followed by a place which
is again followed by a transition, and then substituting
the previously mentioned pAND net for the place in the
middle. □

However, the one-input one-output pOR nets are not
redundant, because a cycle containing the input and out-
put nodes cannot be obtained in any other way.

Theorem 11. The pOR nets are not redundant for generating
all AND-OR nets, i.e., SðpAND [ 11tAND [ 11pOR [ tORÞ⊋
SðpAND [ 11tAND [ tORÞ.

Proof. See the counterexample in Fig. 14(a). This one-
input one-output pOR net cannot be generated by using
pAND, one-input one-output tAND and tOR nets. □

Of course pAND nets and tOR nets are not redundant
either, since they allow for multiple input and output
nodes.

The AND-OR nets are very similar to the ST nets defined
in [20] by van Hee et al. In fact, the class of ST nets is the
strict subclass of Sð11tAND [ 11pORÞ that disallows
Fig. 13. An example of the generation of an AND-OR net: (a) the
hierarchical decomposition and (b) the resulting net.
incoming edges for input nodes and outgoing edges for
output nodes. It is clear that the class Sð11tAND [ 11pORÞ
is a proper subclass of the AND-OR nets since it only
contains one-input one-output WF nets. However there
are in addition also one-input one-output AND-OR nets
that are not in Sð11tAND [ 11pORÞ as is shown by the
following theorem.

Theorem 12. The class Sð11tAND [ 11pORÞ does not con-
tain all one-input one-output AND-OR nets.

Proof. The counterexample is given in Fig. 14(b). To show
that it is an AND-OR net we consider its generation in
reverse. The transitions A and B form a tOR net and can
be contracted into a single transition. The same for the
transitions C and D. The places b and c form a pAND net
and can be contracted into a single place. The result will be
a linear net that is in fact both a pAND net and a one-input
one-output pOR net. To see that the example net is not
in Sð11tAND [ 11pORÞ it can be verified that there is no
proper subnet that is either in 11tAND or 11pOR and can be
contracted into a single transition or place, respectively. □

4. Substitution soundness

Recall that the purpose of this paper is to investigate
the possibility of generating a large class of n-sound WF
nets by using substitution. It is unfortunately not true that
n-soundness is preserved by substitutions as defined in
this paper. This is because of the possible outgoing edges
of the output nodes. A counterexample is shown in Fig. 7
where the presented pWF net can be thought of as being
constructed by substituting a n-sound net N, with input
place a and output place c, into an also n-sound sequential
pWF net. As was discussed in the proof of Theorem 4 the
resulting net is not 1-sound so also not n-sound. Therefore,
we introduce a new notion of soundness called substitution
soundness and study its properties. As we will show in
Section 5 that all the basic classes of nets from the definition
of AND-OR nets are substitution sound.

The intuition underlying substitution soundness is that
it should not matter that during a run of a workflow net
we remove seemingly ready tokens from output places. In
other words, it should hold that if the net starts with k
tokens in the input places, reaches a marking with at least
k′rk tokens in each output place, and we remove these k′
tokens from each output place, then the net can still finish
with k�k′ tokens in each output place.

Definition 13 (Substitution soundness). Let N¼ ðP; T ; F; I;OÞ
be a pWF net. We say that N is substitution-sound (or
simply sub-sound) if for all kZk′Z0 and every marking m′
it holds that if k � I⟶n ðm′þk′ � OÞ then m′⟶n ðk�k′Þ � O. We
generalize this property to tWF nets and say that a tWF net
N is sub-sound if pcðNÞ is sub-sound.
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We claim that this is in some sense a necessary
condition to construct 1-sound nets by substitution of
nodes in 1-sound nets. In particular it can be shown that
there is no weaker condition that is preserved by sub-
stitution and implies 1-soundness.

Theorem 14. There is no property of pWF nets that (1) is
strictly weaker than substitution soundness, i.e., it is implied
by substitution soundness but not vice versa, (2) implies
1-soundness and (3) is preserved by substitution.

Proof. Consider the class of pWF nets illustrated in Fig. 15
where a pWF net is defined for each value of k, which we
will call Mk. Note that in Mk the subnet defined by bi and Bi
is repeated k times, and the same for the subnet defined by
Di; Ei and ei.
It can be easily observed that these nets are 1-sound,

and in fact are substitution sound. Now consider a pWF net
N that is not substitution sound such that if we let it start
with k tokens in the input places and during its run
remove k′ok tokens from the output places then it cannot
reach the final marking. If we substitute N in Mk for place
d, i.e., we consider Mk�dN, then we obtain a net that is not
1-sound. To see this consider the following. We can let Mk

start with one token in a and run until there are k tokens
in the input places of N. Then we can run N until there are
k′ tokens in its output places. These tokens can then be
removed by firing k times E. Since after this N cannot reach
a final state with k�k′ in its output places, it follows that
the net Mk�dN cannot reach its final state.
The theorem now follows from the previous by the

following reduction ad absurdum. Assume some property
that satisfies (1)–(3) at the same time. Observe thatMk will
satisfy this property since this property is weaker than
substitution soundness. Also observe that there has to be
pWF net N that satisfies this property but is not substitu-
tion sound. By (3) it then follows that Mk�dN also has
the property and therefore by (2) that it is 1-sound. This,
however, contradicts what we observed previously, namely
that the result is not 1-sound. □

Observe that the previous theorem does not establish
that substitution soundness is necessary in the sense that
every property that satisfies the three conditions is stron-
ger than substitution soundness. This is however the case
if we add the requirement that the property must hold for
the nets in Fig. 15, i.e., these nets should be in the class of
nets that we intend to generate by substitution, which
seems to be a reasonable requirement.

Now we prove that sub-soundness is sufficient for
constructing n-sound nets by substitution. First, note that
the case where k′¼ 0 describes n-soundness and so
Fig. 15. Illustration of necessity of substitution soundness.
sub-soundness implies n-soundness. Furthermore, on
many classes of nets the two notions of soundness coin-
cide, as is shown by the following two lemmas.

Lemma 15. For every pWF net N such that all output places
have no outgoing edges it holds that N is n-sound iff N is sub-
sound.

Proof. As already argued it holds that sub-soundness
implies n-soundness, so the converse remains to be shown.
Let N¼ ðP; T ; F; I;OÞ. Assume that k � I⟶n ðmþk′ � OÞ for
some k′ such that kZk′Z0. By n-soundness it holds for
some s that ðmþk′ � OÞ⟶s

k � O. However, since the places in
O have no outgoing edges none of the transitions in s
consumes any of their tokens and so m⟶

s ðk�k′Þ � O. □

Note that the restriction mentioned in Lemma 15 is
included in the classical definition of WF net by van der
Aalst [17]. However, with this restriction we would not be
able to generate all AND-OR nets, not even all those that
satisfy this restriction. In particular we would not be able
to do arbitrary loop additions. As an example consider
Fig. 14(b) where we would not be able to add a loop to
place b. Note that a similar restriction is not necessary for
tWF nets because for them the soundness properties are
defined by place completion. Recall also that for tOR nets
the output transitions cannot have outgoing edges by
definition and for one-input one-output tAND nets this
follows from the facts that AND nets are acyclic and that
in a tWF nets it is possible to reach one of the output
transitions from every place and transition.

Lemma 16. For every tWF net N it holds that N is n-sound iff
N is sub-sound.

Proof. As already argued, it is enough to show that
n-soundness implies sub-soundness. A tWF net N is by
definition sub-sound iff pcðNÞ is sub-sound. Since in pcðNÞ
the output place has no outgoing edges it follows from
Lemma 15 that pcðNÞ is sub-sound iff it is n-sound. Finally,
by definition it holds that pcðNÞ is n-sound iff N is
n-sound. □

We now proceed with showing that sub-soundness is
sufficient for constructing n-sound nets by substitution.
In Theorems 17 and 19 we show that sub-soundness is
preserved while substituting places in pWF nets. By this
we mean that if we take a sub-sound pWF net or tWF
net and substitute a place in it by another sub-sound pWF
net, we again obtain a sub-sound pWF net or tWF net,
respectively. Similarly, in Theorems 23 and 24 we show
that sub-soundness is also preserved while substituting
transitions in pWF nets and tWF nets, respectively, i.e., if
we take a sub-sound pWF net or tWF net and substitute a
transition in it by another sub-sound tWF net, we again
obtain a sub-sound pWF net or tWF net, respectively.

Theorem 17. If a pWF net N¼ ðPN ; TN ; FN ; IN ;ONÞ and a
disjoint pWF net M¼ ðPM ; TM ; FM ; IM ;OMÞ are sub-sound,
then for any pAPN the net N�pM is also sub-sound.

Proof. Let NNM ¼N�pM¼ ðPNM ; TNM ; FNM ; INM ;ONMÞ. We
define SðM; kÞ as the set of markings mM of M that
represent the fact that there are still k “threads” active in
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M after possibly having started with more threads but
some of them ended by the removal of tokens from O′, i.e.,
for some k′Zk it holds that k′ � I′⟶n

MmMþðk′�kÞ � OM .
We define a simulation relation � DMN �MNM such that
mN �mNM represents the fact that mN is the same as mNM

except that all (say k) tokens are removed from p and
replaced by some marking from SðM; kÞ, i.e., mNM ¼
mN�½pk�þmk

M for some mk
MASðM; kÞ with k¼mNðpÞ.

We first discuss the idea of the proof and then follow
with the laborious details.
It can be shown that � indeed defines a kind of bisimi-

larity (see Fig. 16), i.e., it holds that
(Bn)
 if mN⟶
s

Nm′
N and mN �mNM , then there is a marking

m′
NMAMNM such that mNM⟶

n

NMm′
NM and m′

N �m′
NM

and

(Cn)
 if mNM⟶

s
NMm′

NM and mN �mNM ; then there is a mark-
ing m′

NAMN such that mN⟶
n

Nm′
N and m′

N �m′
NM .
This can be shownwith induction on the length of swhere
for each transition t in s we distinguish for (Bn) the cases
where pA�Nt or not and pAt�N or not, and for (Cn) we
distinguish the cases where t is a transition in N or M.
We then can show the sub-soundness of N�pM using

(Bn) and (Cn). The idea of this part is as follows (see Fig. 17).
Assume that k � INM⟶n

NMðmNMþk′ � ONMÞ with kZk′Z0.
By (Cn) and the fact that k � IN � k � INM it then follows that
k � IN⟶n

NmN such that mN � ðmNMþk′ � ONMÞ. We can show
that we can assume that mN ¼m′

Nþk′ � ON with m′
N a

marking of N. By the sub-soundness of N it holds that
m′

N⟶
n

Nðk�k′Þ � ON . At the same time by the definition of
� it follows that m′

N �mNM . Using the last two from (Bn)
it then follows that mNM⟶

n

NMm′
NM such that ðk�k′Þ�
Fig. 16. � indeed defines

Fig. 17. Structure of the p
ON �m′
NM .Although similar to ðk�k′Þ � ON , the m′

NM does
not have to be the final marking ðk�k′Þ � ONM , yet by using
sub-soundness of M it can be shown that m′

NM⟶
n

NM

ðk�k′Þ � ONM .
We proceed with the proof of (Bn) and (Cn). We first

show that
(A)
a kin

roof
if mN �mNM , mN⟶
t

Nm′
N and mNM⟶

t
NMm′

NM , then
m′

N �m′
NM .
We then use (A) to show
(B)
 if mN �mNM and mN⟶
t

Nm′
N , then there is a marking

m′
NM such that mNM⟶

n

NMm′
NM and mNM �m′

NM , and

(C)
 if mN �mNM and mNM⟶

t
NMm′

NM , then there is a mark-
ing m′

N such that mN⟶
n

Nm′
N and m′

N �m′
NM .
Then with induction we generalize (B) and (C) to (Bn)
and (Cn), respectively. We now proceed with the proofs of
claim (A)–(C).
Proof of claim (A): Assume that mN⟶

t
Nm′

N and mNM⟶
t

NMm′
NM . We also assume mN �mNM , which by definition

gives mNM ¼mN�½pk�þmk
M for some mk

MASðM; kÞ with k¼
mNðpÞ. After firing t in mNM we get m′

NM ¼ ðmN�½pk�þmk
M�

�NMtþt�NMÞ. We consider the four cases for whether
pA�Nt or not, and pAt�N or not:
(i) Assume p=2�Nt and p=2t�N . In that case �NMt ¼ �Nt and

t�NM ¼ t�N and therefore m′
NM ¼ ðmN��Ntþt�N�½pk�þmk

MÞ
and since mN⟶

t
Nm′

N it follows that m′
NM ¼ ðm′

N�½pk�þ
mk

MÞ. Now, it remains to be shown that m′
NðpÞ ¼ k which

follows from mNðpÞ ¼ k and p=2�Nt and p=2t�N . This con-
cludes that m′

N �m′
NM .

(ii) Assume pA�Nt and p=2t�N . In that case t�NM ¼ t�N
and from the construction of the substitution it follows
d of bisimilarity.

of Theorem 4.
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that �NMt ¼ �Nt�½p�þOM and therefore m′
NM ¼ ðmN��Ntþ

t�N�½pðk�1Þ�þmk
M�OMÞ and since mN⟶

t
Nm′

N it follows
that m′

NM ¼ ðm′
N�½pðk�1Þ�þmk

M�OMÞ. Then, it holds that
(a) m′

NðpÞ ¼ k�1 because mNðpÞ ¼ k and pA�Nt and p=2t�N ,
and (b) mk

M�OMASðM; k�1Þ since mk
MASðM; kÞ. Observe

that mk
M�OM is a valid state, i.e., there is a non-negative

number of tokens in each place, because we assumed that
t is enabled in mNM as well as pA�Nt and the mM

k
com-

ponent of mNM covers tokens in places from PM. From (a)
and (b) it follows that m′

N �m′
NM .

(iii) Assume p=2�Nt and pAt�N . In that case �NMt ¼ �Nt
and from the construction of the substitution t�NM ¼ t�N�
½p�þ IM and therefore m′

NM ¼ ðmN��Ntþt�N�½pðkþ1Þ�þ
mk

Mþ IMÞ and since mN⟶
t

Nm′
N it follows that m′

NM ¼
ðm′

N�½pðkþ1Þ�þmk
Mþ IMÞ. Then, it holds that (a) m′

NðpÞ ¼
kþ1 because mNðpÞ ¼ k and p=2�Nt and pAt�N , and (b)
mk

Mþ IMASðM; kþ1Þ since mk
MASðM; kÞ. From (a) and (b) it

follows that m′
N �m′

NM .
(iv) Assume pA�Nt and pAt�N . In that case �NMt ¼ �Nt�

½p�þOM and t�NM ¼ t�N�½p�þ IM and therefore m′
NM ¼

ðmN��Ntþt�N�½pk�þmk
M�OMþ IMÞ and since mN⟶

t
Nm′

N
it follows that m′

NM ¼ ðm′
N�½pk�þmk

M�OMþ IMÞ. Then, it
holds that (a) m′

NðpÞ ¼ k because mNðpÞ ¼ k and pA�Nt
and pAt�N , and (b) mk

M�OMþ IMASðM; kÞ since
mk

MASðM; kÞ. Observe that mk
M�OMþ IM is a valid state for

the same reasons as in (ii). From (a) and (b) it follows that
m′

N � m′
NM .

We have now covered all possible cases and in each of them
concluded that m′

N �m′
NM which finishes the proof of (A).

Proof of claim (B): Assume that mN⟶
t

Nm′
N , which

by definition gives �NtrmN . We also assume mN �mNM ,
which by definition gives mNM ¼mN�½pk�þmk

M for some
mk

MASðM; kÞ with k¼mNðpÞ. Since mk
MASðM; kÞ and M is

sub-sound, it holds that mk
M⟶

n

Mk � OM , and since M is

embedded in NM, it follows that mNM⟶
n

NMmN�½pk�þ
k � OM . Note also that mNM �mN�½pk�þk � OM , because by
definition k � OMASðM; kÞ. Now we observe that since t is a
transition in N, if t is enabled in mN for N, by construction
of NM it is also enabled in mN�½pk�þk � OM for NM
regardless of pA�Nt. It follows that there is a mark-

ing m′
NM such that mN�½pk�þk � OM⟶

t
NMm′

NM and thus

mNM⟶
n

NMm′
NM . By (A) it follows that m′

N �m′
NM , which

concludes the proof of (B).
Proof of claim (C): Assume that mNM⟶

t
NMm′

NM . We also
assume mN �mNM , which by definition gives mNM ¼
mN�½pk�þmk

M for some mk
MASðM; kÞ with k¼mNðpÞ. We

consider the two possible cases: t is a transition in N and t
is a transition in M.
(i) Assume that t is a transition in N. Since t was enabled

in mNM for NM, i.e., �NMtrmNM , it will also be enabled in
mN for N, i.e., �NtrmN . This can be shown as follows.
Suppose p=2�Nt, then �NMt ¼ �Nt. Since mM

k
contains only

places in M it follows from �NMtrmNM ¼mN�½pk�þmk
M

that �Nt ¼ �NMtrmN . Suppose on the other hand that
pA�Nt, then �NMt ¼ �Nt�½p�þOM and we get �Nt�½p�þ
OMrmN�½pk�þmk

M . Both sides of this inequality can be
limited to N by omitting components not from PN, giving
�Nt�½p�rmN�½pk�. Since in this case kZ1 we get
�NtrmN . Now, since t is enabled in mN for N there will
be a marking m′
N such that mN⟶

t
Nm′

N and it follows by (A)
that m′

N �m′
NM .

(ii) Assume that t is a transition in M. In this case the
marking we are looking for is mN itself. Since �NMt are all
places in M, it follows that t is enabled in mM

k
for M. So

there is m′
M such that mk

M⟶
t

Mm′
M and because t�NM are

also all places in M, we have m′
M ¼mk

M��Mtþt�M . Now
from our assumptions it follows that m′

NM ¼mNM��Mtþ
t�M ¼mN�½pk�þmk

M��Mtþt�M ¼mN�½pk�þm′
M . Since

mk
MASðM; kÞ and mk

M⟶
t

Mm′
M , then it also holds that

m′
MASðM; kÞ. From the assumption that k¼mNðpÞ, it

follows that mN �m′
NM , and obviously it also holds that

mN⟶
n

NmN .
Since in both possible cases it follows that there is

a marking m′
N such that mN⟶

n

Nm′
N and m′

N �m′
NM , we

can conclude that this always follows, which concludes the
proof of (C).
Proof of claim (Bn) and (Cn): We can straightforwardly

generalize (B) and (C) by using induction on the length of s
and show that (1n) if mN⟶

s
Nm′

N and mN �mNM then there
is a marking m′

NM such that mNM⟶
n

NMm′
NM and m′

N �m′
NM

and (2n) if mNM⟶
s

NMm′
NM and mN �mNM , then there is a

marking m′
N such that mN⟶

n

Nm′
N and m′

N �m′
NM .

We proceed with the proof of the final part, i.e., prove
the sub-soundness of N�pM using (Bn) and (Cn).
Proof of sub-soundness of N�pM: The full structure of

the reasoning is presented in Fig. 17. Assume that k �
INM⟶

n

NMðmNMþk′ � ONMÞ with kZk′Z0. Since INM ¼ IN if
p=2 IN and INM ¼ IN�½p�þ IM if pA IN , it holds that k � IN �
k � INM . By (Cn) it then follows that k � IN⟶n

NmN such that
mN � ðmNMþk′ � ONMÞ.
We now construct m′

N ¼mN�k′ � ON and show that
m′

N �mNM regardless of p=2ON or pAON . We start with
showing the fact that m′

N is a valid state, i.e., mN includes
the tokens we are subtracting from it. Since mN � ðmNMþ
k′ � ONMÞ for k″¼mNðpÞ there is mk″

MASðM; k″Þ such that
mNMþk′ � ONM ¼mN�½pk″�þmk″

M . This gives mN ¼mNMþ
k′ � ONMþ½pk″��mk″

M . Let us consider two cases. For p=2ON ,
in which case ONM ¼ ON , this gives mN ¼mNMþk′ � ONþ
½pk″��mk″

M . It remains to observe that subtracting the mk″
M

component does not remove any tokens from ON because
from disjointness of N and M we have ON \ PM ¼ |. For
pAON , in which case ONM ¼ON�½p�þOM , we get mN ¼
mNMþk′ � ONþ½pk″��½pk′�þk′ � OM�mk″

M . Both sides of the
equality have to include the same number of tokens in p.
Since mNM marks only places from PNM ¼ ðPN\fpgÞ [ PM and
k′ � OM�mk″

M only places from PM (and p=2PM), all the tokens
in p are given by k′ � ONþ½pk″��½pk′�. It remains to show
that k″Zk′. This follows from further examination of the
equality mN ¼mNMþk′ � ONþ½pk″��½pk′�þk′ � OM�mk″

M . This
time we look at the number of tokens in OM. On the left-
hand side there are clearly none. On the right hand side
there are k′ introduced by k′ � OM , and the only negative
component mk″

M subtract no more than k″ of such tokens.
Now we continue with showing that m′

N �mNM . This time
from mNMþk′ � ONM ¼mN�½pk″�þmk″

M we conclude mNM ¼
mN�½pk″�þmk″

M�k′ � ONM and again consider the two cases
for p=2ON or pAON . If p=2ON , then ONM ¼ON and so mNM ¼
mN�k′ � ON�½pk″�þmk″

M ¼m′
N�½pk″�þmk″

M and m′
NðpÞ ¼

mNðpÞ�k′ � ONðpÞ ¼ k″�0¼ k″ so m′
N �mNM . If pAON ,

then ONM ¼ON�½p�þOM and so mNM ¼mN�½pk″�þmk″
M�



J. Sroka, J. Hidders / Information Systems 40 (2014) 32–4642
k′ � ONM ¼mN�½pk″�þmk″
M�k′ � ONþ½pk′��k′ � OM ¼mN�k′ �

ON� ½pk″�k′�þmk″
M�k′ � OM ¼m′

N�½pk″�k′�þmk″
M�k′ � OM , so

also then we can conclude that m′
N �mNM because mk″

M�k′ �
OMASðM; k″�k′Þ and k″�k′¼ ðmN�k′� ONÞðpÞ ¼m′

NðpÞ.
By the sub-soundness of N it then holds that m′

N⟶
n

N

ðk�k′Þ � ON . From (Bn) it follows that mNM⟶
n

NMm′
NM such

that ðk�k′Þ � ON �m′
NM , that is m′

NM ¼ ðk�k′Þ � ON�½px�þ
mx

M with mx
MASðM; xÞ and x¼ ðk�k′Þ � ONðpÞ. If p=2ON , then

x¼0 and ON ¼ONM , and therefore m′
NM ¼ ðk�k′Þ � ONM . If

pAON , then x¼ k�k′ and therefore m′
NM ¼ ðk�k′Þ � ON�

½pk�k′�þmk�k′
M .Because M is sub-sound, it holds that

mk�k′
M ⟶

n

Mðk�k′Þ � OM , and since M is embedded in N
and in this case ONM ¼ ON�½p�þOM , it follows that
m′

NM⟶
n

NM ðk�k′Þ � ON�½pk�k′�þðk�k′Þ � OM ¼ ðk�k′Þ � ONM .
This way we have shown that in all cases mNM⟶

n

NMm′
NM⟶

n

NMðk�k′Þ � ONM which concludes the proof. □

We now proceed with the case for place substitution in
tWF nets. For that we will use the following lemma.

Lemma 18. For every tWF net N with a place p and a disjoint
pWF net M it holds that pcðN�pMÞ ¼ pcðNÞ�pM.

Proof. Let N¼ ðPN ; TN ; FN ; IN ;ONÞ with pAPN and M¼
ðPM ; TM ; FM ; IM ;OMÞ. In both cases the same nodes are
added, viz., those of M and pi and po, see Fig. 18. Clearly
the edges FM are added in the same way. Also in both cases
afterwards pi� ¼ IN and �po ¼ ON because N is a tWF net
and p=2 IN and p=2ON . For nodes p′A IM it holds in both cases
that afterwards �p′¼ �Np if p=2 IN and �p′¼ fpig if other-
wise. Similarly for nodes p′AOM afterwards p′� ¼ p�N if
p=2ON and p′� ¼ fpog. Finally, in both cases the final input
set is fpig and the final output set is fpog. □

With this lemma we are able to show that sub-
soundness is preserved while substituting place in tWF
nets by converting it to the already proven case for pWF
nets (see Theorem 17).

Theorem 19. If a tWF net N is sub-sound and a disjoint pWF
net M is sub-sound and p is a place in N then N�pM is
sub-sound.

Proof. Assume that a tWF net N is sub-sound and a pWF
net M is sub-sound. By definition of sub-soundness for
tWF nets it follows that pcðNÞ is sub-sound. By Theorem 17
it follows that pcðNÞ�pM is sub-sound. By Lemma 18 it
then holds that pcðN�pMÞ is sub-sound. Finally, by
Fig. 18. Place completion is semi-distributive with respect to place
substitution.
definition of sub-soundness for tWF nets, it follows that
N�pM is sub-sound. □

We now proceed with showing that also transition
substitution preserves sub-soundness. The proof strategy
will be to show that this substitution is equivalent to a
sequence of transformations with a place substitution as is
illustrated in Fig. 19. The top net is the original net N with
transition tn that is to be replaced with net M, the result of
which, i.e., N� tnM, is shown in the bottom. The sequence
of transformations with a place substitution is shown in
between. In the second row we see N� tntcðNnÞwhere Nn is
a tWF consisting of transition completion of a single place
pn. As we show in Proposition 20, if N is sub-sound, then
N �n

t tcðNnÞ also is sub-sound. Next, we see the result of
substituting the place pn in N� tntcðNnÞ with the pWF net
pcðMÞ. Finally, the input and output nodes introduced by
the transition and place completions are removed, which
also preserves sub-soundness as follows from Propositions 21
and 22.

We begin with the lemma that shows that, see Fig. 20, if
N is sub-sound, then N �n

t tcðNnÞ is also sub-sound.
Proposition 20. If N is a pWF net with a transition tn and Nn

a pWF net that consists of only a single place pn, then
N� tn tcðNnÞ is sub-sound if N is sub-sound.
Fig. 19. Transforming transition substitution to place substitution.



Fig. 20. Sequential transition substitution.
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Proof. Let M¼N� tn tcðNnÞ. We define a relation � D
MN �MM such that mN �mM represents the fact that mN

is the same as mM except that all (say k) tokens are
removed from pn and k tokens are added to each of to�M ,
or in other words, to is fired k times, where to is the output
transition added in tcðNnÞ. More formally, mN �mM iff mN ¼
mM�½pnk�þk � ðto�MÞ where k¼mMðpnÞ.
It can then be shown that � indeed defines a kind of

bisimilarity, i.e., it holds that
(An)
 if mN⟶
s

Nm′
N and mN �mM , then mM⟶

n

Mm′
N , and
(Bn)
 if m⟶
s

Mm′
M , then there is a marking mN such that

m⟶
n

NmN and mN �mM .
Informally, this can be shown with induction on the length
of s. For the case of length 1 with transition s we then
distinguish for (An) the cases where s¼ tn or not. Likewise
for (Bn) we distinguish the cases where s¼ ti or s is a
transition in M not equal to ti nor to (we will argue that
with these assumptions sato). We now proceed with
showing that under the assumption of (An) and (Bn) we
can indeed show that M is sub-sound if N is sub-sound.
Proof for M is sub-sound if N is sub-sound: Note that,

by construction of M, N and M have the same input set
I and output set O. Assume that N is sub-sound and that

k � I⟶n

MðmMþk′ � OÞ. By (Bn) it follows that k � I⟶n

NmN

such that mN � ðmMþk′ � OÞ that is mN ¼mMþk′ � O�
½pnk″�þk″ � ðto�MÞ where k″¼ ðmMþk′ � OÞðpnÞ. Since pn =2O
we can assume that k″¼mMðpnÞ and that mN ¼ ðmM�
½pnk″�þk″ � ðto�MÞÞþk′ � O, i.e., k′ � OrmN and get ðmN�
k′ � OÞ �mM . From the sub-soundness of N it follows that

ðmN�k′ � OÞ⟶n

Nðk�k′Þ � O. Finally, by (An) it follows that

mM⟶
n

Mðk�k′Þ � O which completes the proof of sub-
soundness of M.
We will now formally show the missing (An) and (Bn).

We start with the following facts:
(A)
 If mN⟶
t

Nm′
N and mN �mM , then mM⟶

n

Mm′
N .
(B)
 If m⟶
t

MmM , then there is an mN such that m⟶
n

NmN

and mN �mM .
Proof of claim (A): IfmMðp Þ ¼ k, thenwe can fire k times to
and so mM⟶

n

Mm′
M ¼mM�½pnk�þk � ðto�MÞ. Since mN �mM
Fig. 21. Transition–place pair removal.
n

we also have that mN ¼mM�½pnk�þk � ðto�MÞ and so
m′

M ¼mN , i.e., mM⟶
n

MmN . Either (i) tatn or (ii) t ¼ tn. If
(i), then by construction of M we have �Nt ¼ �Mt and
t�N ¼ t�M and so from mN⟶

t
Nm′

N it follows mN⟶
t

Mm′
N .

Thus we have shown that mM⟶
n

MmN⟶
t

Mm′
N . If (ii), then

by construction of M we have �Nt ¼ �Mti and t�N ¼ to�M and
so from mN⟶

t
Nm′

N and the fact that ti�M ¼ �Mto it follows
mN⟶

ti ;to
Mm′

N . Thus we have shown that mM⟶
n

MmN⟶
ti ;to

Mm′
N .
Proof of claim (B): Because we assumed that m is also a
marking of N it holds that mðpnÞ ¼ 0, so either (i) t=2fti; tog
or (ii) t ¼ ti. If (i), then by construction of M we have
�Nt ¼ �Mt and t�N ¼ t�M and so from m⟶

t
MmM it follows

m⟶
t

NmM . Of course mM �mM . If (ii), then by construction
of M we have �Ntn ¼ �Mti and so from m⟶

ti
MmM it follows

m⟶
tn

NmN for some mN. We have mN ¼m��Ntnþtn�N ¼
m��Mtiþto�M . On the other hand mM ¼m��Mtiþti�M ¼
m��Mtiþpn. By combining these two we get mN ¼mM�
pnþto�M and because mðpnÞ ¼ 0 we have mMðpnÞ ¼ 1, so by
definition mN �mM .
Proof of claims (An) and (Bn): The facts (A) and (B) can be

generalized by induction on the length of s to show that
(An) if mN⟶

s
Nm′

N and mN �mM , then mM⟶
n

Mm′
N , and (Bn)

if m⟶
s

MmM , then there is a marking mN such that
m⟶

n

NmN and mN �mM . □

We now proceed with propositions that show that the
removal of ti and pi as well as po and to preserves sub-
soundness. These results are similar to those of the abstrac-
tion rule of [7].

Proposition 21. Let N be a pWF net with transition tn and
place pn such that tn�N ¼ pn, �Npn ¼ tn and pn is not an input
nor output place and there are no edges between �Ntn and
pn�N . Furthermore, let M be the pWF net that is obtained
from N if we remove tn and pn and add all the edges in �Ntn �
pn�N as illustrated in Fig. 21. Then M is sub-sound if N is sub-
sound.

Proof. We define a similarity relation � DMN �MM such
that mN �mM represents the fact that mM is the same as
mN except that all (say k) tokens are removed from pn and
k tokens are added to each of �tn, or in other words, tn is
fired k times in reverse. More formally, mN �mM holds iff
mM ¼mN�½pnk�þk � ð�NtnÞ where k¼mNðpnÞ.
It can then be shown that � defines a bisimilarity in the

sense that
(Dn)
 If mN⟶
s

Nm′
N and mN �mM , then there is a marking

m′
M such that mM⟶

n

Mm′
M and m′

N �m′
M .s
(En)
 If mM⟶Mm′
M and mN �mM ; then there is a marking

m′
N such that mN⟶

n

Nm′
N and m′

N �m′
M .

n s

(Fn)
 If m⟶MmM , m⟶NmN , mN �mM and mNðpnÞ40

then froms we can construct s′ by removing the last
mNðpnÞ occurrences of tn and get m⟶

s′
Nm′

N , m
′
N �mM

and m′
NðpnÞ ¼ 0.
Informally this can be shown with induction on the length
of s. In the case of a single transition t in s we distinguish
for (Dn) the cases where t ¼ tn and if not then pnA�Nt or
not. Likewise, for (En) we distinguish the cases where
pnA�Nt or not. Finally, for (Fn) we observe that all mNðpnÞ
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tokens in pn had to be placed there by tn during s and that
the last of those tokens is not needed by the following
transitions of s.
Now, using (Dn), (En) and (Fn), we show that M is sub-

sound if N is sub-sound. Note that, by construction, N andM
have the same input set I and output set O, and that O�O.
Proof for M is sub-sound if N is sub-sound: Assume that

k � I⟶n

MðmMþk′ � OÞ. By (En) it follows that k � I⟶n

NmN

such that mN � ðmMþk′ � OÞ. By (Fn) k � I⟶n

Nm′
N where

m′ðpnÞ ¼ 0 and m′
N � ðmMþk′ � OÞ. By definition of � the

last two give m′
N ¼ ðmMþk′ � OÞ, i.e., k � I⟶n

NðmMþk′ � OÞ.
Now by sub-soundness of N it follows that mM⟶

n

N

ðk�k′Þ � OÞ. By (Dn) mM⟶
n

Mm′
M and ðk�k′Þ � O�m′

M .Since
ðk�k′Þ � OðpnÞ ¼ 0 we get m′

M ¼ ðk�k′Þ � O.
We now will formally show the missing (Dn)–(Fn). We

start with the following auxiliary claims:
(A)
 If mN �mM and t such that tatn and �NtrmN then
�MtrmM .
(B)
 If �Mtrm then there is anmN �m such thatm⟶
n

NmN ,
�NtrmN .
(C)
 If mN �mM and mN⟶
t

Nm′
N and mM⟶

t
MmM ′ then

m′
N �m′

M .
Proof of claim (A): Assume that mN �mM , tatn and
�NtrmN . From mN �mM it follows that mM ¼mN�½pnk�þ
k � ð�NtnÞ where k¼mNðpnÞ. Consider the case where pnA
�Nt. Then �Mt ¼ �Nt�½pn�þ�NtnrmN�½pnk�þk � �Ntn ¼mM

where the first equality follows from the definition of M
and the inequality from the observation that in this case
kZ1. Consider the other case where pn =2�Nt. Here from
�NtrmN it follows that �NtrmN�½pnk�þk � �Ntn and we
get �Mt ¼ �NtrmN�½pnk�þk � �Ntn ¼mM .
Proof of claim (B): Assume that �Mtrm. Consider the

case where pn =2�Nt. Then �Nt ¼ �Mtrm and so we can take
mN ¼m. Consider the other case where pnA�Nt. By the
construction �Ntnr�Mtrm, i.e., t has to be enabled in N.
Let mN be a marking such that m⟶N

tn
mN that is mN ¼

m��Ntnþpn. Since �Nt ¼ �Mt��Ntnþpn this implies that
�NtrmN .
Proof of claim (C): Assume that mN �mM and mN⟶

t
Nm′

N
and mM⟶

t
Mm′

M . Because mN �mM , mM ¼mN�½pnk�þk �
ð�NtnÞ where k¼mNðpnÞ. Because mN⟶

t
Nm′

N , m
′
N ¼mN�

�Ntþt�N . Because mM⟶
t

Mm′
M , m′

M ¼mM��Mtþt�M . By
construction and because tatn, t�M ¼ t�N . Now either (i)
pnA�Nt or (ii) pn =2�Nt. If (i) then kZ1 and �Mt ¼ �Nt�
½pn�þ�Ntn. It follows that m′

M ¼ ðmN�½pnk�þk � ð�NtnÞ�
ð�Nt�½pn�þ�NtnÞþt�NÞ ¼mN�½pnðk�1Þ�þðk�1Þ � ð�NtnÞ�
�Ntþt�N ¼mN��Ntþt�N�½pnðk�1Þ�þðk�1Þ � ð�NtnÞ ¼m′

N�
½pnðk�1Þ�þðk�1Þ � ð�NtnÞ with m′

NðpnÞ ¼ k�1 since pnA�Nt
and pn =2t�N . Thus m′

N �m′
M . Consider the other case (ii)

where pn =2�Nt. Then �Mt ¼ �Nt and therefore m′
M ¼mN�

½pnk�þk � ð�NtnÞ��Ntþt�N ¼mN��Ntþt�N�½pnk�þk �
ð�NtnÞ ¼m′

N�½pnk�þk � ð�NtnÞ with m′
NðpnÞ ¼ k, since pn =2�Nt

and pn =2t�N . Thus m′
N �m′

M .
We then show the claims that concern the cases of (Dn)–

(Fn) where s is of length 1:
(D)
 If mN⟶
t

Nm′
N andmN �mM then there is a markingm′

M
such that mM⟶

n

Mm′
M and m′

N �m′
M .
(E)
 If m⟶
t

MmM then there is a marking mN such that
m⟶

n

NmN and mN �mM .

(F)
 If m⟶

n

MmM , m⟶
s

NmN , mN �mM and mNðpnÞ40 then
from s we can construct s′ by removing the last
occurrence of tn and get m⟶

s′
Nm′

N , m′
N �mM and

m′
NðpnÞ ¼mNðpnÞ�1.
Proof of claim (D): Assume that mN⟶
t

Nm′
N andmN �mM .

Now either (i) t ¼ tn or (ii) tatn. If (i) thenm′
N �mM and so

we can take m′
M ¼mM . Consider the case (ii) where tatn.

By (A) it then holds that t is enabled in mM for M, and so
mM⟶

t
Mm′

M for some m′
M . By (C) it then follows that

m′
N �m′

M .
Proof of claim (E): Assume that m⟶

t
MmM . By (B) there is

an mN such that m⟶
n

NmN , �NtrmN and mN �m. Since
�NtrmN it holds that mN⟶

t
Nm′

N for some m′
N . By (C) it

then follows that m′
N �m.

Proof of claim (F): Assume that m⟶
n

MmM , m⟶
s

NmN ,
mN �mM and mNðpnÞ40. Since m is a marking of both N
and M, it does not place any tokens in pn which is not
present in M. So all mNðpnÞ tokens in pn had to be placed
there during s by firing tn, which is the only transition that
can do that, and the token placed there as last is not
needed by the following transitions of s. This is due to the
fact that we do not distinguish individual tokens of a place
and without the loss of generality we can assume that
places act as FIFO queues for tokens. Thus a valid firing
sequence s′ can be constructed from s by removing the
last occurrence of tn. Letm⟶

s′
Nm′

N . By the definition of s′ it
holds that m′

N ¼mN�pnþ�Ntn. It follows that m′
N �mM

and m′
NðpnÞ ¼mNðpnÞ�1.

Finally, we now turn to the proofs of (Dn)–(Fn).
Proofs of claims (Dn)–(Fn): With induction on the length

of s it follows form (D) that (Dn) if mN⟶
s

Nm′
N and

mN �mM then there is a marking m′
M such that mM⟶

n

M

m′
M and m′

N �m′
M . Likewise it follows from (E) that (En) if

mM⟶
s

Mm′
M and mN �mM then there is a marking m′

N such
that mN⟶

n

Nm′
N and m′

N �m′
M . Finally it follows from (F)

that Fn) if m⟶
n

MmM , m⟶
s

NmN , mN �mM and mNðpnÞ40
then from s we can construct s′ by removing the last
mNðpnÞ occurrences of tn and get m⟶

s′
Nm′

N , m
′
N �mM and

m′
NðpnÞ ¼ 0. □

Proposition 22. Let N be a pWF net with place pn and
transition tn such that pn�N ¼ tn, �Ntn ¼ pn and pn is not an
input nor output place and there are no edges between �Npn

and tn�N . Furthermore, let M be the pWF net that is obtained
from N if we remove pn and tn and add all the edges in �Npn �
tn�N as illustrated in Fig. 22. Then M is sub-sound if N is sub-
sound.

Proof. The proof proceeds analogously to that of the
preceding Proposition 21 with the relation � DMN �
MM redefined such that m�m′ iff m′¼m�½pnk�þk:ðtn�NÞ
where k¼mðpnÞ. □

We are now ready to prove that sub-soundness is
preserved by transition substitution.

Theorem 23. If a pWF net N is sub-sound and a disjoint tWF
net M is sub-sound and tn is a transition in N, then N� tnM is
sub-sound.



Fig. 22. Place–transition pair removal.
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Proof. Let N¼ ðP; T ; F; I;OÞ be a sub-sound pWF net con-
taining a transition t, and M¼ ðP′; T′; F′; I′;O′Þ a sub-sound
tWF net. Furthermore, let Nn be a pWF net consisting of a
single new place pn =2P [ P′. We will construct N� tnM by a
sequence of transformations and substitutions where the
sub-soundness of the result of each step will follow from
the sub-soundness of the nets used as components.
Consider the sequence of transformation in Fig. 19. In the

top we start with Nwhich by assumption is sub-sound. We
first substitute tn with tcðNnÞ and get N� tntcðNnÞ which
by Proposition 20 is sub-sound if N is sub-sound. Then we
substitute pn with pcðMÞ and get ðN� tntcðNnÞÞ�pnpcðMÞ.
Here the sub-soundness follows from Theorem 17 and the
fact that a place completion a sub-sound tWF net is sub-
sound by definition. Finally we remove nodes ti and pi as
well as po and to by applying Propositions 21 and 22,
respectively. This concludes the proof that the resulting
net N� tnM is sub-sound. □

Theorem 24. If a tWF net N is sub-sound and a disjoint tWF
net M is sub-sound and t is a transition in N then N� tM is
sub-sound.

Proof. Assume that N is sub-sound tWF net with a
transition t and M a sub-sound tWF net. By Theorem 23
it follows that pcðNÞ� tM is sub-sound. Since by Lemma 18
it holds that pcðN� tMÞ ¼ pcðNÞ� tM, it follows that
pcðN� tMÞ is sub-sound. By definition of sub-soundness
of tWF nets it then holds that N� tM is sub-sound. □

Corollary 25. If N and M are disjoint sub-sound WF nets
and n is a node in N then N�nM (if defined) is a sub-sound
WF net.

Proof. This follows from the fact that Theorems 17, 19, 23
and 24 cover all possible combinations of N and M being
pWF nets or tWF nets. □

5. Sub-soundness of AND-OR nets

In this section we show that all AND-OR nets are sub-
sound. First we show the AND nets and OR nets from
which AND-OR nets are generated.

Theorem 26. Every one-input one-output pOR net is sub-
sound.

Proof. Since in OR nets transitions cannot have multiple
input/output places it can be shown by induction on the
length of s that (A) if jmj ¼ k and m⟶

s
m′ then jm′j ¼ k. Let

IN ¼ fpig and ON ¼ fpog. For each place p in a pOR net N it
holds that ½pi�⟶

n ½p� and ½p�⟶n ½po� since there must be
paths from pi to p and from p to po and each transition in
those paths has one input edge and one output edge. Thus,
it also follows that (B) if jmj ¼ k, then k � ½pi�⟶
n
m and

m⟶
n
k � ½po�.

We now show the sub-soundness requirement. Assume
that k � IN⟶n ðmþk′ � ONÞ. Since jk � IN j ¼ jk � ½pi�j ¼ k � j½pi�j ¼
k it follows by (A) that jmþk′ � ONj ¼ k. Since jmþk′ � ON j ¼
jmjþjk′ � ONj and jk � ONj ¼ jk � ½po�j ¼ knj½po�j ¼ k it follows
that jmj ¼ k�k′. By (B) it then follows that m⟶

n

ðk�k′Þ � ½po� ¼ ðk�k′Þ � ON . □

Theorem 27. Every tOR net is sub-sound.

Proof. Consider a tOR net N. By the definition of n-soundness
of tWF nets it holds that N is n-sound if pcðNÞ is n-sound.
Observe that pcðNÞ is an one-input one-output pAND net,
because N by definition it does not have and incoming edges
of the input places nor outgoing edges of the output places.
By Theorem 26 it holds that pcðNÞ is sub-sound and therefore
n-sound. By Lemma 16 it follows that N is sub-sound. □

Theorem 28. Every pAND net is sub-sound.

Proof. Consider a pAND net N. Thanks to the limit on the
number of incoming edges of the input places and out-
going edges of the output places in the definition of AND
net tcðNÞ is a one-input one-output tAND net. Also tcðNÞ
does not have incoming edges of the input transition nor
outgoing edges of the output transition. By Theorem 17 in
[20] we get that pcðtcðNÞÞ is n-sound which by definition
gives proofs that tcðNÞ is n-sound. By Theorem 4 it follows
that N is sub-sound and therefore n-sound. Therefore by
Lemma 15 it follows that N is sub-sound. □

Theorem 29. Every one-input one-output tAND net is
sub-sound.

Proof. Consider a one-input, one-output tAND net N. Its
input transition cannot have incoming edges nor its output
transition cannot have outgoing edges, since those would
have to introduce cycles. By Theorem 28 it follows that pc
(N) is sub-sound, so also n-sound, and thus N in n-sound.
Therefore by Lemma 16 it follows that N is sub-sound. □

Corollary 30. All AND-OR nets are sub-sound.

Proof. By Theorems 26–29 the initial nets are all sub-
sound, and by Corollary 25 substitution preserves sub-
soundness. □

6. Future research

The class of AND-OR nets can be researched further in
several ways. One direction could be to attempt to char-
acterize the class in terms of syntactic and semantic
properties. As was shown all the nets in it are sound, even
sub-sound, and it is also not hard to see that they are all
free-choice nets, but it certainly not true that the class
contains all sub-sound free-choice nets as is shown in
Theorem 31. So it remains open which semantic property
characterizes the AND-OR nets.

Theorem 31. Not all free-choice sub-sound workflow nets
are AND-OR nets.

Proof. The counterexample is given in Fig. 23(a) (taken
from [20]). □



Fig. 23. Counterexample for the completeness of AND-OR nets.
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Another potential research direction is the extension of
the class by introducing new forms of substitution that still
can be considered hierarchical. For example, it might be
allowed that not only substitute nodes but also edges: an
edge from a place to a transition could be replaced with
a workflow net starting with a single place and ending
with a single transition. In general such substitutions do
not preserve sub-soundness, but they can be syntactically
restricted such that they do. To illustrate, such substitutions
could be used to generate Fig. 23(a) from the AND-OR net in
Fig. 23(b) by substituting the edges (A,a), (A,b), (B,a) and (B,b).

Yet another possible generalization can be achieved by
weakening the requirement that a substitution links all the
input and output nodes in the same way. For example, it
could be allowed that a transition is replaced with a tAND
net with a single input transition and several output transi-
tions such that (1) each output transition in the tAND net is
linked to at least one place in the postset of the replaced
transition and (2) each place in the postset of the replaced
transition is linked with exactly one output transition in the
tAND net. Also this would allow us to generate Fig. 23(a)
from the AND-OR net in Fig. 23(b) by substituting the
transitions A and B.

7. Conclusions

We have investigated an approach for generating sound
workflow nets in a structured way. This approach is based
on the notion of a substitution of one node by a workflow
net with input and output nodes being of the same type as
the substituted node. The substituted nets can have multi-
ple inputs and outputs, which is an extension of the
previously considered substitutions and allows to generate
a larger class of nets. We have identified a specific notion
of soundness that is preserved by such substitutions and
which allows to show that the generated nets are indeed
sound.
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