
On generating *-sound nets with substitution

Jacek Sroka, Piotr Chrza̧stowski-Wachtel

University of Warsaw, Poland

Email: {sroka, pch}@mimuw.edu.pl

Jan Hidders

Delft University of Technology, The Netherlands

Email: a.j.h.hidders@tudelft.nl

Abstract—We present a method for hierarchically generating
sound workflow nets by substitution of nets with multiple
inputs and outputs. We show that our method is correct and
generalizes the class of nets generated by other hierarchical
approaches. We identify a notion of soundness that is preserved
by such substitutions and correct a small omission in an earlier
similar method.

I. INTRODUCTION

Nets are used as a tool for describing complex systems.

They are useful especially when several agents do parts of a

complex task in parallel. Parts of their jobs are local and can

be hidden from the point of view of the others, parts of them

must involve some communication between them. We can

design the system by just drawing the control and data flow,

but when the system is too complex, it is hard to visualize

the overall result and to understand its structure. This can

be improved by involving the structure of a task. The net is

constructed hierarchically. This means that a single node can

be expanded into a bigger net. In our approach we use Petri

nets, where two kinds of nodes are used: circles representing

items (states) and boxes representing actions. We must define

the refinement rules in such a way that the kinds of nodes

must match when we replace them. This means that if a

node v is replaced by a net, the external nodes of this net

should be of the same type as v.

Workflows constitute an important branch in business

modeling and analysis. Numerous approaches support de-

scribing and analyzing workflows. Among them nets turned

out to be probably the most successful. They offer both:

an intuitive design, easy to understand even for a non-

mathematician and a solid mathematical background with

multiple analysis techniques, like algebraic invariants, tem-

poral logic approach and many other. Workflow nets have

been considered as Petri nets with one input and one output

place, representing the beginning and the end of the flow.

A token is given in the input place and while the workflow

is run, it follows firing rules of Petri nets. It is desired that

eventually it will reach the output place, which means that

the workflow execution is completed.

When studying workflows one should consider “good”

scenarios, giving us some desired properties. Among others

two were identified as important. Van der Aalst proposed

This work was sponsored by the polish National Science Centre.

in [10] the notion of soundness, which informally speaking

means two things. First, that if we start with an initial token,

then no matter how we proceed with the execution of a

workflow, we can always end up in the final state. Second,

that every subtask, when originated will be completed, so

there will be no trash tokens representing unfinished subtasks

when we come to an end.

There are many approaches to constructing correct sys-

tems based on syntactical manipulation and combination of

nets [4]. In this paper, we focus on a structural approach

that corresponds to a top-down methodology. We design a

system specifying actions of the higher levels first and make

substitutions exchanging single nodes by more complex

structures of lower levels exposing more details of the ac-

tions execution. This approach provides us two advantages.

Firstly, it allows us to demonstrate solutions at appropriate

levels, hence hiding the details when they are not desired.

Secondly, it allows us to design in a manageable way quite

complex scenarios. At any point of investigation we see only

a part of the whole system, and whenever it is desired, we

can unfold each node to verify, what’s underneath. There

are also some positive side effects. Such structural approach

can make it easier to match appropriate levels of design with

corresponding levels of management, hence allowing us to

define fixed levels of security and rights.

A technical benefit of a top-down methodology is that it

allows us to ensure that nets are sound by allowing only

substitutions that guarantee soundness. However, as was

observed by van Hee et al. in [12], it is unfortunately not

true that soundness is preserved by substitution, i.e., if we

substitute a sound net in another sound net the result is not

necessarily sound. This is related to the fact that although if

we execute a sound workflow, starting with a single token,

then we will end up with a single token in the output place

and no other tokens anywhere, it could be that if we start the

same workflow with 2 tokens, it does not necessarily mean

that the final marking will have 2 tokens in the output place.

It can therefore happen that substitution of such a workflow

net will lead to an unsound net. For this reason the notion

of k-soundness was introduced by van Hee et al, where k
is a parameter for which whenever we start with k tokens,

the net will end without deadlock having exactly k tokens in

the output place, while all other places will be unmarked. It

was proven that k-soundness forms a strict hierarchy, which

means that for every k there exist a workflow net which is

k-sound and not (k+1)-sound. The notion of *-soundness is

reserved for nets, which are sound for every k. It is claimed

by van Hee et al. in [12] that this type of soundness is

preserved by substitution. In the same paper van Hee et al.

defines a large class of nets by starting from very simple

classes that are syntactically easy to identify and can be

straightforwardly shown to be *-sound, and then generating

more *-sound nets by substitution.

The idea of net refinements is quite old, and the first

papers were published in the early 90’s, like [2]. Methods

for stepwise refinements were studied in numerous papers,

including [9], [8], [7] or [6]. Usually during the refinements

we ask, which net properties are preserved. Here we con-

centrate on the generalized notion of soundness. In many

papers the approach is the following: we create a net and

ask for a possibly structural method to determine if a given

property is satisfied, like in [1] or [5]. However, we propose

a different approach: starting with a one-node net we would

rather perform a series of refinements in such a way, that

the desired property will be preserved. In [3] and [11] this

approach was taken where the soundness was guaranteed

by limiting the nets that can be substituted to only a certain

small finite set of nets but taking a slightly more general

notion of substitution. Interestingly enough, this leads to a

slightly different class being generated, neither strictly larger

or smaller, as compared to the class generated by van Hee

et al in [12]. We therefore set out in this work to combine

these two approaches to generate an even larger class of nets.

For this purpose we will introduce a generalized notion of

substitution that for example also allows the substitution of

nets with multiple input and output places, and we introduce

a correspondingly generalized notion of soundness that we

will call substitution soundness and which is preserved by

this type of substitution.

The structure of the paper is the following. After introduc-

ing the notions of a Petri net, workflow net and soundness

we propose a new class of nets, called p-WF nets and t-WF

nets. Such nets have the bordering nodes being places or

transitions respectively. AND-OR nets being special classes

of p-WF nets and t-WF nets are introduced in Section III. We

make some remarks on their properties and specify how the

substitution will be performed. Next we address the problem

of soundness preservation during substitution in Section IV.

The main two theorems of this section say that soundness is

preserved when a substitution-sound t-WF net is substituted

for a transition of a substitution-sound p-WF net or t-WF

net. In section V we prove that the introduced AND-OR

nets are substitution-sound in general.

II. BASIC TERMINOLOGY

Let S be a set. A bag (multiset) m over S is a function

m : S → N. We use + and − for the sum and the difference

of two bags and =, <, >, ≤, ≥ for comparisons of bags,

which are defined in a standard way. We overload the set

notation, writing ∅ for the empty bag and ∈ for the element

inclusion. We list elements of bags between brackets, e.g.

m = [p2, q] for a bag m with m(p) = 2, m(q) = 1, and

m(x) = 0 for all x /∈ {p, q}. The shorthand notation k.m is

used to denote the sum of k bags m. The size of a bag m
over S is defined as |m| = Σs∈Sm(s).

Definition 1 (Petri net). A Petri net is a tuple N = (P, T, F)
with P a finite set of places, T a finite set of transitions such

that P ∩T = ∅ and F ⊆ (T ×F)∪ (F ×T) the set of flow

edges.

A path of a net is a non-empty sequence (x1, ..., xn) of

nodes such that for all i such that 1 ≤ i ≤ n − 1 it holds

that (xi, xi+1) ∈ F . Markings are states (configurations) of

a net and the set of markings of N = (P, T, F) is the set

of all bags over P and denoted as MN . Given a transition

t ∈ T , the preset •t and the postset t• of t are the sets

{p | F (p, t)} and {p | F (t, p)}, respectively. Analogously

we write •p , p• for pre- and postsets of places. To emphasize

the fact that the preset/postset is considered within some net

N , we write •Na , a•N . We overload this notation further

allowing to apply preset and postset operations to a set B
of places/transitions, which is defined as the union of pre-

/postsets of elements of B. A transition t ∈ T is said to be

enabled in marking m iff •t ≤ m. For a net N = (P, T, F)
with markings m1 and m2 and a transition t ∈ T we write

m1

t
−→N m2 if t is enabled in m1 and m2 = m1−•t + t•.

For a sequence of transitions σ = 〈t1, . . . , tn〉 we write

m1

σ
−→N mn if m1

t1−→N m2

t2−→N . . .
tn−→N mn and we

write m1

∗
−→N mn if there exists such a sequence σ ∈ T ∗.

We will write m1

t
−→ m2 and m1

σ
−→ mn and m1

∗
−→ mn

if N is clear from the context.

We generalize the usual notion of workflow net as intro-

duced by van der Aalst in [10] by allowing multiple input

and output places, allowing transitions as input and output

nodes and also allowing input nodes to have incoming edges

and output nodes to have outgoing edges.

Definition 2 (Workflow net). A place Workflow net (pWF

net) is a tuple N = (P, T, F, I, O) where (P, T, F) is a Petri

net with a non-empty set I ⊆ P of input places and a non-

empty set O ⊆ P of output places such that (1) every node

in P ∪ T is reachable by a path from at least one node in I
and (2) from every node in P ∪T we can reach at least one

node in O. A transition Workflow net (tWF net) is similar

to a place Workflow net except that I and O are non-empty

subsets of T . A workflow net (WF net) is either a pWF net

or tWF net.

A workflow net is called a one-input workflow net if I
contains one element, and a one-output workflow net if O
contains one element. In [10] workflow nets are restricted

to one-input one-output place Workflow nets. We generalize

Proof: As already argued it holds that sub-soundness

implies *-soundness, so the converse remains to be shown.

Let N = (P, T, F, I, O). Assume that k.I
∗

−→ (m + k′.O)
for some k′ such that k ≥ k′ ≥ 0. By *-soundness it holds

for some σ that (m + k′.O)
σ

−→ k.O. However, since the

places in O have no outgoing edges none of the transitions

in σ consumes any of their tokens and so m
σ

−→ (k−k′).O.

Note that the restriction mentioned in Lemma 13 is

included in the classical definition of WF net by van der

Aalst [10]. However, with this restriction we would not be

able to generate all AND-OR nets, not even all those that

satisfy this restriction. In particular we would not be able to

do arbitrary loop additions. As an example consider Figure 8

(b) where we would not be able to add a loop to place

b. Note that a similar restriction is not necessary for tWF

nets because the soundness properties are defined by place

completion for them. Recall also that for tOR nets the output

transitions cannot have outgoing edges by definition and for

one-input one-output tAND nets this follows from the facts

that AND nets are acyclic and that in a tWF nets it is possible

from every place and transition to reach one of the output

transitions.

Lemma 14. For every tWF net N it holds that N is *-sound

iff N is sub-sound.

Proof: As already argued, it is enough to show that *-

soundness implies sub-soundness. A tWF net N is by def-

inition sub-sound iff pc(N) is sub-sound. Since in pc(N)
the output place has no outgoing edges it follows from

Lemma 13 that pc(N) is sub-sound iff it is *-sound. Finally,

by definition it holds that pc(N) is *-sound iff N is *-sound.

We claim this is the weakest condition that is necessary to

construct 1-sound nets by substitution of nodes in 1-sound

nets. This implies that it is a necessary condition in the

sense that there is no weaker condition that is preserved by

substitution and implies 1-soundness. Now we proceed with

proving that place substitution preserves sub-soundness. We

start with showing this for pWF nets, and then show that it

also holds for tWF nets.

Theorem 15. If a pWF net N = (PN , TN , FN , IN , ON)
and a disjoint pWF net M = (PM , TM , FM , IM , OM) are

sub-sound, then for any p ∈ PN the net N ⊗p M is also

sub-sound.

Proof: (Sketch) Let NNM = N ⊗p M =
(PNM , TNM , FNM , INM , ONM). We define S(M,k) as the

set of markings m of M that represent the fact that there are

still k “threads” active in M after having started possibly

with more threads but some of them were ended by the

removal of tokens from O′, i.e., all markings mM such that

for some k′ ≥ k it holds that k′.I ′
∗

−→M mM+(k′−k).OM .

We define a simulation relation ∼⊆ MN × MNM such

that mN ∼ mNM represents the fact that mN is the same

as mNM except that all (say k) tokens are removed from

p and some marking in S(M,k) is added, i.e., mNM =
mN−[pk]+mk

M for some mk
M ∈ S(M,k) with k = mN (p).

It can then be shown that ∼ indeed defines a kind

of bisimilarity, i.e., it holds that (1) if mN
σ

−→N m′

N

and mN ∼ mNM , then there is a marking m′

NM such

that mNM
∗

−→NM m′

NM and m′

N ∼ m′

NM and (2) if

mNM
σ

−→NM m′

NM and mN ∼ mNM , then there is a

marking m′

N such that mN
∗

−→N m′

N and m′

N ∼ m′

NM .

This can be shown with induction on the length of σ. For

each transition t in σ we then distinguish for (1) the cases

where p ∈ •N t or not and p ∈ t•N or not. Likewise for (2)

we distinguish these cases when t is a transition in N .

We then can show the sub-soundness of N ⊗p M using

(1) and (2). Assume that k.INM
∗

−→NM (mNM+k′.ONM)
with k ≥ k′ ≥ 0. By (2) it then follows that k.IN

∗
−→N mN

such that mN ∼ (mNM + k′.ONM). We can show that we

can assume that mN = m′

N + k′.ON with m′

N a marking

of N . By the sub-soundness of N it holds that m′

N

∗
−→N

(k − k′).ON . We can show that m′

N ∼ mNM and so from

(1) it then follows that mNM
∗

−→NM m′

NM such that (k−
k′).ON ∼ m′

NM . Finally, by using the sub-soundness of M

it can be shown that m′
NM

∗
−→NM (k − k′).ONM .

We proceed with the full version of the last part, i.e., prove

the sub-soundness of N⊗pM using (1) and (2). Assume that

k.INM
∗

−→NM (mNM + k′.ONM) with k ≥ k′ ≥ 0. Since

INM = IN if p 6∈ IN and INM = IN − [p] + IM ifp ∈ IN ,

it holds that k.IN ∼ k.INM . By (2) it then follows that

k.IN
∗

−→N mN such that mN ∼ (mNM + k′.ONM).

We now construct m′

N = mN − k′.ON and show that

m′

N ∼ mNM regardless of p 6∈ ON or p ∈ ON . We

start with showing the fact that m′

N is a valid state, i.e.,

mN includes the tokens we are subtracting from it. Since

mN ∼ (mNM + k′.ONM) there is mk′′

M ∈ S(M,k′′) such

that mNM + k′.ONM = mN − [pk
′′

] + mk′′

M with k′′ =
mN (p). This gives mN = mNM + k′.ONM + [pk

′′

]−mk′′

M .

For p /∈ ON , in which case ONM = ON , this gives

mN = mNM + k′.ON + [pk
′′

] − mk′′

M . It remains to

observe that the mk′′

M component does not remove any

tokens from ON because from disjointness of N and M
we have ON ∩ PM = ∅. For p ∈ ON , in which case

ONM = ON − [pk] +OM , we get mN = mNM + k′.ON −
[pk

′

]+k′.OM +[pk
′′

]−mk′′

M = mNM +k′.ON +[pk
′′
−k′

]+
k′.OM − mk′′

M . The right hand side of the equality has to

include the same number of tokens in p. Since mNM marks

only places from PNM = (PN \ {p}) ∪ PM , k′.OM −mk′′

M

only places from PM , and p /∈ PM , all the tokens in p
are given by k′.ON + [pk

′′
−k′

]. It remains to show that

k′′ ≥ k′. This follows from further examination of the

equality mN = mNM + k′.ON + [pk
′′
−k′

] + k′.OM −mk′′

M .

This time we look at the number of tokens in OM . On

the left-hand there are clearly none. On the right hand

side there are k′ introduced by k′.OM , possibly yet some

(P ′, T ′, F ′, I ′, O′) a sub-sound tWF net. Furthermore, let

N∗ be a pWF net consisting of a single new place p∗. We

then show the following two facts:

(A) (N ⊗t (tc(N
∗)))⊗p∗ pc(M) = N ⊗t (tc(pc(M))).

proof : To see this consider the illustration in Figure 9.

It is not hard to see that taking the top-left net (N) and

substituting tc(pc(M)) for t gives the bottom-right net.

However, if we first substitute in N the transition t with

tc(N∗) we get the top-right net, and this leads also to the

bottom-right net if we subsequently substitute pc(M) for

the place p∗.

(B) N ⊗t M is sub-sound iff (N ⊗t tc(pc(M))) is sub-

sound. proof : Consider the bottom-right net in Figure 9

which represents (N ⊗t tc(pc(M))). This can be trans-

formed into the bottom-left net, which represents N⊗tM , by

(i) removing ti and pi and connecting all nodes in •ti = •N t
with those in pi• = I ′, and (ii) removing po and to and

connecting all nodes in •po = O′ with those in to• = t•N .

By construction there are in the bottom-right net no edges

between nodes in •ti and in pi•, and between nodes in

•po and in to•. It follows that operations (i) and (ii) are

equivalent with those in Lemma 18 and Lemma 19, and by

these lemmas it then follows that the right-bottom net for

(N ⊗t tc(pc(M))) is sub-sound iff the left-bottom net for

N ⊗t M is.

Then we argue as follows. Since M is sub-sound it fol-

lows by definition that pc(M) is sub-sound. By Lemma 20

it holds that N ⊗t tc(N
∗) is sub-sound. By Theorem 15 it

follows that (N ⊗t (tc(N
∗)))⊗p∗ pc(M) is sub-sound. By

(A) it then follows that N ⊗t (tc(pc(M)) is sub-sound. By

(B) it then follows that N ⊗t M is sub-sound.

Theorem 22. If a tWF net N is sub-sound and a disjoint

tWF net M is sub-sound and t is a transition in N then

N ⊗t M is sub-sound.

Proof: Assume that N is sub-sound tWF net with a

transition t and M a sub-sound tWF net. By Lemma 16 it

holds that pc(N ⊗t M) = pc(N)⊗t M . By Theorem 21 it

follows that pc(N)⊗tM is sub-sound. Since by Lemma 16

it holds that pc(N ⊗t M) = pc(N) ⊗t M , it follows that

pc(N ⊗t M) is sub-sound. By definition of sub-soundness

of tWF nets it then holds that N ⊗t M is sub-sound.

Corollary 23. If N and M are disjoint sub-sound WF nets

and n is a node in N then N ⊗ nM (if defined) is a sub-

sound WF net.

Proof: This follows from the fact that Theorem 15,

Theorem 17, Theorem 21 and Theorem 22 cover all possible

combinations of N and M being pWF nets or tWF nets.

V. SUB-SOUNDNESS OF AND-OR NETS

In this section we show that all AND-OR nets are sub-

sound. First we show that the AND and OR nets from which

AND-OR nets are generated are sound.

Theorem 24. Every one-input one-output pOR net is sub-

sound.

Proof: Let IN = {pi} and ON = {po}. For each place

p in a pOR net N it holds that [pi]
∗

−→ [p] and [p]
∗

−→ [po]
since there must be paths from pi to p and from p to po and

each transition in those paths has one input edge and one

output edge. It follows that (A) if |m| = k, then k.[pi]
∗

−→
m and m

∗
−→ k.[po]. It can also be shown by induction on

the length of σ that (B) if |m| = k and m
σ

−→ m′ then

|m′| = k.

We now show the sub-soundness requirement. Assume

that k.IN
∗

−→ (m + k′.ON). Since |k.IN | = |k.[pi]| =
k.|[pi]| = k it follows by (B) that |m + k′.ON | = k. Since

|m + k′.ON | = |m| + |k′.ON | and |k.ON | = |k.[po]| =
k.|[po]| = k it follows that |m| = k − k′. By (A) it then

follows that m
∗

−→ (k − k′).[po] = (k − k′).ON .

Theorem 25. Every tOR net is sub-sound.

Proof: Consider a tOR net N . Then the place-

completion of N , pc(N), is a one-input one-output pOR

net. Moreover, by the definition of sub-soundness for tWF

nets it holds that N is sub-sound iff pc(N) is sub-sound,

and in Theorem 24 it is shown that all one-input pOR nets

are *-sound.

Theorem 26. Every one-input one-output tAND net is sub-

sound.

Proof: Theorem 17 in [12] says that all one-input one-

output tAND nets are *-sound, which holds since they are

acyclic. By Lemma 14 it follows that they are therefore sub-

sound.

Theorem 27. Every pAND net is sub-sound.

Proof: Consider a pAND net N . Then the transition-

completion of N , tc(N), is a one-input one-output tAND

net. By Theorem 17 in [12] it follows that tc(N) is *-sound.

By Theorem 4 it follows that N is *-sound. It holds by

the definition of pAND net that the places in ON have no

outgoing edges. Therefore by Lemma 13 it follows that N
is sub-sound.

Corollary 28. All AND-OR nets are sub-sound.

Proof: By the Theorem 24, Theorem 25, Theorem 26

and Theorem 27 the initial nets are all sub-sound, and by

Corollary 23 substitution preserves sub-soundness.

VI. FUTURE RESEARCH

The class of AND-OR nets can be researched further

in several ways. One direction could be to attempt to

characterize the class in terms of syntactic and semantic

properties. As was shown all the nets in it are sound, even

sub-sound, and it is also not hard to see that they are all free-

choice nets, but it certainly not true that the class contains

