
JavaSpaces NetBeans — a Linda Workbench for
Distributed Programming Course

Magdalena Dukielska
∗

Google Inc.
magdalenad@google.com

Jacek Sroka
University of Warsaw

sroka@mimuw.edu.pl

ABSTRACT
In this paper we introduce the JavaSpaces NetBeans IDE
(JSN) which integrates the JavaSpaces technology, an imple-
mentation of Linda principles in Java, with the NetBeans1

IDE. JSN is a didactic tool for practical assignments during
distributed programming courses. It hides advanced aspects
of JavaSpaces configuration and lets students focus on inter-
process coordination. An important component of JSN is
a distributed debugger which can help to make concurrent
programming classes easier to understand and more com-
pelling.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Tools, Instructional Technologies, Active Learning

General Terms
Design, Experimentation, Human Factors

Keywords
JavaSpaces, Linda, NetBeans, distributed debugger, distri-
buted programming, integrated development environment

1. INTRODUCTION
During her first years of studies every computer science

student learns the principles of distributed programming,
which is usually based on discussing solutions of classical
problems as the dining philosophers. Skills obtained during
those classes are in a high demand by the industry, where
coordination and communication between processes are used
on a daily basis to solve problems arising from the scale of
contemporary processing tasks.

Yet, for many students distributed programming is dif-
ficult. Their imagination is put to a test when they are

∗This work was done at the University of Warsaw.
1See http://netbeans.org/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’10, June 26–30, 2010, Bilkent, Ankara, Turkey.
Copyright 2010 ACM 978-1-60558-820-9/10/06 ...$10.00.

required to solve tricky problems by writing algorithms on
paper and analyzing them in their minds. Nonetheless,
there are many possible curriculum improvements which can
mitigate these initial difficulties. The most obvious one
is the choice of a readable and powerful formalism best
suited to discussed problems. Linda [8] is a coordination lan-
guage typically described during the distributed program-
ming course which allows students to represent most prob-
lems in a very elegant way and which can facilitate their first
steps into the concurrent world.

Even though some implementations of Linda’s tuplespace
model exist for popular programming languages, like JavaS-
paces [7] for the Java language, they are rarely used by stu-
dents. The main reason is the amount of additional work
that has to be dedicated to setting up, managing and con-
necting to a tuplespace. Unfortunately, there is not enough
time to practice such administrative tasks during the class
because of the number of other formalisms, languages and
ideas included in the distributed programming curriculum,
like CSP, Ada, semaphores and monitors. Furthermore,
there is a lack of supplementary tools which could make
it easier for students to debug or test their distributed algo-
rithms.

In this paper we describe JavaSpaces NetBeans IDE (JSN) 2

— a JavaSpaces integrated programming environment. JSN
provides a convenient way for instructors to introduce stu-
dents into practical concurrent programming in the Linda
tuplespace model. The tool hides complicated configuration
issues and lets students concentrate on designing coordina-
tion protocols. Moreover, JSN includes a distributed debug-
ger which allows students to easily test their programs and
to discover particular synchronization issues.

2. LINDA AND JAVASPACES
In this section we provide a brief introduction to the Linda

coordination language and JavaSpaces — its Java implemen-
tation.

2.1 Linda
Linda [8] was developed by David Gelernter on Yale Uni-

versity in mid-1980s. It is a flexible and elegant model for
parallel programming obtained by adding synchronized op-
erations on a so-called tuplespace to the base programming
language like Java or C++. The whole model is built upon
notions of a tuple and a tuplespace.

A tuple is a sequence of data objects of certain types.
The sequence of these types is called the tuple’s signature.

2See http://javaspaces-netbeans.googlecode.com.

23

http://netbeans.org/
http://javaspaces-netbeans.googlecode.com

For example, a tuple ("aa", 15, "bb") has the signature
(string, int, string). A tuplespace is an environment
for storing tuples — a sort of virtual shared memory —
supplied with a kind of a search interface.

In Linda all interprocess communication goes through a tu-
plespace. Typically, each process uses a tuplespace from
which it collects input data and where it deposits results of
the computation it performs. A tuplespace has a very sim-
ple interface: processes can insert new tuples by using the
out operation, withdraw an existing tuple matching a given
pattern with the in operation, or read the contents of a
tuple while the tuple itself remains available for other pro-
cesses with the read operation. Both in and read opera-
tions can be either blocking or non-blocking. An associative
matching algorithm based on the tuple’s contents is used to
check whether a particular tuple matches the pattern used
by a process for an input operation.

Many classical problems have simple and easy to under-
stand Linda solutions. Below we present a correct implemen-
tation of the five dining philosophers problem using four tick-
ets guarding the entrance to the dining room. Each philoso-
pher is represented by a process, while forks and tickets are
tuples. Initially, the tuplespace contains 5 fork tuples with
indexes 0 to 4 and 4 ticket tuples. The philosopher’s code
is:

void philosopher(int i) {
while (true) {
think();
in("ticket"); in("fork", i); in("fork", (i+1)mod 5);
eat();
out("fork", (i+1)mod 5); out("fork", i); out("ticket");
}
}

The major advantage of Linda over other formalisms like
message passing which are also presented during distributed
programming classes is loose coupling between components
of the resulting system. Processes in Linda do not need
to establish connections to one another. Communication is
asynchronous and the system can be easily extended to con-
form to changing requirements of the environment in which
it is running. In this respect, Linda programs match per-
fectly what is expected from real-world applications devel-
oped by companies like Google. A more detailed description
of Linda programming model with its history and recent
developments can be found in [13, 14].

2.2 JavaSpaces
There are multiple Linda implementations available for

many languages like C, C++, Prolog, Python, Scala and
Java. For a survey of Java implementations see [14]. One of
them is JavaSpaces [3, 5, 7] created by Sun Microsystems.

Tuples in JavaSpaces are Java objects. Their signatures
are classes that have a no-argument constructor and public
fields of serializable types. Such requirements are implica-
tions of the tuple matching algorithm used in JavaSpaces.
For example, a simple JavaSpaces implementation of a fork
tuple for use by philosophers is:

public class Fork implements net.jini.core.entry.Entry {
public Integer id;
public Fork(Integer id) { this.id = id; }

}

The pattern provided by a process as an argument to an
input operation is also an object of some tuple class like

Fork. A tuple matches the pattern, if values of its public
fields are equal to those specified in the pattern. A null

value in the pattern is treated as a wildcard matching any
value of a real tuple. For example, the following code inserts
a Fork tuple with id 3 and then withdraws another Fork

tuple with id 4 from the tuplespace:

JavaSpace space = ... // here tuplespace is initialized
Fork tuple = new Fork(3);
// tuple will remain in the space forever
space.write(tuple, null, Lease.FOREVER);

Fork template = new Fork(4);
// wait if there is no matching tuple
Fork result =
(Fork) space.take(template, null, Long.MAX_VALUE);

3. PROJECT OBJECTIVES
In this section we present three main objectives we wanted

to achieve with the JSN project.
Our main goal was to create a Linda based program-

ming environment that would allow students to learn by
creating and testing working examples without being both-
ered with administrative, low-level or technology-oriented
details. Such an environment was needed because using
practical Linda implementations takes lots of introductory
effort. This is caused by the fact that most implementations
focus on building sophisticated commercial systems and re-
quire expert knowledge of their underlying principles and
often many other fields as well. JavaSpaces is affected by
these issues too. One of the reasons is that Jini technol-
ogy [5, 11], on which JavaSpaces is based, aims at solving
multiple network problems, and using it entails experience
in other Java technologies like RMI. Before a tuplespace is
started several other Jini-specific services need to be set up
with appropriate parameters which makes the whole config-
uration cumbersome. Besides, even the simplest application
requires a large amount of boilerplate code before a reference
to a usable tuplespace is obtained, see [9] for some examples.

On the other hand, there exist many programming en-
vironments and tools for distributed programming courses
like [1, 2, 12]. There were earlier attempts to provide class-
room tools using Pascal-based Linda [10]. However, stu-
dents are not familiar with these tools and need to invest
additional time into getting used to them, even though they
are moderately simple as they are designed for education.
Unfortunately, for many students learning how to use such
tools is not interesting. Due to the limitations of the di-
dactics technology, they do not profit during their further
studies and professional career from mastering educational
tools. This is why the second objective of the JSN project
was to stay close to the current professional trends and de-
sign patterns to make JSN more interesting for students. For
that reason JSN: (1) uses Java instead of Pascal as the base
language, (2) does not extend or modify the base language,
but uses an existing and mature JavaSpaces library, (3) is
based on an existing and popular NetBeans IDE, and (4)
uses Java annotations and the Dependency Injection design
pattern.

Our final objective is related to the fact that, although
a large number of distributed algorithms have concise imple-
mentations, understanding what happens when these algo-
rithms are executed concurrently is difficult. The standard
approach is to extend the implementation with some logging

24

routines and analyze traces from the distributed execution.
Yet, this by itself is laborious and requires extra effort to
enforce interesting interleaving of operations. At the same
time we support the viewpoint presented in [4] that in many
cases debugging an incorrect code and explaining the mis-
conceptions in an argument has a very high didactic value.
For that reason, we decided to include in JSN a distributed
debugger allowing students to simulate selected system be-
haviors, so that it is easy for them to ‘play with examples’.

4. THE JAVASPACES NETBEANS PROJECT
In this section we provide a concise overview of JSN’s

features3

4.1 Annotations
One of the biggest barriers for students when using JavaS-

paces is complex and tedious tuplespace configuration. JSN
deals with this problem with help of Java 5.0 annotations.
Annotations in Java offer a simple and extensible syntax for
adding metadata to classes, methods, variables, parameters
and packages4. The main uses of annotation in JSN include:
(1) providing declarative access to tuplespaces (with the
popular Dependency Injection [6] design pattern), (2) per-
forming necessary environment configuration, and (3) con-
trolling the debugging support. The major annotations of-
fered by JSN are:

• @Space(name="a") – if placed on a field of type JavaS-
pace, the field will be initialized with a reference to
a tuplespace with the specified name when it is ac-
cessed for the first time;

• @JavaSpaces(policy="let.all", spaces={"a","b"})

– placed on the main method of a program, performs
the environment configuration, e.g., sets all necessary
security properties for specified tuplespaces;

• @JavaSpacesDebug – placed on the main method, turns
on/off debugging support, which we describe in more
detail in Section 4.6.

An example of a complete implementation of Philosopher

class using the annotations is:

@JavaSpaces
public class Philosopher {

@Space(name="phil") private static JavaSpace space;
private Ticket ticket;
private Fork leftFork;
private Fork rightFork;

public Philosopher(int id, int num) {
ticket = new Ticket();
leftFork = new Fork(id);
rightFork = new Fork((id + 1) % num)

}

private void eat() {...}
private void think() {...}

public void work() throws Exception {
while (true) {

3For instructor and classroom materials see the project web
page at http://javaspaces-netbeans.googlecode.com.
4Java 5.0 annotations are just metadata added to the code.
Their contract is realized in JSN with the use of an aspect-
oriented programming language AspectJ.

think();
space.take(ticket, null, Long.MAX_VALUE);
space.take(leftFork, null, Long.MAX_VALUE);
space.take(rightFork, null, Long.MAX_VALUE);
eat();
space.write(rightFork, null, Lease.FOREVER);
space.write(leftFork, null, Lease.FOREVER);
space.write(ticket, null, Lease.FOREVER);

}
}

4.2 Integrated JavaSpaces server
JSN fully integrates a JavaSpaces server5 and allows to

control its operations from the IDE. Using the server does
not require any special installation or configuration because
all necessary libraries and files are already included in JSN.
JavaSpaces server control is based on a default NetBeans in-
terface for web and application servers (see Services tab in
Figure 1). This way students gain experience in operating
the popular NetBeans IDE. This is also a major facilita-
tion for students who have already used this mechanism to
control other servers available in NetBeans by default like
Tomcat.

Blitz is presented as a new node named Bundled Blitz in
the Services tab. The administrative operations like start-
ing the server, creating or deleting a tuplespace and clearing
tuplespace’s contents are available through the context menu
of the node.

Figure 1: Browsing one of tuplespaces of the bun-
dled Blitz server

4.3 Tuple browser
Once a tuplespace is started, students can use the tuple

browser to inspect its contents (see Figure 1) which is pre-
sented as a tree. At the top level there is one node for each
tuple signature. Expanding the signature’s node reveals the
list of individual tuples of the given type. Tuples can be
further expanded to inspect their values. The tuple browser
makes it easy to track the contents of a tuplespace which is
not available in JavaSpaces by default. It also helps students
to observe the impact that each process has on a tuplespace
and how different processes communicate and cooperate.

4.4 Project template
Together with the JSN distribution students obtain exam-

ple projects and a template for creating their own projects.
5We have chosen Blitz — an open source project lead by
Dan Creswell, see http://www.dancres.org/blitz.

25

http://javaspaces-netbeans.googlecode.com
http://www.dancres.org/blitz

The example projects allow students to quickly get acquainted
with the basic features of JSN. The template references all
Blitz- and JavaSpaces-specific libraries which may be needed
when doing assignments. Furthermore, it contains a mod-
ified build file which is responsible for compilation and ex-
ecution of the application. An AspectJ compiler is used
instead of the standard one to make sure that JSN aspects
used to implement JSN annotations (see Section 4.1) are
integrated correctly with the student’s code. Additionally,
the project template module facilitates execution of JavaS-
paces projects. For each project a Run on Blitz action is
provided which automatically starts the Blitz server and all
tuplespaces necessary for the project, if they are not run-
ning yet. Afterward, the code is compiled and executed.
This is a convenience versus having to first start the Blitz
server, then the required tuplespaces, and finally compiling
and running the code.

4.5 Graphical signatures editor
As discussed in Section 2.2, a JavaSpaces tuple is a class

which has to conform to several rules. JSN includes a tu-
ple signatures editor that allows students to visually define
tuples from the very first day of classes. The correct code
is generated by JSN which takes care that all requirements
enforced by JavaSpaces are fulfilled.

Figure 2: Graph view of the tuple editor

The editor offers following views: source – a default Net-
Beans view of Java source code with standard features like
syntax completion, design – a table listing all fields with
actions to add, edit or remove them, and graph – a read-
able graph (see Figure 2) with the same functionality as the
form view. All three views are automatically synchronized,
so that changes in one of them are propagated to the other
two. Besides, when the file is being saved, the editor en-
hances the code to comply with JavaSpaces requirements
for tuples, e.g., a no-argument constructor can be generated
or field’s type can be changed from int to Integer.

The form and graph views of the signatures editor al-
low students to concentrate on the optimal design of the
fields that are necessary to solve a given problem. In fact,
all the code can be automatically generated by the editor.
Moreover, if students work with example projects or extend
projects that are partially implemented, they can use the

graphical views to quickly acquaint themselves with the sig-
natures.

4.6 Distributed debugger
One of the most important features of JSN is its dis-

tributed debugger. It not only makes testing programs that
use tuplespaces easier, but also it allows students to simulate
arbitrary sequences of tuplespace operations. In contrast
to a standard NetBeans debugger the JSN debugger was
designed for managing multiple concurrent processes that
communicate with one another through a tuplespace.

Figure 3: Example debugging session

A session with the JSN debugger typically starts with set-
ting breakpoints on selected tuplespace operations. When
the execution reaches such an operation the process will be
suspended until the user resumes it. The described break-
points are parallel to standard debugging facilities of Net-
Beans, which can still be used. A special view presents JSN
breakpoints and allows users to manage them, e.g., enable,
disable or remove.

The debugged code should contain a @JavaSpacesDebug

annotation on the main method of the program. Selecting
Debug on Blitz action from the context menu starts a new
JSN debugging session. Each started process automatically
obtains a unique identifier. The current state of all running
processes is visible in the Blitz Debugger Sessions Window
(see Figure 3). It shows whether a given process is running
and if not, on which breakpoint it was stopped. Once the
execution of a process is suspended by a breakpoint, a Con-
tinue button appears in the sessions window which lets to
resume the process. By resuming processes in a given or-
der different sequences of synchronization operations can be
simulated.

4.6.1 Select tuple mechanism
As there may be many different tuples matching a pat-

tern with wildcards, the choice of a specific one for an input
operation can have important consequences for the system’s
execution. During normal operation matching tuples get se-
lected in a nondeterministic way. If a process is stopped on
an input operation, the JSN debugger lets the user make this
choice. This is achieved by the integration with the tuple
browser (see Section 4.3) and allows to guide execution of
the system into desired scenarios. Such functionality can be

26

used for testing of the correctness of a solution by enforcing
the most inconvenient selections.

4.6.2 Record and replay mechanisms
To make it even easier for instructors to demonstrate clas-

sical concurrent problems, JSN allows for recording and later
replaying of sequences of synchronization operations. An
instructor can prepare example implementations of some
problems and record particularly interesting sequences of
operations to be examined by students during the class.
A recorded execution can be edited by hand later on. Re-
play of a previously saved debugging session is presented in
Figure 4.

Figure 4: Replaying a saved debugging session

In an example use case for this feature, the instructor
can prepare an incorrect solution for the dining philosophers
problem which does not use tickets and is therefore suscep-
tible to a deadlock. Then, the sequence of tuplespace oper-
ations leading to the deadlock – in this case all philosophers
taking the left fork first — can be simulated during the class.
When the simulation is finished, students can observe that
no philosopher is able to continue its execution. In a similar
way starvation can be demonstrated. This functionality can
also be used in assignments where students are supposed to
find an error in a given implementation and to record the
sequence of operations leading to it.

5. FURTHER RESEARCH
The main directions we intend to focus our attention on

while continuing the JSN project include: (1) extending the
record and replay mechanism with recording of particular
tuple selection choices, (2) adding new visualization views
and animations, e.g., a visualization of topology of the dis-
tributed system with animation of traveling messages, (3)
designing of formal verification and model checking proce-
dures based on exploration of the possible state space, and
(4) developing a visualization for the forthcoming formal ver-
ification mechanism, possibly based on a Petri net. Finally,
JSN needs to be constantly developed to follow improve-
ments and enhancements of the NetBeans IDE itself and its
underlying framework — the NetBeans Platform.

6. ACKNOWLEDGMENTS
The development of JavaSpaces NetBeans was partially

sponsored by Sun Microsystems as a part of NetBeans Inno-
vators Grant process. The authors are also grateful to the
NetBeans Dream Team members and dr Marcin Engel from
University of Warsaw for their support.

7. REFERENCES
[1] M. Ben-Ari. A suite of tools for teaching concurrency.

In ITiCSE ’04: Proceedings of the 9th annual SIGCSE
conference on Innovation and technology in computer
science education, pages 251–251, New York, NY,
USA, 2004. ACM.

[2] M. Ben-Ari and S. Silverman. DPLab: an environment
for distributed programming. In ITiCSE ’99:
Proceedings of the 4th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and technology in
computer science education, pages 91–94, New York,
NY, USA, 1999. ACM.

[3] P. Bishop and N. Warren. JavaSpaces in Practice.
Pearson Education, Essex, UK, 2002.

[4] A. Fekete. Using counter-examples in the data
structures course. In ACE ’03: Proceedings of the fifth
Australasian conference on Computing education,
pages 179–186, Darlinghurst, Australia, 2003.
Australian Computer Society, Inc.

[5] R. Flenner. Jini and JavaSpaces Application
Development. Sams, Indianapolis, IN, USA, 2001.

[6] M. Fowler. Inversion of Control Containers and the
Dependency Injection pattern. http:
//martinfowler.com/articles/injection.html,
2004.

[7] E. Freeman, K. Arnold, and S. Hupfer. JavaSpaces
Principles, Patterns, and Practice. Addison-Wesley
Longman Ltd., Essex, UK, 1999.

[8] D. Gelernter. Generative communication in Linda.
ACM Trans. Program. Lang. Syst., 7(1):80–112, 1985.

[9] S. Hupfer. The Nuts and Bolts of Compiling and
Running JavaSpaces Programs. SDN Online Article
http://java.sun.com/developer/

technicalArticles/jini/javaspaces, 2000.

[10] C. McDonald. Teaching concurrency with Joyce and
Linda. In SIGCSE ’92: Proceedings of the twenty-third
SIGCSE technical symposium on Computer science
education, pages 46–52, New York, NY, USA, 1992.
ACM.

[11] J. Newmarch. Foundations of Jini 2 Programming.
Apress, Berkely, CA, USA, 2006.

[12] R. Oechsle and T. Gottwald. Disaster (distributed
algorithms simulation terrain): a platform for the
implementation of distributed algorithms. In ITiCSE
’05: Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer
science education, pages 44–48, New York, NY, USA,
2005. ACM.

[13] G. Wells. Coordination Languages: Back to the
Future with Linda. 2005.

[14] G. C. Wells, A. G. Chalmers, and P. G. Clayton.
Linda implementations in Java for concurrent systems:
Research Articles. Concurr. Comput. : Pract. Exper.,
16(10):1005–1022, 2004.

27

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://java.sun.com/developer/technicalArticles/jini/javaspaces
http://java.sun.com/developer/technicalArticles/jini/javaspaces

	Introduction
	Linda and JavaSpaces
	Linda
	JavaSpaces

	Project Objectives
	The JavaSpaces NetBeans project
	Annotations
	Integrated JavaSpaces server
	Tuple browser
	Project template
	Graphical signatures editor
	Distributed debugger
	Select tuple mechanism
	Record and replay mechanisms

	Further research
	Acknowledgments
	References

