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Abstract. The MapReduce programming model is recently getting a
lot of attention from both academic and business researchers. Systems
based on this model hide communication and synchronization issues from
the user and allow processing of high volumes of data on thousands of
commodity computers. In this paper we are interested in applying MR
to processing hierarchical data with nested collections such as stored in
JSON or XML formats but with restricted nesting depth as is usual in
the nested relational model. The current data analytics systems now of-
ten propose ad-hoc formalisms to represent query evaluation plans and
to optimize their execution. In this paper we will argue that the Nested
Relation Calculus provides a general, elegant and effective way to de-
scribe and investigate these optimizations. It allows to describe and com-
bine both classical optimizations and MapReduce-specific optimizations.
We demonstrate this by showing that MapReduce programs can be ex-
pressed and represented straightforwardly in NRC by adding syntactic
short-hands. In addition we show that optimizations in existing systems
can be readily represented in this extended formalism.

1 Introduction

MapReduce (MR) is a programming model developed at Google to easily dis-
tribute processing of high volumes of data on thousands of commodity comput-
ers. Systems based on this model hide communication and synchronization issues
from the user, while enforcing a simple yet powerful programming style which
is influenced by functional programming. MR is being successfully applied [6]
on Web scale data at Google processing centers. After Google published the pa-
per explaining the idea behind MR, an open source version, named Hadoop [2],
was created and started to be widely used by both universities for research and
companies like Yahoo, Twitter and Facebook to process their data.

Even though the MR model makes writing distributed, data-driven software
a lot easier than with older technologies like MPI or OpenMP, for many appli-
cations it is too general and low level. This forces the developers who want to
process large collections of data to deal with multiple concerns. Additionally to
dealing with the problem they are trying to solve, they have to struggle with



implementing and optimizing typical operations. As happened many times in
history, e.g., with compilers or relational databases, it is better to separate con-
cerns by introducing a higher level, more declarative language, better suited for
specifying tasks for data analytics or scientific data processing, and at the same
time more amenable to optimization. This is a topic of intensive study at the
time of this writing and many systems are being built on top of implementa-
tions of MR ranging from data analytics Pig [10], data warehousing Hive [16],
through workflow systems like Google’s Sawzall [15], to graph processing systems
like Pregel [14].

An effort is also undertaken on finding the best formal model of MR com-
putations and their cost that would allow to reason which algorithms can be
efficiently expressed in MR, and which cannot and why. Several attempts were
made to define cost model, which is easy to use, understand and allows to rea-
son on MR programs efficiency. One of the more successful ideas is a notion of
replication rate introduced by Afrati, Ullman et al. [1], who count the number of
excessive data transfers and claim that it is a good metric of MR efficiency since
it deals with the bottleneck of typical MR programs — the network efficiency.
In another work by Karloff et al. [12] a notion of MR expressive power was re-
searched and a correspondence showed between MR framework and a subclass
of PRAM.

In this paper we are interested in applying MR to processing hierarchical
data with nested collections such as stored in JSON or XML formats but with
restricted nesting depth as is usual in the nested relational model. We show that
the Nested Relational Calculus (NRC) [3], a core language that describes a small
but practically and theoretically interesting class of queries and transformations
over nested relational data, is a good formalism to reason about MR programs.
We demonstrate this by showing how some of the most important higher-level
MR languages can be expressed in NRC with added syntactic short-hands. In
addition we show that NRC provides a general, elegant and effective way to
describe and investigate optimizations used in existing systems.

A similar attempt was made by Lämmel [13], who expressed the MR frame-
work in t he Haskell language. Our approach is more formal and slightly stronger,
as we are using a more minimal and formally defined calculus which is not Turing
complete.

2 The Nested Relational Calculus: NRC

In this paper we are interested in operations on large datasets, mainly repre-
senting large collections of data. For simplicity we will restrict ourselves to one
collection type: bags. This collection type has more algebraic properties than
lists, which can be exploited for optimization purposes, and the natural notion
of grouping is easily represented in terms of bags. Moreover, sets can be intro-
duced straightforwardly by means of a set operator which removes duplicates
from a bag. We denote bags by generalizing set enumeration, and so {a, a, b}
denotes the bag that contains a twice and b once. The bag union is denoted as ]



and is assumed to be additive, e.g., {a, b}] {b, c, c} = {a, b, b, c, c}. In this paper
we consistently use curly brackets { } to denote bags, not sets as usual.

Our data model will be essentially that of the nested relational model. Al-
lowed data types are (1) basic types which contain atomic values being con-
stants from some domain, which is assumed here to include at least integers and
booleans, and to allow equality tests (2) named tuples with field names being
strings and values being of any of allowed data types and (3) bag types which
describe finite bags containing elements of a specify type. The instances of types
will be called both data and values interchangeably.

For the purpose of optimization we will focus on a limited set of operators
and language constructs that is a variant of the NRC. We will use the following
syntax for our variant of NRC:

E ::= C | X | ∅ | {E} | E ] E | 〈K : E, . . . ,K : E〉 | E.K |
set(E) | F (E) | {E | X ∈ E, . . . ,X ∈ E,E, . . . , E} | E ≈ E.

We discuss the constructs in the order of appearance. The first one is C which
describes denotations of constant atomic values. The nonterminal X stands for
variables. The following three constructs form the basic bag operations, i.e.,
the empty bag constructor, the singleton bag constructor and the additive bag
union. Usually also a typing regime is introduced with the calculus to ensure
well-definedness and for example require that the bag union is only applied to
bags of the same type, but for brevity we omit this and refer the reader to [17,
7].

Next we have the tuple creation and tuple projection. In this paper we will
be working with named tuples. The nonterminal K stands for field names and it
must hold that all field names are distinct. The types that describe tuples, called
tuple types, are defined as partial functions form field names to types, i.e., 〈id : 1〉
and 〈value : 1〉 have different types, but 〈1 : int, 2 : bool〉 and 〈2 : bool, 1 : int〉
have the same type. We will sometimes omit the column names. Notice that we
allow the empty tuple as well, which will be called unit and denoted 〈〉.

The next construct is the set operator, which removes all duplicates from
a bag. The F represents user defined functions (UDFs). We require that UDFs
come with a well defined semantics, being a partial function from all possible
values to all possible values, and are describe by a type. The Nested Relational
Calculus as presented here is parametrized with the set of user-defined functions
F , which is denoted as NRCF .

The bag comprehensions of the form {e | x1 ∈ e1, . . . , xn ∈ en, e′1, . . . , e′m},
also known from some functional programming languages [18] and query eval-
uation languages [9], returns a bag, which is constructed in the following way:
starting with x1 ∈ e1 and going to the right we iterate over the given collection
(here e1) and assign one element at the time to the given variable (here x1) in a
nested-loop fashion. In the body of the innermost loop the expressions e′1, . . . , e

′
m

are evaluated, and if any of their values is false then no output is generated,
otherwise e is evaluated and its value added to the returned collection. Finally
the construct of the form e1 ≈ e2 denotes the equality between values and re-



turns true if e1 and e2 evaluate to the same values, and false otherwise. The
equality between tuples or bags is defined in a standard way.

Below we define the semantics for the NRC, which starts with the definition
of substitution of variable x with expression e′ in expression e, denoted as e[x/e′].
Its formal semantics can be defined by induction on the structure of e as follows:

c[x/e] = c x[x/e] = e

x 6= y

x[y/e] = x ∅[x/e] = ∅ {e}[x/e′] = {e[x/e′]}

(e1 ] e2)[x/e′] = e1[x/e′] ] e2[x/e′]

〈κ1 : e1, . . . , κn : en〉[x/e] = 〈κ1 : e1[x/e], . . . , κn : en[x/e]〉 e.κ[x/e′] = e[x/e′].κ

set(e)[x/e′] = set(e[x/e′]) f(e)[x/e′] = f(e[x/e′]) {e |}[x/e′] = {e[x/e′] |}

{e | x1 ∈ e1, ∆}[x1/e′] = {e | x1 ∈ e1[x1/e′], ∆}

x1 6= y {e | ∆}[y/e′] = {e′′ | ∆′′}
{e | x1 ∈ e1, ∆}[y/e′] = {e′′ | x1 ∈ e1[x1/e′], ∆

′′}

{e | ∆}[y/e′] = {e′′ | ∆′′}
{e | e1, ∆}[y/e′] = {e′′ | e1[x1/e′], ∆

′′} (e1 ≈ e2)[x/e′] = (e1[x/e′] ≈ e2[x/e′])

Now we define the NRC semantics, i.e., the relation e ⇒ v which denotes that
expression e returns value v. It is defined in the following way:

c⇒ c ∅ ⇒ ∅
e⇒ v

{e} ⇒ {v}
e⇒ {v1, . . . , vn}, e′ ⇒ {v′1, . . . , v′n}
e ] e′ ⇒ {v1, . . . , vn, v′1, . . . , v′n}

e1 ⇒ v1, . . . , en ⇒ vn

〈κ1 : e1, . . . , κn : en〉 ⇒ 〈κ1 : v1, . . . , κn : vn〉
e⇒ 〈κ1 : v1, . . . , κn : vn〉

e.κi ⇒ vi

e⇒ {v1, . . . , vn}
set(e)⇒ ∪ni=1{vi}

f(v)⇒ v′ e⇒ v

f(e)⇒ v′
e1 ⇒ false

{e | e1, ∆} ⇒ ∅

e1 ⇒ {v1, . . . , vn} ∀ni=1({e | ∆}[xi/vi] ⇒ v′i)

{e | x1 ∈ e1, ∆} ⇒ ]ni=1v
′
i

e1 ⇒ true {e | ∆} ⇒ v

{e | e1, ∆} ⇒ v

e⇒ v

{e |} ⇒ {v}
e⇒ v e′ ⇒ v′ v 6= v′

e ≈ e′ ⇒ false

e⇒ v e′ ⇒ v

e ≈ e′ ⇒ true



where we let ⊕ni=1Si denote S1⊕. . .⊕Sn. Observe that the result of an expression
is defined iff the expression contains no free variables.3

3 MapReduce

MapReduce (MR) is a programming model for heavily distributed software,
which hides most of the complexity coming from parallelism. The system handles
communication, synchronization and failure recovery, while the user is responsi-
ble only for writing the program logic in the form of Map and Reduce functions.
The working of the system is described in detail in [6], below we give only an
outline of its design.

The input of a MR routine is a collection of key-value pairs. The main as-
sumption is that the collection is too big to fit into the memory of a machine,
so it is necessary to distribute the computations over multiple machines. MR is
built on top of a Distributed File System (DFS) (for example the Google File
System [11]) and takes advantage of its architecture, as the input is stored in
DFS, thus it is divided into blocks, spread and replicated throughout a cluster.

The first stage of an MR routine is the Map phase. In the ideal case there is
almost no communication needed during this phase, as the system tries to pro-
cess the data on machines that already store it, which is often feasible thanks to
the replication. In real life some of the data may need to be sent, but we chose
to ignore it, as it is too low level for our model and the amount of necessary
communication depends on many hard to predict factors, like cluster configura-
tion and its load. After the map phase, the user can choose to run the combine
phase, which takes all the data from a single mapper for a single key and runs
a UDF on such a collection. As this phase is designed only to improve efficiency
not the expressive power of the model, e.g. some frameworks may choose not
execute Combine functions, we chose to skip this phase all together.

The next stage of MR is opaque for the user and is called the Shuffle phase.
It consists of grouping all the Map outputs which have the same intermediate
key and sending the data to the machines on which Reduce functions will be
run. In practice there is a sort order imposed on the intermediate keys, and
sometimes also on the grouped data, but we choose to ignore the order and
work on bags instead, since the order is rarely relevant at the conceptual level
of the transformation, i.e., users usually think about their collections as bags
and do not care about the specific ordering. This is the stage where communica-
tion and synchronization takes place, and opaqueness of it makes the reasoning
about MR routines easier. In some implementations of MR the user can specify
a partitioner, which is responsible for distributing the data between machines
running the reducers. Note that this behavior may be modeled using secondary-
key grouping, as it is required that all datagrams with the same intermediate
key end up on the same machine.

3 Note that we do not require that the free variables of the substituted expression are
not bound after the substitution, since we only substitute values.



The last phase is called the Reduce phase, and it consists of independent
executions of the Reduce function, each on a group of values with the same
intermediate-key, and produces a collection of result key-value pairs.

It is possible to feed a Reducer from multiple different mappers, as long
as the Shuffle phase can group the outputs of all the mappers together. In
such a case, the intermediate data from all mappers is treated identically and
is merged together for shuffling. Furthermore, often MR routines are pipelined
together, making the output of one routine, an input of another one. In such a
case product-keys of the former, become input-keys of the latter. Sometimes by
MR we do not mean a MR construct, but a computation model consisting of MR
routines and ability to connect those routines to form a DAG. Such computation
model is parametrized with a class of allowed Map and Reduce UDFs. It should
be clear from the context which meaning of MR we have in mind.

We chose a simplified version of MR, without ordering, intermediate Com-
bine phase, Partitioning etc., as this is the model appearing most often in the
literature. Furthermore some of our simplifications do not impact the expressive
power of the model, which what we are interested in this paper. Those simplifi-
cations may turn out to be too strong in the future, to work with some low-level
query optimizations, but they proved to be appropriate for the optimizations we
are considering in this paper.

4 Defining MapReduce in NRC

We proceed by showing that the MR framework can be defined using NRC
constructs described in the previous section. Here we want the reader to note
that both Map and Reduce phases apply Map and Reduce UDFs to the data.
In the general case functions passed as arguments to Map and Reduce can be
arbitrary, as long as they have following types: 〈k : α1, v : β1〉 → {〈k : α2, v : β2〉}
and 〈k : α2, vs : {β2}〉 → {〈k : α3, v : β3〉}, respectively. Here in the rest of the
paper we use the short names k, v and vs for key, value and values respectively,
to make the presentation shorter.

Note that in our definition of NRC there are no functions per se, so in stead
we use expressions with free variables. To denote expressions with abstracted
variables we use the λ notation, e.g. if e is a NRC expression with a single free
variable x, with the semantics well defined for x of a type α with a result type
β, then λx.e is a function of type α→ β.

The Map routine, where the first argument is a Map UDF, and D is a phase
input of type {〈k : α1, v : β1〉}, can be written in NRC as:

Map [λx.emap](D) = {z | y ∈ D, z ∈ emap[x/y]}.

Note that we assume that the result of λx.emap is a collection and the
Map flattens the result, hence the output of the Map has the same type as
λx.emap.

The Shuffle phase at the conceptual level essentially performs a grouping on
the key values. It can be expressed in NRC as:



Shuffle(D) = {〈k : x, vs : {z.v | z ∈ D, z.k ≈ x}〉 | x ∈ set({y.k | y ∈ D})},

The result of the Shuffle phase is a collection of key-collection pairs of all values
grouped by keys.

The Reduce phase gets the output of the Shuffle phase, which is of type
collection of key-collection pairs, and is responsible for producing the result of
the whole MapReduce routine. It can be formulated in NRC as:

Reduce [λx.ered](D) = {z | y ∈ D, z ∈ ered[x/y]},

Having defined all phases of MR separately, we can define the whole MR
syntactic short-hand:

MR [λx.emap][λx.ered](D) = Reduce [λx.ered](Shuffle (Map [λx.emap](D))),

The extension of NRC with the MR syntactic short-hand construct will be re-
ferred to as NRC-MR. Our definition or MR construct allows only one mapper.
It is easy to generalize it to handle multiple mappers, as long as they have a
common output type. To do so we need to feed the Shuffle with the union of
all mapper outputs.

We define a MR program informally as a workflow described by a directed
acyclic graph that ends with a single node and where each internal and final node
with n incoming edges as associated with (1) an MR step with n mappers and
(2) an ordering on the incoming edge. Moreover, the start nodes with no incoming
edges are each associated with a unique input variable. When executing this
program the data received through the ith input edge is fed to the ith mapper
of that node. Note that our definition of MR program is valid for standard
data processing, where MR is a top-level language. Sometimes, e.g. in case of
workflows with feedback or graph algorithms, there is an additional level of
programming needed on top of MR which introduces recursion. Our model can
be seen as a formalization of MR programs where the dataflow does not depend
on the actual data, which is the case for most of database queries.

Theorem 1. Any MR program where the MR steps use as mappers and reduc-
ers functions expressible in NRCF can be expressed in NRCF .

Proof. Indeed any MR routine using functions from F can be written in NRC
using the MR shorthand, as showed above. Composing the routines into a DAG
is equivalent to nesting the expressions for corresponding routines, in NRC.

5 Higher-level MapReduce-based languages

Recently, high-level languages compiled to MR are receiving a lot of attention.
Examples of those attempts are Facebook’s Hive [16] – a Hadoop based data
warehouse with SQL-like query language, Yahoo!’s Pig Latin [10] – a data anal-
ysis imperative language with SQL-like data operations, and Fegaras’s MRQL [8]
– an extension of SQL, which allows rnesting and in which MR is expressible in
the same sense as in the NRC. In this section we review the ideas and operators
from those languages and also provide an overview of the types of optimizations
their implementations include.



5.1 Hive QL

Hive [16], is designed to replace relational databases, so some of its features
like data insertion are orthogonal to our perspective. The Hive compilation and
execution engine uses knowledge of the physical structure of the underlying data
store. Since we abstract from a concrete physical representation of the data,
we concentrate on the Hive Query Language (Hive QL). Its SQL-based syntax
allows subqueries in the FROM clause, equi-joins, group-by’s and including MR
code. Hives does a handful of optimizations which are applied while creating
the execution plan, including: (1) combining multiple JOIN s on the same key
into a single multi-way join,(2) pruning unnecessary columns from the data, (3)
performing map-side JOIN s when possible and (4) tricks based on knowledge of
the physical structure of the underlying data store.

5.2 Pig Latin

Pig Latin [10] is a query language for the Pig system. It is business intelligence
language for parallel processing huge data sets. The data model of Pig is similar
to the one in this paper, with nesting and data types like tuples, bags and maps.
Unlike other languages discussed here, Pig Latin is not declarative. Programs are
series of assignments, and similar to an execution plan of a relational database.
The predefined operators are iteration with projection FOREACH-GENERATE,
filtering FILTER, and COGROUP. The COGROUPs semantics is similar to a
JOIN but instead of flattening the product, it leaves the collections nested, e.g.,
COGROUP People BY address, Houses BY address returns a collection of
the type: 〈address, {People with given address}, {Houses with given address}〉. It
is easy to see that GROUP is a special case of COGROUP where the input is
a single bag, and JOIN is a COGROUP with a flattened result. In addition
Pig Latin also provides the user with some predefined aggregators, like COUNT,
SUM, MIN etc., which we skip in our work since their optimized implementation
is a research topic on its own and requires the inclusion of the Combine phase.

On the implementation and optimization side, the Pig system starts with
an empty logical plan and extends it one by one with the user-defined bags,
optimizing the plan after each step. Pig generates a separate MR job for ev-
ery COGROUP command in the expression. All the other operations are split
between those COGROUP steps and are computed as soon as possible, i.e. op-
erations before the first COGROUP are done in the very first Map step, and all
the others in the reducer for the preceding COGROUP.

5.3 MRQL

MRQL is a query language designed by Fegaras et al. [8] as a declarative language
for querying nested data, which is as expressive as MR. The language is also
designed to be algebraic in the sense that all the expressions can be combined



in arbitrary ways. MRQL expressions are of the form:

select e from d1 in e1, d2 in e2, . . . , dn in en

[where pred] [group by p′ : e′ [having eh]] [order by eo [limit n]]

where e’s denote nested MRQL expressions.
What is the most interesting in MRQL from our perspective, is not the

language itself since it is similar to SQL, but the associated underlying physical
algebraic operators. The main two operators are groupBy and flatten-map/cmap
as known from functional programming languages. Those are the two operators
which are needed to define the MR operator. Our approach is similar to Fegaras’s,
but in contrast we have one language for both query specification and query
execution. An MRQL program is first rewritten to a simpler form if possible,
and then an algebraic plan is constructed. The operators in such plan are cmaps,
groupBys and joins. Possible optimizations are:
- combining JOIN s and GROUP BY s on the same key into a single operation, (1)
choosing an optimal JOIN strategy depending on the data, (2) fusing cascading
cmaps, (3) fusing cmaps with joins, (4) synthesizing the Combine function. In
section 7 we show all those optimizations, except the last one, can be done in
NRC. The last one is skipped because for the sake of simplicity we do not include
Combine functions in our execution model.

6 Defining standard operators in NRC

In this section we take a closer look on the operators found in the higher-level
MR languages described in the previous section. We show how operators from
those three languages can be defined in NRC. This illustrates that our framework
generalizes the three considered languages.

6.1 SQL operators

We start from the standard SQL operators, which form the basis of the three
analyzed languages. For the sake of clarity, we sometimes abuse the notation, to
make things clearer, e.g. we avoid the key-value pair format in MR expressions,
if the keys are not used in the computation. In this section we assume that x is
an element from collection X, wherever X denotes a collection.

The first and the most basic operator is the projection. Assuming that X
has the type {α}, α = 〈· · · 〉, and π is some function, usually a projection on a
subtuple of α, we have the following equivalent formulas:

SQL, MRQL : SELECT π(x) FROM X,

Pig Latin : FOREACH X GENERATE π(x)

NRC : {π(x) | x ∈ X}
MR-NRC : MR [λx.{π(x)}][λx.idR](X),

Here idR = {〈x.k, y〉 | y ∈ x.vs} and is an “identity” reducer.



The second operator is filtering. Assuming that X is a collection of type {α}
and ϕ : α→ boolean, the formulas for filtering are as follows:

SQL, MRQL : SELECT ∗ FROM X WHERE ϕ(x),

Pig Latin : FILTER X BY ϕ(x),

NRC : {x | x ∈ X,ϕ(x)},
MR-NRC : MR [λx.{y | y ∈ {x}, ϕ(y)}][λx.idR](X),

In some cases it is more efficient to apply projection or filtering in the
Reduce phase. Corresponding alternative MR versions for these cases are
MR [λx.{x}][λx.{π(y) | y ∈ x.vs}](X) and MR [λx.{x}][λx.{y | y ∈ x.vs, ϕ(y)}](X),
respectively. Note that moving those operators, as well as the cmap, between the
mapper and the reducer is a straightforward rewrite rule.

The third and most complex construct we are interested in is GROUP BY.
Below we assume that X has the type {α}, with α = 〈. . . , κ : β, . . . 〉 and πκ is
a projection of type α→ β.

SQL, MRQL : SELECT ∗ FROM X GROUP BY πκ(x),

Pig Latin : GROUP X BY πκ(x),

NRC : {{x | x ∈ X,πκ(x) ≈ y} | y ∈ set({πκ(x) | x ∈ X})},
MR-NRC : MR [λx.{〈k : πκ(x), v : x〉}][λx.x}](X).

6.2 Pig Latin, HiveQL and MRQL operators

We move to operators unique to higher-level MR languages, viz., cmap from
the physical layer of MRQL and similar to the comprehension operator, which
is based on a map construct instead of a cmap; and the COGROUP from Pig
Latin, which can be seen as a generalization of GROUP and JOIN operators.
HiveQL does not add new operators on top of the SQL ones. We leave for future
work all forms of the ORDER BY operator.

First let us look at the cmap(f)X from MRQL, which is based on the concat
map well known from the functional languages. The typing of this construct is
as follows: X : {α}, f : α → {β} and cmap(f) : {α} → {β}. It can be easily
expressed in NRC as {y | x ∈ X, y ∈ f(x)}.

Provided that f does not change the key, i.e., f : 〈k : α, v : β〉 → 〈k : α, v : γ〉
such that f(〈k : e, v : e′〉).k ≡ e, we can move the application of f between the
mapper and the reducer. The efficiency of either choice depends on whether f
inflates or deflates the data. In the first case it is better to have it in the reducer,
in the second case in the mapper:

MR [λx.f(x)][λx.idR](D) ≡
MR [λx.{x}][λx.{z | y ∈ x.vs, z ∈ f(〈k : x.k, v : y〉)}](D)

This rule can be generalized such that it allows f to be split into a part that is
executed in the mapper and a part that is executed in the reducer.

The COGROUP is the only operator in which the nested data model is
crucial. The syntax of COGROUP in Pig Latin is:



COGROUP X BY πκ(x), Y BY πι(y),

where X : {α}, Y : {β}, πκ : α → γ, and πι : β → γ. The NRC expression for
computing COGROUP has the form:

{〈a, {x | x ∈ X,πκ(x) ≈ a}, {x | x ∈ Y, πι(x) ≈ a}〉
| a ∈ set({πκ(x) | x ∈ X} ] {πι(x) | x ∈ Y })}.

The MR routine for computing the COGROUP has the form (note the use of
multiple mappers):

MR [λx.{〈k : πκ(x), v : χ2
1(x)〉}, λx.{〈k : πι(x), v : χ2

2(x)〉}]
[λx.〈k : x.k, v : 〈{z | y ∈ x.vs, z ∈ y.v1}, {z | y ∈ x.vs, z ∈ y.v2}〉〉](X,Y ),

where χji (x) stands for 〈v1 : ∅, . . . vi : {x}, . . . vj : ∅〉. Here the mapper creates
tuples with two data fields, the first of which corresponds to the first input, and
the second to the second input. Mappers put the input data in the appropriate
field as a singleton bag and an empty bag in all other fields. The reducer combines
those fields into the resulting tuple. The COGROUP is the first operator which
spans through both the map and the reduce phase. This is the reason why it is
important in the Pig query planner.

7 NRC optimizations of higher-level operators

In this section we show how optimizations described in [8, 10, 16] can be repre-
sented as NRC rewrite rules. We briefly recall the optimizations mentioned in
section 5: (1) pruning unnecessary columns from the data, (2) performing map-
side JOIN s when possible, (3) combining multiple JOIN s on the same key, (4)
combining JOIN s and GROUP BY s on the same key, to a single operation, (5)
fusing cascading cmaps, (6) fusing cmaps with JOIN s, (7) computing projections
and filterings as early as possible in the intervals between COGROUPs – fusing
projections and filterings with COGROUPs. In the order of appearance, we de-
scribe the optimizations and present NRC rewrite rules corresponding with each
given optimization. By = we denote syntactic equality, while by ≡ we denote
semantic equivalence.

Pruning unnecessary columns strongly depends on the type of the given data
and expression. Pruning columns can be easily expressed with well-known NRC
rewrite rules, and so we will assume we are working with expressions that project
unused columns away as soon as possible.

The map-side join (2) is a technique of computing the join in the mapper,
when one of the joined datasets is small enough to fit into a single machine’s
memory, thus its applicability is data-dependent. It is achieved by replacing the
standard reduce-side COGROUP -based JOIN operator by applying the follow-
ing rewrite rule:

MR [λx.{〈k : πκ(x), v : χ2
1(x)〉〉}, λx.{〈k : πι(x), χ2

2(x)〉}]
[λx.{〈k : x.k, v : θ(y1, z1)〉 | y ∈ x.vs, z ∈ x.vs, y1 ∈ y.v1, z1 ∈ z.v2}](X,Y )

≡ MR [λx.{〈k : πκ(x), v : θ(x, z)〉 | z ∈ Y, πι(z) ≈ πκ(x)}][λx.idR](X).



The θ is a convenience notation for merging the data from two tuples into a
single tuple. It is easily NRC expressible as long as we know the the tuple types
and how to deal with field name collisions.

As was shown in previous paragraph JOIN ’s result is usually materialized in
the reducer, but if one dataset is small enough it could be materialized in the
mapper. We refer to the first as the reduce-side JOIN, and to the second one as
the map-side JOIN. In the following we are discussing combining multiple JOIN s
together, assuming they join on the same key, and we have to consider three cases:
combining two map-side JOIN s, combining a map-side JOIN with a reduce-side
JOIN and combining two reduce-side JOIN s. Note that any computation in the
mapper, before creating the intermediate key, can be seen as a preprocessing.
Thus combining a map-side JOIN with any other join can be treated as adding
an additional preprocessing before the actual MR routine. Hence the first two
cases are easy.

The last case, namely combining reduce-side JOIN s, and also combining
JOIN s with GROUP BY s on the same key, are generalized by combining
COGROUP operators which we present here. We define a family of rewrite
rules, depending on the number of inputs, and show only an example for three
inputs, as generalization is simple:

MR [λx.{〈k : x.k, v : χ2
1(x.v)〉〉}, λx.{〈k : πι(x), v : χ2

2(x)〉}]
[λx.〈k : x.k, v : 〈{z | y ∈ x.vs, z ∈ y.v1.1},
{z | y ∈ x.vs, z ∈ y.v1.2}, {z | y ∈ x.vs, z ∈ y.v2}〉〉](inner(X,Y), Z)

≡ MR [λx.{〈k : πκ(x), v : χ3
1(x)〉}, λx.{〈k : πι(x), v : χ3

2(x)〉},
λx.{〈k : πζ(x), v : χ3

3(x)〉}][λx.〈x.k, {z | y ∈ x.vs, z ∈ y.v1},
{z | y ∈ x.vs, z ∈ y.v2}, {z | z ∈ x.vs, z ∈ y.v3}〉](X,Y, Z),

where inner is a COGROUP :

MR [λx.{〈k : πκ(x), v : χ2
1(x)〉}, λx.{〈k : πι(x), v : χ2

2(x)〉}]
[λx.〈k : x.k, v : 〈{z | y ∈ x.vs, z ∈ y.v1}, {z | y ∈ x.vs, z ∈ y.v2}〉〉](X,Y ).

Fusing cmaps (5) is a plain NRC rewrite rule, as it is roughly the same as
fusing the comprehensions:

cmap(f)(cmap(g)D) = {y | x ∈ {g(x) | x ∈ D}, y ∈ f(x)}
≡ cmap(λx.{z | y ∈ g(x), z ∈ f(y)})(D).

Note that a composition of cmaps is also a cmap, hence there is actually never
a need to more than a single cmap between other operators.

We deal with the last two items (6) and (7) together, as projections and
filterings are just a special case of the cmap operator. There are two cases of
possible fusions. Either the cmap may be done on an input of COGROUP or
JOIN, or on their output. Both those cases can be easily represented as rewrite
rules. We denote the cmaps UDF by f and present only the right hands of
the rules, as the left hand sides are straightforward pipelinings of MR routines



corresponding respectively to the given constructs for cmap before and after
COGROUP :

... = MR [λx.{〈k : πκ(x), v : χ2
1(f(x))〉}, λx.{〈k : πι(x), v : χ2

2(x)〉}]
[λx.〈k : x.k, v : 〈{z | y ∈ x.vs, z ∈ y.v1}, {z | y ∈ x.vs, z ∈ y.v2}〉〉](X,Y ),

... = MR [λx.{〈k : πκ(x), v : χ2
1(x)〉}, λx.{〈k : πι(x), v : χ2

2(x)〉}]
[λx.f(〈k : x.k, v : 〈{z | y ∈ x.vs, z ∈ y.v1}, {z | y ∈ x.vs, z ∈ y.v2}〉〉)](X,Y ).

8 Conclusion

In this paper we have demonstrated that the Nested Relational Calculus is a
suitable language to formulate and reason about MR programs for nested data.
It is declarative and higher level than MR, but in some ways lower level than
MRQL thus allowing a bit more precise refined optimizations. We showed that
MR programs can be expressed in NRC when allowed the same class of UDFs. We
also showed that the NRC formalism can express all constructs and optimizations
found in Hive, Pig Latin and MRQL. Moreover, NRC is suitable both for writing
high-level queries and transformations, as well as MR-based physical evaluation
plans when extended with the appropriate constructs. This has the benefit of
allowing optimization through rewriting essentially the same formalism, which
is not the case for any of the former higher-level MR languages.

Our framework allows for a clear representation of MR programs, which is
essential for reasoning about particular programs or the framework in general.
NRC is a well defined and thoroughly described language, which has the ap-
propriate level of abstraction to specify the class of MR algorithms we want to
concentrate on. It is important that this language is well-designed, much smaller
and with a much simpler semantics than other languages than were used to de-
scribe MR, like Java or Haskell. This is the reason we think that our work can
be potentially more effective than [5, 4].

The higher-level goal of this research is to build a query optimization module
that takes as input an NRC expression and translates it into an efficient MR
program that can be executed on a MapReduce backend. In future work we
will therefore investigate further to what extent NRC and NRC-MR allow for
meaningful optimizations through rewriting, either heuristically or cost-based.
Moreover, we will investigate the problem of deciding which sub-expressions can
be usefully mapped to an MR step, and how this mapping should look in order
to obtain an efficient query evaluation plan. This will involve investigating which
cost-models are effective for the different types of MapReduce backends.
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