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ABSTRACT

In this paper we present DFL designer — a collection-oriented
scientific workflow (COSW) tool based on the DFL nota-
tion which combines established formalisms from workflow
modeling and databases, namely Petri nets and the nested
relational calculus (NRC). COSW tools are used in applied
sciences like bioinformatics where structured data is pro-
cessed with the use of specialized services which are made
available online by scientific institutions. They make such
data processing experiments easier to conduct by the ex-
perimentators and easier to comprehend and repeat by the
reviewers. The notations, models and techniques used for the
construction of COSW tools are similar to the ones known
from workflow modeling, but additional emphasis is put on
the data manipulation aspects, e.g., the processing of nested
collections of data. DFL designer not only allows design and
enactment of complicated COSWs with the use of a huge
library of supported bioinformatics services, but also pro-
vides a set of features for testing and analyzing workflow
specifications that is unique for COSWs, including but not
limited to interactive firing of transitions, hierarchical anal-
ysis of COSWs and translation of side-effect free COSWs to
a query language like NRC.

Categories and Subject Descriptors

D.2 [Software Engineering]: Programming Environments,
Design Tools and Techniques, Testing and Debugging

General Terms
Design, Theory, Verification

1. INTRODUCTION

In this paper we present DFL designer which is a tool
for design, enactment and analysis of collection-oriented sci-
entific workflows (COSWs) uniquely integrating ideas from
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workflow modeling and database research.

1.1 Collection-oriented scientific workflows

Information technology techniques and results developed
for business applications are constantly challenged by new
needs emerging from dynamically growing applied sciences.
This is especially true for the domains of database systems
and workflow processing, since even larger volumes of data
have to be analyzed and the analysis processes become even
more complex. Where those two domains coincide a new
interesting field of research on collection-oriented scientific
workflows has emerged.

In many sciences, like ecology, geology, chemistry, astron-
omy and especially bioinformatics, structured data is ana-
lyzed by a software system organized into a kind of network,
through which the data flows and is processed, and where the
nodes of the network carry out domain specific operations.
This is similar to doing workflow processing in business, but
here more emphasis is put on the processing of collections
of data values and less on the control flow issues, hence the
term collection-oriented scientific workflow (COSW).

The basic operations in such workflows are mainly spe-
cialized, domain-specific data analysis algorithms. Their ef-
ficient implementations are available as open source tools
or are made freely accessible on dedicated Internet servers
maintained by scientific institutions. The results produced
by such workflows are used to form scientific hypotheses and
to justify or invalidate them. The way a COSW is organized,
i.e., which operations are executed and how they depend on
each others results, is important and is usually published in
some form together with the results of the data processing
experiment. This is necessary for the reviewers and readers
to understand what was done in the experiment, to effec-
tively and objectively assess its merit, to repeat and verify
it, and finally to adapt it for their own research projects.

Traditionally such data processing experiments, have been
performed by copying and pasting data between local pro-
grams, e.g., the components of the EMBOSS package [21],
and web accessible processing servers with WWW forms
type user interfaces, like FASTA Sequence Comparison at
the University of Virginia [27] and the Basic Local Align-
ment Search Tool at NCBI [17]. This method of experiment-
ing is laborious and error prone. It has also been common
to construct ad hoc scripts and programs to automatize this
task, but for that at least some basic knowledge of program-
ming in general and distributed programming issues is nec-
essary. Furthermore, the produced software usually has not



been portable and poorly, if at all, documented.

Nowadays, specialized scientific workflow workbenches such
as Taverna 2 [18, 10] and Kepler [14] are used. They are
based on simple yet expressive graphical notations, integrate
most important tools, services and databases from a given
domain, and include various additional useful features like
data provenance tracking or service discovery. The formal
methods, techniques and tools used in COSW modeling have
become an interesting topic of study themselves and are the
focus of our research having many relationships with work-
flow modeling, business process modeling, databases, com-
putational grids and many more established research areas.

1.2 Database query languages for collection-
oriented scientific workflows

The COSW workbenches are being successfully applied to
obtain publishable scientific results like the ones presented
in [24]. The popularization of COSW techniques is progress-
ing constantly. First, Internet repositories where scientists
can share their workflows have been created [6]. Published
workflows influence the creation of further workflows and
sometimes are incorporated into them. Then, they are used
to solve even more complicated problems. All this causes
the need for the creation of still missing techniques and
tools that aid COSW creators in understanding of how their
workflows can precisely behave, debugging them, as well as
detecting and helping to avoid common pitfalls.

In traditional workflow modeling such techniques and tools
already exist and are constantly in the focus of attention.
They are often based on the Petri net formalism [20, 16]
which has a solid and proven theoretical foundation. Follow-
ing [30] the three basic reasons for using Petri nets for work-
flow modeling are: (i) formal semantics despite the graphical
nature, (ii) state-based instead of event-based, and (iii) an
abundance of analysis techniques. The modeling and ana-
lyzing of workflows using a Petri net based approach is well
described in literature, e.g., in [31], and many Petri nets tools
support workflow modeling (see [25]). Even though notations
used in some of the existing COWS tools are influenced by
Petri nets, the majority of good ideas like verification and
structural analysis algorithms have neither been adapted nor
developed for COSWs at the moment of this writing.

Since COSWs are used to processes large amounts of data,
it is also reasonable to expect that some of the ideas from
database research on querying nested collections are appli-
cable to them. As with workflow modeling, here again for-
malisms with solid and proven theoretical foundations exist,
e.g., the nested relational calculus [1] (NRC). In fact, a NRC
based collection programming language [33, 34] (CPL) has
already been employed in the BioKleisli system [4] to com-
bine biomedical data from diversity of sources used in the
Human Genome Project [28]. This was possible since the
precise specification of control flow was not necessary, i.e.,
the executed operations had no side effects, and only the
computed result mattered. Thanks to relying on NRC, in-
teresting optimization techniques, including but not limited
to monad optimizations, could be implemented in BioKleisli
and are explained in [33]. A side-effect free COSWs could
also undergo such optimizations. For this either the database
techniques have to be adapted to some COSW language or
a language used to express workflows has to be translated to
a query language over nested collections, like NRC or based
on it CPL and XQuery.

2. DFL DESIGNER

It is our opinion that both the data manipulation and con-
trol flow aspects are important in the context of COSWs and
that there are many interesting ideas from workflow mod-
eling and database research that can benefit the COSWs
community. In this paper we present DFL designer, a novel
COSW tool that is aimed to be a framework for adapting
and introducing into the COSW setting of such ideas. For
that, as the COSW definition language, we have chosen the
DataFlow Language (DFL) which we developed in our pre-
vious work [8, 7].

DFL combines Petri nets with NRC into a new COSW
language with a formally defined semantics. From NRC it
inherits the set of basic operators and the type system. To
deal with the synchronization issues arising from processing
of the data by distributed services it uses the Petri-net based
formalism which has a clear and simple graphical notation
and for which an abundance of correctness analysis results
exist. From one point of view DFL can be considered as a
graphical notation for NRC and a way of extending NRC
expressions into descriptions of processes, which allows for
the side-effects to be taken into account. On the other hand
it can be viewed as an extension of Petri nets with explicit
data manipulation aspects, such that the data flows through
the net and is processed. Thus, in the rest of the paper
COSWs specified in DFL will be called dataflows.

With DFL designer we aim to address three important for
COSW workbenches issues: easier understanding of details
of the expressed experiment, better control of flow aspects
and transformation of side-effect free COSWs into queries.
It is developed as a plugin for the Eclipse! platform and
is an open source project. It extends Eclipse with two new
perspectives, the DFL Edit and DFL Run (see Figure 1),
which define the user interface configuration best suited for
designing and enacting of dataflows respectively.

Apart from the core DFL operations for data manipula-
tion (for details see [8]) DFL designer is provided with a
huge library of bioinformatics services gathered in the very
popular Taverna 2 workbench which is also an open source
project. Thanks to this it is easy to adapt already existing
real life workflows designed with Taverna 2, e.g., the ones
available in myExperiment Internet repository [6], and test
on them the usefulness of novel features. Since doing such
tests with real life examples is one of our main goals, we
included the functionality of importing Taverna 2 workflows
into DFL designer.

3. DFL DESIGNER FEATURES

In this section we describe the features of DFL designer
that are in a COSW setting the most interesting and distin-
guishing. We organize the features into two groups: control
flow oriented and data manipulation oriented. Because of the
space constraints and for the accessibility of the presenta-
tion we provide only a limited number of examples. Further
examples are available on the project web site at http://
code.google.com/p/dfldesigner/. The site also contains
installation instructions and multimedia materials tutorials.

3.1 Control-flow oriented features

COSWs are in fact distributed data processing systems in
which data values can be transfered between web services in

!See http://www.eclipse.org/.
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Figure 1: DFL designer perspectives

adherence to some specific protocol and with possible syn-
chronization constraints. Testing, debugging and often un-
derstanding of such distributed systems can be difficult and
laborious.

Since DFL is based on a robust Petri net formalism, dis-
tributed protocols can be expressed in it very clearly. In fact
the Petri net notation is often used in scientific publications
to define the precise semantics of the control flow perspec-
tive of workflow systems, i.e., specify those systems explicitly
and unambiguously, see for example [22, 12]. Transforming
COSWs defined in other tools and notations into DFL de-
signer can help users to understand them in detail. At the
time of this writing DFL designer can import the Taverna
2 workflows with the exception of some aspects of the dis-
patch stack layers that in Taverna 2 can be associated with
processors.

As for testing and debugging, the DFL Run perspective
(see Figure 1) provides the token game functionality which
is also common in Petri net tools. The abstraction of tokens
transporting data and being transfered between places of
the dataflow experiment allows for convenient step-by-step
execution and enables the user to control the order of oper-
ations and what input values they consume. As in classical
Petri net token game, the user can select which of the en-
abled transitions will fire next. Yet, since the tokens in DFL
carry data values, an extra feature is present that allows to
disable arbitrary tokens and thus determine not only which
transition will fire, but also which data values it will con-
sume. For user convenience it can be chosen whether the
new tokens are produced as enabled or disabled. At every
moment of the interactive execution the user has full control
over the distribution of tokens and their values. It is possi-
ble to inspect and edit what tokens are in each place, what
are their unnesting histories and what values they transport.
The state of all places and the individual tokens can be saved
to and loaded from an XML file.

For example, the user can influence the order in which
elements of some collection are processed. This is possible
thanks to the explicit iteration mechanism of DFL (see Fig-
ure 2), where a collection value can be first unnested by
a specially marked edge, then the tokens representing the
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7

5D
:
=) *

1

11,12, 13}, ()

ﬂ@a Ofa-O
D-FO-F-O-F-O

(d) (e)

collections elements are processed independently and finally
are nested back into a collection. Determining if all the pro-
cessed elements are ready to be nested is possible thanks to
the token unnesting history mechanism of DFL where each
token obtained from unnesting apart from its value carries
a meta-data specifying to which element of the original col-
lection does it correspond. This meta-data is a kind of token
provenance. For further details on the token unnesting his-
tory mechanism see [8].

The interactive firing of transitions together with the full
control over the state, allows the user to precisely under-
stand the execution semantics of the defined dataflow and
gives means to effectively debug and test them. In partic-
ular the user can: (1) check what values are returned by
transitions and make sure that services represented by them
behave as expected, (2) repeat the experiments from saved
partial states, (3) enforce and test all possible variants of
execution which is especially useful when complex synchro-
nization protocol is being defined, and (4) experiment in a
“what would happen if” way, by redefining the state during
the execution.

The final feature of DFL designer presented in this section
deals with automatic checking if constructed dataflows fol-
low certain good practices and are thus not exposed to some
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typical problems. In [8] we adapted for DFL the soundness
and hierarchicality notions known for Petri nets (see [3]).
Dataflows constructed in a hierarchical manner, according
to a set of refinement rules we proposed (see Figure 3),
are semi-sound, i.e., initiated with a single token (which
may represent a complex scientific data collection) in the in-
put node, terminate with a single token in the output node
(which represents the output data collection). In particular
they never leave any “debris data” behind and an output
is always eventually computed regardless of how the com-
putation proceeds. DFL designer can automatically test by
reversing the rules if dataflows are hierarchical, and if not,
suggest the source of the problem.

Unfortunately not all semi-sound dataflows are hierarchi-
cal, but the majority of the ones used in practice can be
represented hierarchically and are easier to comprehend this
way. In [8] we have given an example of a real life dataflow
which has some subtle flaws that are difficult to notice by
a human reader. Those can be detected by checking the
dataflow for hierarchicality and easily fixed by adhering to
the refinement rules.

3.2 Data manipulation oriented features

Source code editors in modern integrated development en-
vironments for strongly typed languages, like the one used
in Eclipse to edit Java code, prevent the programmers from
making certain types of errors by checking if operations are
applied to parameters of correct types and if the result is
assigned to a variable of a matching type. This type of aid
is build in DFL designer and prevents the construction of
illegal dataflows in which the input and output types of con-
nected services do not match. While connecting the nodes
on the diagram, illegal constructions are prevented.

The enforcement of legality in the designer is more com-
plex than for DFL itself. This is because in DFL the core op-
erations are parametrized, i.e., there are multiple instances
of every operation with different input and output types.
Yet, in the designer we have made those operations poly-

Figure 4: Beginning of an example DFL dataflow

morphic to free the user from the inconvenience of deal-
ing with many variants of the same operation. By doing
this the dataflows became polymorphic themselves and the
types used usually cannot be determined exactly, but rather
have to be expressed as patterns. Thus, while connecting the
nodes on the diagram it is checked if corresponding patterns
can be unified. For example, in Figure 4 we see a beginning
of an example dataflow. Copies of the input value are pro-
jected on fields u, v and x, so the input value has to be a
record with at least such fields. Similarly, because the oper-
ations f() and g() consume and produce a string value, then
string is also the type of field z. Checking if the combined
restrictions can be met together with the computation of
patters for each place is a variant of the type inference prob-
lem [15, 19]. There are many results for type inference in
industrial-strength functional programming languages like
ML and Haskell. Some results are also available for a cer-
tain extension of NRC [29], but there the problem is proven
to be NP-complete. Yet, for the polymorphic DFL the con-
struction of a polynomial algorithm was possible thanks to:
(1) a slightly different definition of the Cartesian product,
which does not require that input values are sets of records
with disjunctive sets of field labels, and (2) a simple equality
test for only arguments of the same basic type. A compre-
hensive discussion of which particular operations make the



type inference problem NP-hard can be found in [32].

Many tricks can be usually applied before executing a pro-
gram, e.g., while compiling or interpreting it, to speed up its
execution. Optimization techniques are also developed, ap-
plied and studied in the context of scientific workflows enact-
ment, but most often this research concentrates on aspects
shared with business workflows and grid techniques, e.g.,
which of many semantically equivalent services to choose [9]
or how to execute the workflow on a distributed resources
such as the Grid [5]. Since we emphasize the data process-
ing aspects of COSWSs, we are more interested in application
of the query optimization results like the ones for NRC. It
should be noted here, that the most effective optimization
results for query languages in general and for NRC in par-
ticular depend upon algebraic identities that only hold if the
involved operations are side-effect free. It is our observation
that most operations used in COSWs are indeed side-effect
free. Also the basic operators for which these algebraic iden-
tities are know, like products, are present in COSW lan-
guages, sometimes explicitly as in DFL and sometimes im-
plicitly as in Taverna 2, so these identities can also be used
here for optimization.

The application of the query optimization results to COSWs

can be done by either developing similar results for COSW
specification languages or by translating COSWs to some
query language for which optimized execution engines exist.
For hierarchical dataflows and for COSWs imported from
Taverna 2 a mapping to NRC is possible. Also NRC has
many stable execution engines [33], though by the time of
this writing we have implemented the mapping algorithm
but have not integrated DFL designer with an NRC execu-
tion engine yet. The mapping is achieved by an extension of
the algorithm that checks if a dataflow is hierarchical. Such
a check is done by reversing the refinements until either only
one transition with a source and a sink place is left, i.e., the
dataflow is hierarchical, or no further reversal is possible,
i.e., the dataflows is not hierarchical. During the merging of
dataflow nodes according to the reversed refinement rules,
operations represented by transitions can be composed, so
that in each step the dataflow as a whole computes the same
function.

For example, in the case of the iteration split of rule (c),
the function computed by b4 can be provided on both of its
arguments with the result of function computed by b:. Thus,
the transition on the right hand side which represents their
combination computes the function b4 o pairy,; o b1, where
pairg,; returns a record with field labels &, I and the same
value on both of them, i.e., the input value. Here the “x”
annotated edges are unimportant since no processing occurs
between the unnesting and nesting. If a structural recursion
indeed takes place in the dataflow it is incorporated into the
function of bs by the reversal of the sequential place split of
rule (a).

The reversal process takes into account an additional rule
that was not included in the rules for hierarchical dataflows,
which allows it to deal with non-hierarchical dataflows where
transactions are organized in an arbitrary directed acyclic
graph, as is possible in Taverna.

4. CONCLUSIONS

In this paper we have presented DFL designer — a novel
tool for specifying and enacting COSWs which uses a nota-
tion based on a well studied formalisms, namely Petri nets

and NRC. Combining those two made it possible to imple-
ment in DFL designer many features like correctness enforce-
ment, enactment optimization, and debugging and testing
support that are unique in the COSW setting.

There are many interesting ways of extending DFL de-
signer and continuing our research. In another paper of one
of the authors [23] it was already shown that an XQuery [26]
(a standard query language for XML data) engine can be in-
tegrated with a COSW workbench in such a way that parts
of the workflow can be expressed as a query and this query
can access the operations provided by the workbench. Sim-
ilar integration with an NRC or XQuery engine is a natural
next step in the development of DFL designer. It would also
allow to enact the dataflow more effectively since hierarchi-
cal fragments of dataflows which use only side-effect free
operations could be automatically translated into a query
language and optimized. Another interesting topic is adding
provenance support, so that information about how each
data item has been computed, i.e., by which services and
from what input values, is collected. This is important for
scientists using COSWs for knowing how much they can
rely on the data, i.e., if it is very reliable data obtained
in laboratory or less reliable data resulting from several ap-
proximation algorithms applied subsequently. There already
exist some work [11] connecting NRC with the Open Prove-
nance Model [13]. We believe similar ideas can be adapted
for DFL. Finally, further analysis algorithms can be designed
for DFL by following the results available for Petri nets. For
example, there are interesting results by Piotr Chrzastowski-
Wachtel [2] showing that token distributions can also be
checked for soundness, i.e., that starting from such a mark-
ing the computation can always be correctly completed re-
gardless of how it proceeds.

Apart from testing new ideas and setting new directions
DFL designer can be further developed in two ways: as a
general use COSW tool and as a supplement for other ex-
isting systems. The first requires additional work on user
friendliness, support of further domain specific operations
and enriching the DFL notation with syntactic sugar and
implicit features like an implicit iteration mechanism. The
second requires the definition of a mapping from notations
used in other systems to DFL such that COSWs defined in
other tools could be automatically translated to DFL to take
advantage of the analysis algorithms that are available for
it.
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