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Abstract—We present a method for hierarchically generating
sound workflow nets by substitution of nets with multiple
inputs and outputs. We show that our method is correct and
generalizes the class of nets generated by other hierarchical
approaches. We identify a notion of soundness that is preserved
by such substitutions and correct a small omission in an earlier
similar method.

I. INTRODUCTION

Nets are used as a tool for describing complex systems.
They are useful especially when several agents do parts of a
complex task in parallel. Parts of their jobs are local and can
be hidden from the point of view of the others, parts of them
must involve some communication between them. We can
design the system by just drawing the control and data flow,
but when the system is too complex, it is hard to visualize
the overall result and to understand its structure. This can
be improved by involving the structure of a task. The net is
constructed hierarchically. This means that a single node can
be expanded into a bigger net. In our approach we use Petri
nets, where two kinds of nodes are used: circles representing
items (states) and boxes representing actions. We must define
the refinement rules in such a way that the kinds of nodes
must match when we replace them. This means that if a
node v is replaced by a net, the external nodes of this net
should be of the same type as v.

Workflows constitute an important branch in business
modeling and analysis. Numerous approaches support de-
scribing and analyzing workflows. Among them nets turned
out to be probably the most successful. They offer both:
an intuitive design, easy to understand even for a non-
mathematician and a solid mathematical background with
multiple analysis techniques, like algebraic invariants, tem-
poral logic approach and many other. Workflow nets have
been considered as Petri nets with one input and one output
place, representing the beginning and the end of the flow.
A token is given in the input place and while the workflow
is run, it follows firing rules of Petri nets. It is desired that
eventually it will reach the output place, which means that
the workflow execution is completed.

When studying workflows one should consider “good”
scenarios, giving us some desired properties. Among others
two were identified as important. Van der Aalst proposed
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in [10] the notion of soundness, which informally speaking
means two things. First, that if we start with an initial token,
then no matter how we proceed with the execution of a
workflow, we can always end up in the final state. Second,
that every subtask, when originated will be completed, so
there will be no trash tokens representing unfinished subtasks
when we come to an end.

There are many approaches to constructing correct sys-
tems based on syntactical manipulation and combination of
nets [4]. In this paper, we focus on a structural approach
that corresponds to a top-down methodology. We design a
system specifying actions of the higher levels first and make
substitutions exchanging single nodes by more complex
structures of lower levels exposing more details of the ac-
tions execution. This approach provides us two advantages.
Firstly, it allows us to demonstrate solutions at appropriate
levels, hence hiding the details when they are not desired.
Secondly, it allows us to design in a manageable way quite
complex scenarios. At any point of investigation we see only
a part of the whole system, and whenever it is desired, we
can unfold each node to verify, what’s underneath. There
are also some positive side effects. Such structural approach
can make it easier to match appropriate levels of design with
corresponding levels of management, hence allowing us to
define fixed levels of security and rights.

A technical benefit of a top-down methodology is that it
allows us to ensure that nets are sound by allowing only
substitutions that guarantee soundness. However, as was
observed by van Hee et al. in [12], it is unfortunately not
true that soundness is preserved by substitution, i.e., if we
substitute a sound net in another sound net the result is not
necessarily sound. This is related to the fact that although if
we execute a sound workflow, starting with a single token,
then we will end up with a single token in the output place
and no other tokens anywhere, it could be that if we start the
same workflow with 2 tokens, it does not necessarily mean
that the final marking will have 2 tokens in the output place.
It can therefore happen that substitution of such a workflow
net will lead to an unsound net. For this reason the notion
of k-soundness was introduced by van Hee et al, where &
is a parameter for which whenever we start with %k tokens,
the net will end without deadlock having exactly k tokens in
the output place, while all other places will be unmarked. It
was proven that k-soundness forms a strict hierarchy, which



means that for every k there exist a workflow net which is
k-sound and not (k+1)-sound. The notion of *-soundness is
reserved for nets, which are sound for every k. It is claimed
by van Hee et al. in [12] that this type of soundness is
preserved by substitution. In the same paper van Hee et al.
defines a large class of nets by starting from very simple
classes that are syntactically easy to identify and can be
straightforwardly shown to be *-sound, and then generating
more *-sound nets by substitution.

The idea of net refinements is quite old, and the first
papers were published in the early 90’s, like [2]. Methods
for stepwise refinements were studied in numerous papers,
including [9], [8], [7] or [6]. Usually during the refinements
we ask, which net properties are preserved. Here we con-
centrate on the generalized notion of soundness. In many
papers the approach is the following: we create a net and
ask for a possibly structural method to determine if a given
property is satisfied, like in [1] or [5]. However, we propose
a different approach: starting with a one-node net we would
rather perform a series of refinements in such a way, that
the desired property will be preserved. In [3] and [11] this
approach was taken where the soundness was guaranteed
by limiting the nets that can be substituted to only a certain
small finite set of nets but taking a slightly more general
notion of substitution. Interestingly enough, this leads to a
slightly different class being generated, neither strictly larger
or smaller, as compared to the class generated by van Hee
et al in [12]. We therefore set out in this work to combine
these two approaches to generate an even larger class of nets.
For this purpose we will introduce a generalized notion of
substitution that for example also allows the substitution of
nets with multiple input and output places, and we introduce
a correspondingly generalized notion of soundness that we
will call substitution soundness and which is preserved by
this type of substitution.

The structure of the paper is the following. After introduc-
ing the notions of a Petri net, workflow net and soundness
we propose a new class of nets, called p-WF nets and t-WF
nets. Such nets have the bordering nodes being places or
transitions respectively. AND-OR nets being special classes
of p-WF nets and t-WF nets are introduced in Section III. We
make some remarks on their properties and specify how the
substitution will be performed. Next we address the problem
of soundness preservation during substitution in Section IV.
The main two theorems of this section say that soundness is
preserved when a substitution-sound t-WF net is substituted
for a transition of a substitution-sound p-WF net or t-WF
net. In section V we prove that the introduced AND-OR
nets are substitution-sound in general.

II. BASIC TERMINOLOGY

Let S be a set. A bag (multiset) m over S is a function
m : S — N. We use + and — for the sum and the difference
of two bags and =, <, >, <, > for comparisons of bags,

which are defined in a standard way. We overload the set
notation, writing ) for the empty bag and € for the element
inclusion. We list elements of bags between brackets, e.g.
m = [p?,q] for a bag m with m(p) = 2, m(q) = 1, and
m(x) =0 for all x ¢ {p, q}. The shorthand notation k.m is
used to denote the sum of k bags m. The size of a bag m
over S is defined as |m| = Xscsm(s).

Definition 1 (Petri net). A Petri netis atuple N = (P, T, F)
with P a finite set of places, 71" a finite set of transitions such
that PNT =0 and F C (T x F)U(F x T) the set of flow
edges.

A path of a net is a non-empty sequence (z1,...,2,) of
nodes such that for all ¢ such that 1 < ¢ < n — 1 it holds
that (x;,x;41) € F. Markings are states (configurations) of
a net and the set of markings of N = (P, T, F) is the set
of all bags over P and denoted as M. Given a transition
t € T, the preset ¢ and the postset t* of ¢ are the sets
{p | F(p,t)} and {p | F(t,p)}, respectively. Analogously
we write *p , pe for pre- and postsets of places. To emphasize
the fact that the preset/postset is considered within some net
N, we write *nya , a*ny. We overload this notation further
allowing to apply preset and postset operations to a set B
of places/transitions, which is defined as the union of pre-
/postsets of elements of B. A transition ¢ € T is said to be
enabled in marking m iff «¢ < m. For a net N = (P, T, F)
with markings m; and ms and a transition t € T' we write
mq L>N my if ¢ 18 enabled in my and mqg = mqi—ot + te.
For a sequence of transitions o = (t1,...,t,) we write
ma i>N mpy ifm1 LHV meo £>N i)]v My, and we
write mq SN ~N my, if there exists such a sequence o € T™*.
We will write m LN ms and my; = m,, and m; — m,,
if N is clear from the context.

We generalize the usual notion of workflow net as intro-
duced by van der Aalst in [10] by allowing multiple input
and output places, allowing transitions as input and output
nodes and also allowing input nodes to have incoming edges
and output nodes to have outgoing edges.

Definition 2 (Workflow net). A place Workflow net (pWF
net)is a tuple N = (P, T, F,I,0) where (P, T, F) is a Petri
net with a non-empty set I C P of input places and a non-
empty set O C P of output places such that (1) every node
in PUT is reachable by a path from at least one node in
and (2) from every node in PUT we can reach at least one
node in O. A transition Workflow net (tWF net) is similar
to a place Workflow net except that I and O are non-empty
subsets of T'. A workflow net (WF net) is either a pWF net
or tWF net.

A workflow net is called a one-input workflow net if [
contains one element, and a one-output workflow net if O
contains one element. In [10] workflow nets are restricted
to one-input one-output place Workflow nets. We generalize
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Figure 1. The place completion of a tWF net and a pWF net

this but define for all workflow nets the corresponding one-
input one-output pWF net as follows. The place-completion
ofatWFnet N = (P, T, F,I,0) is denoted as pc(N) and is
a one-input one-output pWF net that is constructed from N
by adding places p; and p, such that p,e = I and ep, = O
and setting the input set and output set as {p;} and {p,}
respectively. This is illustrated in Figure 1 (a). Note that we
distinguish I nodes with half unconnected incoming arrows
and O nodes with half unconnected outgoing arrow. The
transition-completion of a pWF net N = (P, T,F,1,0) is
denoted as tc(N) and is a one-input one-output tWF net
that is constructed from N by adding transitions #; and f,
such that ¢, = I and et, = O and setting the input set and
output set as {#;} and {#,}, respectively. This is illustrated
in Figure 1 (b).

We will focus in this paper on a particular kind of sound-
ness, namely the soundness that guarantees the reachability
of a proper final state. We generalize this for the case where
there can be more than one input place and these contain
one or more tokens in the initial marking. We also provide a
generalization of soundness for tWF nets, which intuitively
states that if there are k firings of input transitions, then the
computation will end in an empty marking after £ firings of
the output transitions.

Definition 3 (£ and *-soundness). A pWF net N =
(P,T,F,I,0) is said to be k-sound if for each marking
m such that k. — m it holds that m —— k.O. We call
N *-sound if it is k-sound for all £ > 1. We say that these
properties hold for tWF net N if they hold for pc(N).

It would be nice if transition-completion would not affect
the *-soundness of a net just like place-completion does (by
definition). However this is only partially true as is shown
in the following theorem.

Theorem 4. Every pWF net N is *-sound if tc(N) is *-
sound but not vice versa.

Proof: Recall that by definition tc(N) is *-sound
iff pe(tc(N)) is *-sound. Let N = (P,T,F,1,0) and
N'=pe(te(N)) = (P, T, F',I',0') with t; and t, being
the added input and output transitions of tc(V), respectively.
We assume that tc(N) is *-sound, that is N’ is *-sound.
Observe that k.I” — . k.I by letting input transitions ¢
of tc(N) fire k times. Assume that k.J —y m. Since
N is embedded in N’ it then follows that k.I' — ' m.

pe(te(V))

Figure 2. A counterexample showing that *-soundness is not preserved
by transition completion and also not under substitution

From the *-soundness of N’ it follows that m L/>N/ k.O'
for some ¢’ € {T'}*. However, we can omit the firings of
t, from ¢’ and obtain ¢ such that m L>N/ k.O. Since o
cannot contain t; it follows that m SN ~ k.O and therefore

The counterexample showing that not for every *-sound
pWF net N it is true that tc(N) is *-sound is shown
in Figure 2. Observe that N is *-sound. However the
shown pc(te(N)) is not since from the marking [p;] it can
reach [b, ¢] and therefore [b, p,] after which no transition is
enabled. Since pe(te(V)) is not 1-sound, then by definition
tc(V) is also not 1-sound and thus not *-sound. |

III. AND-OR NETS

To generate a large class of nets we will consider general
substitutions where places and transitions are replaced with
pWF nets and tWF nets, respectively. We introduce for this
purpose a notion of substitution that is based on the one
introduced by van Hee et al. in [12] but generalized so it
can substitute nets with multiple input nodes and multiple
output nodes.

Definition 5 (Place substitution, Transition substitution).
Consider two disjoint WF nets N and M, ie., if N =
(P,T,F,I,0)and M = (P, T',F',I',O') then (PUT)N
(PruT’) =0

Place substitution: It p is a place in N and M a pWF
net, then we define the result of substituting p in N with
M, denoted as N @, M, as the net that is obtained if in N
we replace p with M, i.e., add edges such that ep’ = ep
for each input place p’ of M and p’e = pe for each output
place p’ of M and remove p together with its edges from
ep and to pe. If p € I then p is replaced in the set of input
nodes with I, and if p € O then p is replaced in the set of
output nodes with O'.

Transition substitution: Likewise, if ¢ is a transition in N
and M a tWF net then we define the result of substituting
t in N with M, denoted as N ®; M, as the net that is
obtained if in N we replace ¢ with M, i.e., add edges such
that et' = et for each input transition ¢’ of M and t'e = te
for each output transition ¢’ of M and remove ¢ together
with its edges from et and to te. If £ € I then ¢ is replaced
in the set of input nodes with ', and if ¢ € O then t is
replaced in the set of output nodes with O'.
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Illustration of place substitution and transition substitution

Figure 3.
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Figure 4. Examples of a pAND, tAND, pOR and tOR nets

The results of a place substitution and transition substitu-
tion are illustrated in Figure 3 (a) and (b), respectively. It is
not hard to see that if N and M are WF nets and n a node
in N then N ®, M is again a WF net. It also holds for all
WF nets A, B and C' that (A®, B)2,C = A®,(B®,C)
if bis anode in B, and (A®, B) @, C =(4A®,C) &, B
if a and b are nodes in A.

As the basic nets with which we will start the generation
process we will consider the nets that we call pAND nets,
tAND nets, pOR nets and tOR nets, which are all illustrated
in Figure 4 with input and output nodes on the left-hand side
and right-hand side, respectively. Informally we can describe
AND nets as acyclic nets that consist only of AND splits
and AND joins, and OR nets can be described as possibly
cyclic nets consisting of only OR splits and OR joins. AND
and OR nets are generalizations of state machines/S-nets
and marked graph/T-nets [4], respectively, which have one
input and output node. More formally, these are defined as
follows.

Definition 6 (AND net). An AND net is an acyclic WF
net (P, T, F,1,0) such that for every place p € P it holds
that () p € IA|ep|=0o0orpg IAn|ep =1and (2)
peEOAN|pe|=00rpg OAl|pe|=1. An AND net that
is a pWF net is called a pAND net, and if it is a tWF net it
is called a tAND net.

OR nets are the counterpart of AND nets and are defined as
follows.

Definition 7 (OR net). An OR net is a WEF net
(P,T,F,I,0) such that for every transition ¢ € T it holds
that (1) t € IA|et|]=0o0rt & IA]|et]=1and (2)

ot o B g

not *-sound tAND nets not *-sound pOR nets

Figure 5. Examples of tAND and pOR nets that are not *-sound
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Figure 6. Example nets from classes pAND, 11tAND, 11pOR and tOR

teON|te|=00rtg€ OA|te]|=1. An OR net that is
a pWF net is called a pOR net, and if it is a tWF net it is
called a tOR net.

Note that OR nets can contain cycles and AND nets by
definition cannot, but otherwise they are each others dual.
For these nets there are some straightforward soundness
results in that all pAND and tOR nets are *-sound, and
that for tAND and pOR nets this is the case if they are
one-input one-output nets. To understand the restriction
to one-input one-output nets consider the examples tAND
and pOR nets in Figure 5 which are all nets with either
multiple input nodes or multiple output nodes and which
are all not *-sound. This is why, while generating nets with
place and transition substitution, we limit ourselves to the
following classes of nets: the class of pAND nets represented
by pAND, the class of one-input one-output tAND nets
represented by 11t AND, the class of one-input one-output
POR nets represented by 11pOR, and the class of tOR nets
represented by tOR (see Figure 6 for examples).

We will generate nets by allowing substitutions of places
with pWF nets and transitions with tWF nets.

Definition 8 (Substitution closure, AND-OR net). Given a
class C' of nets we defined the substitution closure of C,
denoted as S(C), as the smallest superclass of C' that is
closed under transition substitution and place substitution,
i.e., the following two rules hold: if N and M are disjoint
nets in S(C) then (1) if M is a pWF net and p a place in
N then N @, M is a net in S(C') and (2) if M is a tWF net
and ¢ a transition in N then N @; M is a net in S(C'). We
call the class S(pANDU11tANDU11pORUtOR) the
class of AND-OR nets.

An example of the generation of an AND-OR net is
shown in Figure 7, with on the left-hand side the hierarchical
decomposition and on the right-hand side the resulting net.

It can be shown that the tAND nets are not needed, i.e.,
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Examples showing the expressive power of certain classes

An example of the generation of an AND-OR net

Figure 8.

we can remove them from the initial class without changing
the set of nets that can be generated.

Theorem 9. The tAND nets are redundant for generating
AND-OR nets, i.e., S(pAND U 11tAND U 11pOR U
tOR)= S(pAND U11pOR U tOR).

Proof: Recall that tAND nets do not contain cycles.
Also note that if we take a one-input one-output tAND
net with input transition ¢; and output transition ¢, and we
remove the begin and end transition, then we are left with
a pAND net with / = ¢, and O = et,. So every one-input
one-output tAND net can be generated by starting with an
tOR net consisting of a transition followed by a place which
is again followed by a transition, and then substituting the
previously mentioned pAND net for the place in the middle.

|

However, the pOR nets are not redundant, because a cycle

containing the input and output nodes can not be obtained
in any other way.

Theorem 10. The pOR nets are not redundant for gen-
erating all AND-OR nets, i.e., S(pPAND U11tAND U
11pOR UtOR)2 S(pAND U 11tAND U tOR).

Proof: See the counterexample in Figure 8 (a). This
one-input one-output pOR net cannot be generated by using
PAND, one-input one-output tAND and tOR nets. [ ]

Of course pAND nets and tOR nets are not redundant
either, since they allow for multiple input and output nodes.

The AND-OR nets are very similar to the ST nets defined
in [12] by van Hee et al. In fact, the ST nets are exactly
S(11tAND U 11pOR). This is a proper subclass of the
AND-OR nets since it only contains one-input one-output
WF nets. However there are in addition also one-input one-
output AND-OR nets that are not in S(11tANDU11pOR)
as is shown by the following theorem.

Theorem 11. The class S(11tAND U 11pOR) does not
contain all one-input one-output AND-OR nets.

Proof: The counterexample is in Figure 8 (b). To show
that it is an AND-OR net we consider its generation in
reverse. The transitions A and B form an tOR net and
can be contracted into a single transition. The same for the
transitions C' and D. The places b and ¢ form a pAND net
and can be contracted into a single place. The result will be
a linear net that is in fact both a pAND net and a one-input
one-output pOR net. To see that the example net is not in
S(11tAND U 11pOR) it can be verified that there is no
proper subnet that is either in 11t AND or 11pOR and can
be contracted into a single transition or place, respectively.

|

IV. SUBSTITUTION SOUNDNESS

It is unfortunately not true that *-soundness is preserved
by substitutions as defined in this paper, because we allow
the output nodes to have outgoing edges. A counterexample
is shown in Figure 2 where the shown pWF net can be
thought of as being constructed by substituting a *-sound
net NV, with input place a and output place ¢, into an also *-
sound pWF net. As was discussed in the proof of Theorem 4
the resulting net is not 1-sound and therefore also not *-
sound. Therefore, we introduce a new notion of soundness
called substitution soundness and study its properties'.

The intuition underlying substitution soundness is that it
should not matter that during a run of a workflow net we
remove tokens from the output places that seem to be ready.
In other words, it should hold that if the net started with &
tokens in the input places and at one point we have in each
output place at least k' < k tokens, and we remove these k'
tokens from each output place, then the net can still finish
with k — k' tokens in each output place.

Definition 12 (Substitution soundness). Let N =
(P, T,F,I,0) be a pWF net. We say that N is substitution
sound (or simply sub-sound) if for all k > k' > 0 and
every marking /' it holds that if k.7 — (m’ 4 k".0) then
m’ — (k — k').0. We generalize this property for tWF
nets and say that a tWF net N is sub-sound if pc(N) is
sub-sound.

We already know that sub-soundness is a necessary
condition for constructing *-sound nets by our notion of
substitution. Now we prove that sub-soundness is sufficient
for constructing *-sound nets by substitution. First, note
that the case where k' = 0 describes *-soundness and so
sub-soundness implies *-soundness. Furthermore, on many
classes of nets the two notions of soundness coincide, as is
shown by the following two lemmas.

Lemma 13. For every pWF net N such that all output
places have no outgoing edges it holds that N is *-sound
iff N is sub-sound.

'Some proofs in this section are long and technical and had to be
summarized because of the page limit.



Proof: As already argued it holds that sub-soundness
implies *-soundness, so the converse remains to be shown.
Let N = (P,T,F,I,0). Assume that k.I — (m + k'.O)
for some k' such that £ > k&’ > 0. By *-soundness it holds
for some o that (m + k’.O) 75 k.O. However, since the
places in O have no outgoing edges none of the transitions
in o consumes any of their tokens and so m —~ (k—k’).O.

|
Note that the restriction mentioned in Lemma 13 is
included in the classical definition of WF net by van der
Aalst [10]. However, with this restriction we would not be
able to generate all AND-OR nets, not even all those that
satisfy this restriction. In particular we would not be able to
do arbitrary loop additions. As an example consider Figure 8
(b) where we would not be able to add a loop to place
b. Note that a similar restriction is not necessary for tWF
nets because the soundness properties are defined by place
completion for them. Recall also that for tOR nets the output
transitions cannot have outgoing edges by definition and for
one-input one-output tAND nets this follows from the facts
that AND nets are acyclic and that in a tWF nets it is possible
from every place and transition to reach one of the output
transitions.

Lemma 14. For every tWF net N it holds that N is *-sound
iff N is sub-sound.

Proof: As already argued, it is enough to show that *-
soundness implies sub-soundness. A tWF net N is by def-
inition sub-sound iff pc(N) is sub-sound. Since in pc(N)
the output place has no outgoing edges it follows from
Lemma 13 that pc(V) is sub-sound iff it is *-sound. Finally,
by definition it holds that pc(V) is *-sound iff N is *-sound.

We claim this is the weakest condition that is necessary to
construct 1-sound nets by substitution of nodes in 1-sound
nets. This implies that it is a necessary condition in the
sense that there is no weaker condition that is preserved by
substitution and implies 1-soundness. Now we proceed with
proving that place substitution preserves sub-soundness. We
start with showing this for pWF nets, and then show that it
also holds for tWF nets. ]

Theorem 15. Ifa pWF net N = (PN,TN,FN,IN,ON)
and a disjoint pWF net M = (Pnr, Tar, Fary, In, Onr) are
sub-sound, then for any p € Pn the net N ®, M is also
sub-sound.

Proof: (Sketch) Let Nyy = N ®, M =
(PNM7TNM;FNM7]NM70NM)- We define S(]\j7 k) as the
set of markings m of M that represent the fact that there are
still k£ “threads” active in M after having started possibly
with more threads but some of them were ended by the
removal of tokens from O’, i.e., all markings mp; such that
for some &’ > k it holds that k'.I" —=; mas+(k'—k).Opr.
We define a simulation relation ~C My X My, such
that my ~ my s represents the fact that my is the same

as my s except that all (say k) tokens are removed from
p and some marking in S(M, k) is added, ie., myy =
my — [p*]+mk, for some m%, € S(M, k) with k = my(p).

It can then be shown that ~ indeed defines a kind
of bisimilarity, i.e., it holds that (1) if my AN m’N
and my ~ mpyy, then there is a marking my,, such
that mys L>NM mQVM and m?v ~ mQ\,M and (2) if
MNM —NM m/yys and my ~ mpya, then there is a
marking m/y such that my ——y m/y and my ~ m'y,,.
This can be shown with induction on the length of ¢. For
each transition ¢ in ¢ we then distinguish for (1) the cases
where p € ext or not and p € tey or not. Likewise for (2)
we distinguish these cases when ¢ is a transition in N.

We then can show the sub-soundness of N ®,, M using
(1) and (2). Assume that k. Ixy — nar (M +E .Onar)
with k > &’ > 0. By (2) it then follows that k.Iy —n my
such that mpy ~ (myar + k'.Onpr). We can show that we
can assume that my = m/y + k’.On with m/y a marking
of N. By the sub-soundness of N it holds that m/y ——y
(k — k').On. We can show that m/y ~ mys and so from
(1) it then follows that myy — N m/y s such that (k —
k').On ~ m/y,,. Finally, by using the sub-soundness of M
it can be shown that m/ Ny — N (k—K).Onp.

We proceed with the full version of the last part, i.e., prove
the sub-soundness of N ®,, M using (1) and (2). Assume that
kInum L)Njw (mN]M + k/-ON]M) with £ > k' > 0. Since
Iny =In ifp ¢IN and Iy = In — [p] + Iy ifp € I,
it holds that k.In ~ k.Ina. By (2) it then follows that
k.In i)N mpy such that my ~ (mNM + /C/.ON]V[).

We now construct mly = my — k’.On and show that
m)y ~ myy regardless of p ¢ Oy or p € On. We
start with showing the fact that m’N is a valid state, i.e.,
my includes the tokens we are subtracting from it. Since
mpy ~ (myay + K .Onpr) there is mk e S(M, k") such
that myy + K'.Ony = my — [pk/] + mlf\;llwith K =
mN(p). This giVCS MmN = MNM -l—kl.ON]V[ + [pk”] — mﬁ}l
For p ¢ Oy, in which case Ony = Oy, this gives

my = mym + kK'.On + [pk’”] — mf\;. It remains to

observe that the m%, component does not remove any
tokens from Oy because from disjointness of N and M
we have Oy N Py; = (. For p € Op, in which case
Onym =Opn — [pk] + Oy, we get my = mypy +k.On —
[pk/] +k.Op+ [pk”] —mﬁ; =mym+k'.On+ [pk”fk/} +
kK .On — mﬁ}/ The right hand side of the equality has to
include the same number of tokens in p. Since m s marks
only places from Pyps = (Py \ {p}) U P, k'.Op — m’f\;/
only places from Py, and p ¢ P, all the tokens in p
are given by k.On + [p*"~*]. It remains to show that
k" > kK'. This follows from further examination of the
equality my = mynr + k'.On + ka”_k/] +k.Op — mﬁ}l
This time we look at the number of tokens in Oj;. On
the left-hand there are clearly none. On the right hand
side there are k' introduced by k'.Ojy, possibly yet some



introduced by Opnjs, and the only negative component
—mﬁ; subtracts no more that k” of such tokens. Now
we continue with showing that m%, ~ mpyas. This time
from mya + K .Onpy = my — [pk”] + mﬁ; we conclude
MNM = MmN — [pk”] + mﬁ; — k'.Ons and again consider
the two cases for p € Oy or p € On. If p &€ Oy, then
Onym = Opn and so my — [pk”] + mﬁ; — KONy =
my — k'.On — ¥ 14+ mk] = myy — pP*'] + mk; so
m?v ~mnap. Ifp € Op, then Onpr = On — [p]—FOM and
SO my — [pk”] + mﬁ; — kK .Ony =mpy — [pk”] + mﬁ; —
E.On+ [pk/] —kK.Oy =my—K.On— [pk”ik/] —|—m?\/4/ -
K .On =miy — [pF %1+ mk, — k.Op, so also then we
can conclude that m?v ~ myp because mﬁ; —K.Op €
S(M, K" — k') and k" — k' = (mnx — K.On)(p) =
miy(p). By the sub-soundness of N it then holds that
mly —n (k — k').Oy. From (1) it then follows that
MNM L>N]\4 m?VM such that (k‘ — k‘/).ON ~ m?VM, that
is miyp = (k= £').On — [p*] + m3; with m3; € S(M, x)
and r = (k‘ — k‘/).ON(p). If p g Opn, then Oy = Onp
and = 0, and therefore m'y,, = (k — &').Onpn. If
p € On, then Onpyr = Opn — [p]+ Oy and z = k— K/, and
therefore m/yy; = (k—k').On — [p" ] —|—m§;k/. Because
M is sub-sound, it holds that m% ¥ —5 5 (k — k).Ou,
and since M is embedded in N, it follows that m?v M=
(k— K).On — [pkik/] + mﬁjk/ s Num (k — k".On —
"%+ (k= £).Op = (k— k).Onur.
|
We now proceed with the case for place substitution in
tWF nets. For that we will use the following lemma.

Lemma 16. For every tWF net N with a place p and a
disjoint pWF net M it holds that pc(N @, M) = pc(N)®,
M.

Proof: Let N = (PN,TN,FN,IN,ON) with p € Py
and M = (Par, Tas, Far, Ing, Opg). In both cases the same
nodes are added, viz., those of M and p; and p,. Clearly
the edges Fjs are added in the same way. Also in both
cases afterward p,e = Iy and ep, = Opn because N is a
tWF net and p € Iy and p € Op. For nodes p’ € Iy it
holds in both cases that afterward op’ = enp if p ¢ Iy
and ep’ = {p;} if otherwise. Similarly for nodes p’ € Oy,
afterward p'e = pe if p ¢ Oy and p'e = {p,}. Finally, in
both cases the final input set is {p;} and the final output set
is {po}- [ |

Theorem 17. If a tWF net N is sub-sound and a disjoint
PpWEF net M is sub-sound and p is a place in N then N @, M
is sub-sound.

Proof: Assume that a tWF net N is sub-sound and a
pWF net M is sub-sound. By definition of sub-soundness
for tWF nets it follows that pc(N) is sub-sound. By
Theorem 15 it follows that pc(N) ®, M is sub-sound. By
Lemma 16 it then holds that pc(N ®, M) is sub-sound.

Figure 10. Transition-place pair removal

Finally, by definition of sub-soundness for tWF nets, it
follows that N @, M is sub-sound. |

We now proceed with showing that also transition sub-
stitution preserves sub-soundness. The proof strategy will
be to show that this substitution is equivalent to a place
substitution as is illustrated in Figure 9. In the left-top corner
we see the original net N with transition ¢ that is to be
replaced with net M, the result of which, ie., N ®; M,
is shown in the left-bottom corner. The equivalent place
substitution is shown in the right column. Here we see at the
top N @, tc(N*) which is equivalent to N in the sense that
it is sub-sound iff NV is sub-sound. In the right-bottom corner
we see the result of substituting the place p* in N @;tc(N*)
with the pWF net pc(M). As will be shown this net is sub-
sound iff N ®; M, the net in the left-bottom corner, is sub-
sound. It then follows that the transition substitution in the
left column preserves sub-soundness if the one in the right
column also does this, which, as was just shown it indeed
does.

We begin now with the lemmas that show that the two
WF nets in the bottom row of Figure 9 are equivalent for
sub-soundness. These results are similar to those of the
abstraction rule of [4].

Lemma 18. Let N be a pWF net with transition t* and
place p* such that t* ey = enp* and p* is not an input
nor output place and there are no edges between ent* and
p*en. Furthermore, let M be the pWF net that is obtained
from N if we remove t* and p* and add all the edges in
ont™ X p*en as illustrated in Figure 10. Then N is sub-
sound iff M is sub-sound.

Proof: (Sketch) We define a similarity relation ~C
My x My such that mpy ~ mps represents the fact that
mys is the same as my except that all (say k) tokens are
removed from p* and k tokens are added to each of et*, or
in other words, fire k£ times in reverse ¢t*. More formally:
mpy ~ mpr holds iff mp = my — [p™*] + k.(ent*) where
k= mN(p*).

It can then be shown that ~ indeed defines a kind
of bisimilarity, i.e., it holds that (1) if my L>N mhy
and my ~ myys, then there is a marking m/, such that
My — M mhy, and my, ~ m), and (2) if myy Ay mhy
and my ~ mys, then there is a marking m?v such that
my —n m/y and m/y ~ m/,. This can be shown with
induction on the length of o. For each transition ¢ in o we
then distinguish for (1) the cases where t = t* and if not



Figure 9.

Figure 11.
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then p* € ent or not. Likewise for (2) we distinguish the
cases where p* € et or not.

We now show that N is sub-sound if M is sub-sound.
Note that by construction N and A have the same input set
I and output set O, and that I ~ I and O ~ O. Assume that
kI S (my + E.O). By (1) it follows that k.1 ——,;
mps such that (my + k".O) ~ mys. Since p* is not an
output node we can assume that my = mh, + k'.O with
my ~ m},. From the sub-soundness of M it follows that at
mhy; —n (k—k).0. By (2) it follows that mpy ——x m/y
such my ~ (k — &').0. Since p* is not an output node it
follows that m/y = (k — &').O.

The proof for the fact that M is sub-sound if N is sub-
sound proceeds analogously. |

Lemma 19. Let N be a pWF net with place p* and
transition t* such that p*ey = ent* and p* not an input
nor output place and there are no edges between e nNp* and
t*ey. Furthermore, let M be the pWF net that is obtained
from N if we remove p* and t* and add all the edges in
onD* X t*en as illustrated in Figure 11. Then N is sub-
sound iff M is sub-sound.

Proof: The proof proceeds analogously to that of the
preceding Lemma 18 with the relation ~C My x My,
redefined such that m ~ m/ iff m' = m — p™*] + k.(t"ex)
where k& = m(p*). [ |

We now proceed with the lemma that shows that in
Figure 9 the bottom nets are equivalent in the sense that
one is sub-sound iff the other is.

Lemma 20. If N is a pWF net with a transition t* and
N* a pWF net that consists of only a single place p*, then

N® tc(N¥)

Transforming transition substitution to place substitution

N @4~ te(N*) is sub-sound iff N is sub-sound.

Proof: (Sketch) Let M = N @, tc(N*). We define a
relation ~C My x My, such that mpy ~ mps represents
the fact that m is the same as mjp; except that all (say
k) tokens are removed from p* and £ tokens are added to
each of t,e,s, or in other words, fire &k times in f, where
to is the output transition added in tc(N*). More formally:
at my ~ mp iff my = ma — [p**] + k.(t,en) where
k=mp(p").

It can then be shown that ~ indeed defines a kind
of bisimilarity, i.e., it holds that (1) if my L>N mhy
and my ~ myys, then there is a marking m/, such that
My — M mhy, and my, ~ m), and (2) if myy Ay mhy
and my ~ mys, then there is a marking m?v such that
my —n m/y and m/y ~ m/,. This can be shown with
induction on the length of o. For each transition s in o
we then distinguish for (1) the cases where s = ¢ or not.
Likewise for (2) we distinguish the cases where s = t; or
s =1, or a transition in N not equal to ?.

We now show by using the preceding facts that A is sub-
sound if NV is sub-sound. Note that by construction N and M
have the same input set I and output set O, and that 7 ~ [
and O ~ O. Assume that k.J —=; (ma ++.0). By (2) it
follows that k.J —n my such that my ~ (mar + k'.O).
Since p* ¢ O we can assume that k¥'.O < my and (my —
k'.O) ~ mys. From the sub-soundness of NV it follows that
at (my — k'.0) =5 (k- k).0. By (1) it follows that
mar —a m'y, such that (k—&').O ~ m),. Since p* ¢ O
it follows that m’, = (k — £').0.

The proof for the fact that N is sub-sound if M is sub-
sound proceeds analogously. |

We are now ready to prove that sub-soundness is pre-
served by transition substitution.

Theorem 21. If a pWF net N is sub-sound and a disjoint
tWF net M is sub-sound and t is a transition in N, then
N ®¢ M is sub-sound.

Proof: (Sketch) Let N = (P,T,F,I,0) be a sub-
sound pWF net containing a transition ¢, and M =



(P, T',F',I'O") a sub-sound tWF net. Furthermore, let
N* be a pWF net consisting of a single new place p*. We
then show the following two facts:

(A) (N &, (tc(N*))) @ pe(M) = N @ (te(pe(M))).
proof: To see this consider the illustration in Figure 9.
It is not hard to see that taking the top-left net (/NV) and
substituting tc(pc(M)) for ¢t gives the bottom-right net.
However, if we first substitute in N the transition ¢ with
tc(N*) we get the top-right net, and this leads also to the
bottom-right net if we subsequently substitute pc(M) for
the place p*.

(B) N ®; M is sub-sound iff (N ®; tc(pc(M))) is sub-
sound. proof: Consider the bottom-right net in Figure 9
which represents (N ®; tc(pc(M))). This can be trans-
formed into the bottom-left net, which represents N ®; M, by
(1) removing ¢; and p; and connecting all nodes in of; = eyt
with those in p;e = I’, and (ii) removing p, and ¢, and
connecting all nodes in ep, = O’ with those in t,® = tey.
By construction there are in the bottom-right net no edges
between nodes in et; and in p;e, and between nodes in
ep, and in t,e. It follows that operations (i) and (ii) are
equivalent with those in Lemma 18 and Lemma 19, and by
these lemmas it then follows that the right-bottom net for
(N ®; tc(pe(M))) is sub-sound iff the left-bottom net for
N (o M is.

Then we argue as follows. Since M is sub-sound it fol-
lows by definition that pc(M) is sub-sound. By Lemma 20
it holds that N ®; tc(N*) is sub-sound. By Theorem 15 it
follows that (N ®; (tc(N*))) ®p+ pc(M) is sub-sound. By
(A) it then follows that N ®, (tc(pc(M)) is sub-sound. By
(B) it then follows that N ®; M is sub-sound. ]

Theorem 22. If a tWF net N is sub-sound and a disjoint
tWF net M is sub-sound and t is a transition in N then
N ®; M is sub-sound.

Proof: Assume that N is sub-sound tWF net with a
transition ¢ and M a sub-sound tWF net. By Lemma 16 it
holds that pc(N ®; M) = pc(N) ®; M. By Theorem 21 it
follows that pc(IN) ®; M is sub-sound. Since by Lemma 16
it holds that pc(N ®; M) = pc(N) ®; M, it follows that
pc(N ®; M) is sub-sound. By definition of sub-soundness
of tWF nets it then holds that N ®; M is sub-sound. [ |

Corollary 23. If N and M are disjoint sub-sound WF nets
and n is a node in N then N ® ,,M (if defined) is a sub-
sound WF net.

Proof: This follows from the fact that Theorem 15,
Theorem 17, Theorem 21 and Theorem 22 cover all possible
combinations of N and M being pWF nets or tWF nets. B

V. SUB-SOUNDNESS OF AND-OR NETS

In this section we show that all AND-OR nets are sub-
sound. First we show that the AND and OR nets from which
AND-OR nets are generated are sound.

Theorem 24. Every one-input one-output pOR net is sub-
sound.

Proof: Let Iy = {p;} and Oy = {p,}. For each place
p in a pOR net N it holds that [p;] — [p] and [p] — [po]
since there must be paths from p; to p and from p to p, and
each transition in those paths has one input edge and one
output edge. It follows that (A) if |m| = k, then k.[p;] —
m and m —— k.[p,]. Tt can also be shown by induction on
the length of o that (B) if |m| = k and m -2 m/ then
|m’| = k.

We now show the sub-soundness requirement. Assume
that k.Iy — (m + k".Op). Since |k.Ix| = |k.[pi]| =
k.|[p:]| = k it follows by (B) that |m + k".On| = k. Since
|m + k'.On| = |m| + |[K.On| and |k.On| = |k.[po]] =
k.|[po]] = k it follows that |m| = k — k’. By (A) it then
follows that m —— (k — k').[po] = (k — k').On. [ |

Theorem 25. Every tOR net is sub-sound.

Proof: Consider a tOR net N. Then the place-
completion of N, pc(N), is a one-input one-output pOR
net. Moreover, by the definition of sub-soundness for tWF
nets it holds that N is sub-sound iff pc(/N) is sub-sound,
and in Theorem 24 it is shown that all one-input pOR nets
are *-sound. [ ]

Theorem 26. Every one-input one-output tAND net is sub-
sound.

Proof: Theorem 17 in [12] says that all one-input one-
output tAND nets are *-sound, which holds since they are
acyclic. By Lemma 14 it follows that they are therefore sub-
sound. [ ]

Theorem 27. Every pAND net is sub-sound.

Proof: Consider a pAND net N. Then the transition-
completion of N, tc(N), is a one-input one-output tAND
net. By Theorem 17 in [12] it follows that tc(V) is *-sound.
By Theorem 4 it follows that N is *-sound. It holds by
the definition of pAND net that the places in Oy have no
outgoing edges. Therefore by Lemma 13 it follows that N
is sub-sound. [ ]

Corollary 28. All AND-OR nets are sub-sound.

Proof: By the Theorem 24, Theorem 25, Theorem 26
and Theorem 27 the initial nets are all sub-sound, and by
Corollary 23 substitution preserves sub-soundness. [ ]

VI. FUTURE RESEARCH

The class of AND-OR nets can be researched further
in several ways. One direction could be to attempt to
characterize the class in terms of syntactic and semantic
properties. As was shown all the nets in it are sound, even
sub-sound, and it is also not hard to see that they are all free-
choice nets, but it certainly not true that the class contains



Figure 12. Counterexample for the completeness of AND-OR nets

all sub-sound free-choice nets as is show in Theorem 29. So
it remains open which semantic property characterizes the
AND-OR nets.

Theorem 29. Not all free-choice sub-sound workflow nets
are AND-OR nets.

Proof: The counterexample is given in Figure 12 (a)
(taken from [12]). |

Another potential research direction is the extension of
the class by introducing new forms of substitution that still
can be considered hierarchical. For example, it might be
allowed that not only substitute nodes but also edges: an
edge from a place to a transition could be replaced with
a workflow net starting with a single place and ending
with a single transition. In general such substitutions do
not preserve sub-soundness, but they can be syntactically
restricted such that they do. To illustrate, such substitutions
could be used to generate Figure 12 (a) from the AND-OR
net in Figure 12 (b) by substituting the edges (A4, a), (A, b),
(B,a) and (B, b).

Yet another possible generalization can be achieved by
weakening the requirement that a substitution links all the
input and output nodes in the same way. For example,
it could be allowed that a transition is replaced with a
tAND net with a single input transition and several output
transitions such that (1) each output transition in the tAND
net is linked to at least one place in the postset of the
replaced transition and (2) each place in the postset of
the replaced transition is linked with exactly one output
transition in the tAND net. Also this would allow us to
generate Figure 12 (a) from the AND-OR net in Figure 12
(b) by substituting the transitions A and B.

VII. CONCLUSIONS

We have presented an approach for designing sound
workflow nets in a structured way. This method is based
on the notion of a substitution of one node by a workflow
net with input and output nodes being of the same type as
the substituted node. The substituted nets can have multiple
inputs and outputs, which is an extension to the previously
considered substitutions as it allows to generate more general
class of nets. We have identified a notion of soundness that

is preserved by such substitutions and corrected a small
omission in an earlier similar method.
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