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ABSTRACT
A major research challenge in multi-agent systems is the
problem of partitioning a set of agents into mutually dis-
joint coalitions, such that the overall performance of the
system is optimized. This problem is difficult because the
search space is very large: the number of possible coali-
tion structures increases exponentially with the number of
agents. Although several algorithms have been proposed to
tackle this Coalition Structure Generation (CSG) problem,
all of them suffer from being inherently centralized, which
leads to the existence of a performance bottleneck and a sin-
gle point of failure. In this paper, we develop the first decen-
tralized algorithm for solving the CSG problem optimally.
In our algorithm, the necessary calculations are distributed
among the agents, instead of being carried out centrally by
a single agent (as is the case in all the available algorithms
in the literature). In this way, the search can be carried
out in a much faster and more robust way, and the agents
can share the burden of the calculations. The algorithm
combines, and improves upon, techniques from two existing
algorithms in the literature, namely DCVC [5] and IP [9],
and applies novel techniques for filtering the input and re-
ducing the inter-agent communication load.
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1. INTRODUCTION
Coalition formation is an important topic in multi-agent sys-
tems, as there are many activities that coalitions can carry
out better than single agents: for example, in e-commerce,
coalitions often manage to buy (or sell) at lower (higher)
unit prices than individuals alone [2, 3, 13]. In this context,
a great deal of attention has been paid to coalition structure
generation (CSG) in characteristic function games. Specifi-
cally, given a characteristic function that assigns a coalition
value to every possible coalition (i.e., subset of agents), the
CSG problem involves finding a coalition structure (i.e., a
collection of pair-wise disjoint coalitions whose union yields
the entire set of agents) that is optimal (i.e., in which the
sum of coalition values is maximized). This is a well-known
NP-hard combinatorial optimization problem for which a
number of algorithms have been proposed in recent years.
Following [6], the available CSG algorithms can be classified
into three main categories, each with its own advantages and
limitations:

1. Dynamic programming [14, 6]: Here, the basic idea
is to break the optimization problem into sub-problems
that can be solved recursively, and then combine the
results to solve the original problem, thereby avoiding
the work of recomputing the answer every time the
sub-problem is encountered. While these algorithms
are guaranteed, given n agents, to find an optimal
coalition structure in O(3n) steps, they do not pos-
sess anytime properties. This means that no partial
or interim solutions are available, which is undesirable,
especially given large numbers of agents, since the time
required to return an optimal solution might be longer
than the time available to the agents.

2. Heuristics [11, 12]: These algorithms return “good”
solutions relatively quickly, and scale up well with the
increase in the number of agents involved. However,
they provide no guarantees on the quality of their so-
lutions, i.e., a solution could be arbitrarily worse than
the optimal one.

3. Anytime optimal algorithms [10, 1, 9]: These algo-
rithms initially generate a solution that is guaranteed
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to be within a bound from the optimal. This result is
then improved by evaluating more of the search space
and establishing progressively better bounds until op-
timality is reached. Although these algorithms might,
in the worst case, end up searching the entire space
(i.e., they run in O(nn) time), their anytime property
makes them more robust against failure due to prema-
ture termination.

Recently, Rahwan et al. developed a hybrid algorithm,
called IDP-IP, that combines the state-of-the-art dynamic
programming algorithm, IDP [6], with the state-of-the-art
anytime algorithm, IP [9]. In particular, IDP-IP has been
shown to exploit the strengths of both approaches and, at
the same time, avoid their main weaknesses [7]. This makes
IDP-IP the most efficient CSG algorithm reported to date.
Therefore, we compare against it when evaluating the speed
up obtained by our distributed approach.
An important point to note, here, is that all the aforemen-

tioned algorithms that solve the CSG problem optimally,
i.e., those in categories 1 and 3, assume the existence of a
center that has access to all the coalition values and carries
out all the calculations. However, being centralized leads
to the existence of a performance bottleneck and a single
point of failure, which reduces the overall efficiency and ro-
bustness of the system. What is more desirable, then, is
to be able to distribute the computation among the agents,
instead of having it done centrally by one agent. Such dis-
tributed processing makes the system more robust against
failure, and typically reduces the time for processing (mod-
ulo communications overheads) as a result of utilizing all the
available resources in the system. However, a distributed al-
gorithm that involves exchanging all the possible coalition
values among the agents would be extremely slow due to
the heavy communication overhead. Therefore, it is critical
that the number of coalitions to be taken into consideration
is reduced by orders of magnitude.
In this context, the only decentralized algorithm that has

been developed in the CSG literature is due to Shehory and
Kraus [12]. Although this algorithm is easily implementable,
it uses a simple, greedy, heuristic that provides no guaran-
tees on finding an optimal coalition structure. Moreover, it
has been shown to be extremely inefficient in terms of load
balancing, as well as communication and memory require-
ments, not to mention the exponential number of calcula-
tions that are redundantly1 carried out by the agents (for
more details, see [5]). Against this background, there is a
need for a decentralized algorithm that can efficiently dis-
tribute the computations among the agents and return an
optimal solution. In order to develop such an algorithm,
we need to relax the assumption of having a center contain-
ing all the coalition values. In other words, the input itself
needs to be computed in a distributed manner. Given the
above requirements, we advance the state of the art in the
following ways:

• We propose the first decentralized algorithm, called
D-IP, that solves the CSG algorithm optimally. This

1Here, a redundant calculation corresponds to a coalition
structure being evaluated by more than one agent.

algorithm combines, and improves upon, techniques
from two existing algorithms in the literature, namely
DCVC (the state-of-the-art algorithm for distributing
the coalition value calculations among the agents [5]),
as well as IP (which has been shown to be extremely ef-
ficient for optimal coalition structure generation [9]).2

We also introduce novel techniques to facilitate the
process of distributing the search so that the computa-
tional load is balanced among the agents, and virtually
no redundant calculations are performed.3

• We develop novel techniques for filtering the input
and reducing the communication overhead between the
agents. For instance, our experiments show that, for
uniformly distributed coalition values and 26 agents,
on average only 9000 coalition values out of 67 million
(i.e., 0.013%) are exchanged among the agents before
an optimal coalition structure is reached. These filter
rules only require performing a number of calculations
linear in the size of the input. More importantly, these
rules can also be incorporated into other optimal CSG
algorithms as a preprocessing stage.4

• When evaluating the speed up obtained by our dis-
tributed approach, as opposed to a centralized one, we
compare DIP with the state-of-the-art centralized al-
gorithm, IDP-IP, and show that D-IP is significantly
faster. For example, given 26 agents and a uniform dis-
tribution, D-IP only takes 14.4% of the time required
by IDP-IP to return an optimal solution).

The remainder of this paper is organized as follows. Sec-
tion 2 contains the basic notation. Section 3 analyzes the
way DCVC and IP operate. Section 4 presents our dis-
tributed algorithm. Section 5 presents experimental eval-
uation. Section 6 concludes and presents future work.

2. BASIC NOTATION
Let n be the number of agents, and A = {a1, a2, . . . , an} be
the set of agents. A subset of agents (i.e., a coalition) is typ-
ically denoted by C ⊆ A, and the set of possible coalitions
is denoted by 2A. A coalition structure, CS, is a parti-
tion of A. Let Π denote the set of all coalition structures
(partitions) of A. That is, Π = {CS ⊂ 2A| ∪C∈CS C =
A ∧ ∀C,C′ ∈ CS : C ∩ C′ = ∅}. Now, given a charac-
teristic function v : 2A → � that assigns a value to every
coalition, and given that the value of any coalition structure
CS ∈ Π is computed as follows: V (CS) =

∑
C∈CS v(C),

our goal is to find an optimal coalition structure CS∗ such
that: CS∗ = argmaxCS∈Π V (CS). We will be concerned

2We choose IP, instead of the hybrid IDP-IP algorithm,
since the latter incorporates dynamic programming tech-
niques which are very difficult to decentralize. This is be-
cause they assume the existence of a central table in that
partial solutions are stored, and this entire table is heavily
used throughout the search process.
3In fact, only one coalition is evaluated more than once, and
that is the one containing exactly n coalitions, where n is
the number of agents.
4A very preliminary report on this line of research can be
found in [4].
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with algorithms that progressively search the space of pos-
sible coalition structures, and we denote by CS∗

N the best
of all the solutions that have been examined at a given in-
stance, i.e., the one with the highest value. Our goal is
then to have: V (CS∗

N ) = V (CS∗). In cases where only a
sub-optimal solution is required that is within a finite ra-
tio bound β from the optimal, then our goal would be to
have: V (CS∗

N ) × β ≥ V (CS∗). For example, if we have
β = 4

3
, then we need to find a solution of which the value is

guaranteed to be at least 75% of V (CS∗).

3. ANALYZING DCVC AND IP
Since our D-IP algorithm is built upon two algorithms from
the literature, namely DCVC and IP, in this section we
briefly explain the way these algorithms work.

3.1 DCVC
This is the state-of-the-art algorithm for distributing the
coalition value calculations among the agents. Its main idea
is to represent the space of all feasible coalitions in the form
of structured lists so as to facilitate an efficient distribution
of the computational load among the agents. In more detail,
the input is represented as n lists, namely L1, L2, . . . , Ln,
such that Ls : s ∈ {1, 2, . . . , n} contains all the coalitions
of size s ordered lexicographically. Every list Ls is then di-
vided into

⌊|Ls|
n

⌋
non-overlapping segments such that agent

a1 computes the values for all the coalitions in the first seg-
ment, a2 the values for those in the second segment, and
so on. Note that, in order to save memory, each agent that
uses DCVC maintains only one coalition at a time instead of
maintaining the entire list of coalitions. Therefore, knowing
where an agent’s share is located in Ls is not sufficient to
know directly which coalitions are contained in this share.
Therefore, in order to cycle through the coalitions one by
one, each agent computes the index at which its share ends,
computes the coalition located at that index, and then gen-
erates the remaining coalitions one by one. For that DCVC
uses an efficient technique that computes any coalition C by
either knowing the index of C in Ls, or by knowing the coali-
tion that is located directly below C in Ls. DCVC also uses
an easily-implementable procedure that deals with any left-
over coalitions that could result from |Ls| being not exactly
divisible by n (for more details, see [5]). Figure 1 shows an
example of the resulting assignment given 6 agents.5

3.2 IP
IP is built upon a novel representation of the search space
in which all coalition structures are divided into subspaces
based on the sizes of the coalitions they contain. Specifically,
each subspace is represented by a unique integer partition
of n (e.g., given n = 4, the possible integer partitions are
I1 = [4], I2 = [1, 3], I3 = [2, 2], I4 = [1, 1, 2] and I5 =
[1, 1, 1, 1]). In more detail, an integer partition I corresponds
to a subspace SI containing all the coalition structures in
which the coalition sizes match the parts in I (e.g., S[1,1,2]

contains all the coalition structures in which two coalitions

5For presentation clarity, coalitions are represented in this,
and other figures in the paper, using only the indices of the
agents (e.g., 1, 5, 6 represents coalition {a1, a5, a6}).

Figure 1: An example of the resulting assignment in
DCVC.

are of size 1, and one coalition is of size 2). We will denote
by In the set of possible integer partitions of n.
In the remainder of this section, we will analyze the way IP

utilizes this integer-partition based representation. In par-
ticular, we will divide the basic operation of IP into three
main stages, and focus on the input data needed at each
stage (see Figure 2).

[IP.1] Input analysis: The input to the IP algorithm con-
sists of ordered lists of coalition values, denoted v(Ls) ∀s ∈
{1, . . . , n}, where a value located at any given index in v(Ls)
corresponds to the coalition located at that same index in
Ls. For every list v(Ls), IP scans the input in order to ob-
tain the maximum and average values, denoted Maxs and
Avgs respectively. While scanning the input, the algorithm
also evaluates particular coalition structures. More specif-
ically, the coalition structure that contains n coalitions is
evaluated by summing the values in v(L1), and the one con-
taining exactly 1 coalition is evaluated by checking the value
in v(Ln). Finally, the coalition structures of size 2 are evalu-
ated while scanning two lists at a time — v(Li) and v(Ln−i)
where i ∈ {1, 2, . . . , �n/2�} — starting at different extremi-
ties for each list. This is based on the fact that any two com-
plementary coalitions, C,C′ : C ∩ C′ = ∅, C ∪ C′ = A, are
always diametrically positioned in L|C| and L|C′| [9]. For ex-
ample, given 6 agents, coalitions {a1} and {a2, a3, a4, a5, a6}
are diametrically positioned in the lists L1 and L5 respec-
tively, and coalitions {a1, a2, a3} and {a4, a5, a6} are diamet-
rically positioned in the list L3 (see Figure 1). This implies
that, by summing every possible pair of values in v(Li) and
v(Ln−i) that are located at indices j and |Li| − j, IP ends
up evaluating every possible coalition structure of size 2.
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Figure 2: The main stages of IP

[IP.2] Calculating bounds and pruning subspaces:
For every subspace SI , the algorithm computes upper and
lower bounds, denoted UBI and LBI respectively, on the
value of the best coalition structure that could be found in
that subspace:

UBI =
∑
s∈I

Maxs and LBI =
∑
s∈I

Avgs (1)

By using these bounds, it is possible to compute an upper
bound UB∗ and a lower bound LB∗ on the value of the
optimal coalition structure as follows:

UB∗ = max

(
V (CS∗

N ), max
I∈In

UBI

)
(2)

LB∗ = max

(
V (CS∗

N ), max
I∈In

LBI

)
(3)

These bounds, in turn, enable IP to identify (and con-
sequently prune) any subspaces that have no potential of
containing an optimal coalition structure. Finally, IP estab-
lishes a worse-case guarantee β = min(n

2
, UB∗
V (CS∗

N
)
) on the

value of the best solution found so far (see [9] for more de-
tails).

[IP.3] Searching the subspaces: The order by which
IP searches the subspaces is based on their upper bounds,
starting with the one with the highest upper bound, and
then the second highest, and so on. Now, given an inte-
ger partition I = {i1, i2, . . . , im}, one way of searching the

corresponding subspace SI is by simply going through the
cartesian product of the lists Li1 , Li2 , . . . , Lim and check-
ing every combination to determine whether it is invalid or
redundant. More specifically, an invalid combination is one
in which the coalitions overlap, and a redundant combina-
tion is one that has already been examined with a differ-
ent ordering of the coalitions (e.g., given S{2,2,3}, and hav-
ing examined {{a1, a2}, {a3, a4}, {a5, a6, a7}}, the following
combination no longer needs to be examined and is, there-
fore, considered redundant {{a3, a4}, {a1, a2}, {a5, a6, a7}}).
This search technique, while correct, is inefficient since it
basically involves searching through the cartesian product
of Li1 , . . . , Lim , and this is a significantly bigger space com-
pared to SI (e.g., given the integer partition {1, 2, 3, 4, 5, 6, 7},
the cartesian product of L1, . . . , L7 is nearly 1.3×1010 times
bigger than S{1,2,3,4,5,6,7}). To avoid this, IP uses a depth-
first search technique that cycles through Li1 and, for every
coalition C1 ∈ Li1 , cycles through only the coalitions in Li2

that do not overlap with C1 and are guaranteed not to lead
to redundant coalition structures. Similarly, given any two
coalitions C1 ∈ Li1 , C2 ∈ Li2 , it only cycles through the
relevant coalitions in Li3 , and so on until it reaches Lim .

To speed up the search ever further, IP applies a branch-
and-bound technique. In particular, given some coalitions
C1 ∈ Li1 , C2 ∈ Li2 , . . . , Ck ∈ Lik : k < m, and before
cycling through the relevant coalitions in Lik+1 , . . . , Lim , the
algorithm checks whether:

v(C1)+ · · ·+v(Ck)+Maxik+1 + · · ·+Maxim< V (CS∗
N ) (4)

Now if the above condition holds, then this means none of
the coalition structures containing C1, . . . , Ck can improve
upon the quality of the best solution found so far, in which
case, the algorithm skips this part of the search (again see
[9] for more details).

4. THE D-IP ALGORITHM
Having explained how DCVC and IP work, we now present
our distributed algorithm, D-IP, which builds upon the above
two algorithms. In particular, after dividing the operation
of IP into three stages and identifying the required data for
each one of them, we now modify and improve upon these
stages so that they can be carried out more efficiently and in
a distributed manner, and then introduce new communica-
tion stages to ensure that each agent has the required data
for each computational stage. This modification involves (1)
incorporating a modified version of DCVC to distribute the
first stage of IP, (2) using new filter rules to significantly re-
duce the communication bottleneck that occurs between the
second and third stage, (3) introducing a new technique to
reduce the computational bottleneck that occurs in the third
stage, and (4) incorporating a load balancing technique that
is necessary since the number of computations involved in
each agent’s share of the search could differ significantly due
to the branch-and-bound technique used during the search.
The algorithm’s main stages, which can be seen in Figure 3,
are each discussed in detail in the following subsections.

[D-IP.1] Distributed input generation and analysis:
Since the DCVC algorithm is inherently distributed, it con-
stitutes a natural starting point for our distributed approach
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Figure 3: The main stages of D-IP

to the CSG problem. Based on this, we modify DCVC in
such a way that it becomes possible for the agents to perform
the input-analysis stage of IP in a distributed manner and
with very little communication. In this context, recall that
the original DCVC algorithm divides each list Ls into

⌊|Ls|
n

⌋
consecutive segments, and assigns the first segment to a1,
the second to a2, and so on. Whereas such a distribution is
natural and intuitive, it makes it difficult, if not impossible,
for each agent to evaluate any coalition structures using only
the coalitions in its share. This is because the agent needs
to search through the possible combinations of these coali-
tions, which is not trivial due to the exponential number of
such combinations, and there are no guarantees that any of
these combinations would be a valid coalition structure. In
Figure 1, for example, not even one coalition structure can
be constructed using only the coalitions in agent a5’s share.
With this in mind, we modify DCVC as follows:

• While every list Li : i ∈ {1, . . . , ⌈n
2

⌉ − 1} is divided
into segments and left-over coalitions as in DCVC, the
list Ln−i is divided in a reversed order. That is, the
segments start from the bottom of the list, instead
of the top, and the left-over coalitions, if there are
any, appear at the top of the list. Moreover, if n is
an even number, then the list Ln/2 is split in two,
where the upper half is assigned as in DCVC (i.e., from
top to bottom), and the lower one is assigned in a
reversed order (i.e., from bottom to top). Figure 4
shows an example for 6 agents. This modification will
be used to enable each agent to efficiently evaluate
certain coalition structures using only the coalitions in
its share (see below for more details).

• At the beginning of the computations, each agent aj

sends to the others the value of the coalition in L1

that belongs to aj ’s share. By so doing, every agent
would have the values of all singletons, i.e., coalitions
that contain exactly one agent. After that, each agent
evaluates the coalition structure of size n, and that is
by summing the values of singletons.

• Each agent cycles simultaneously through its share of
Li and Ln−i : i ∈ {1, . . . , ⌊n

2

⌋}, starting at different
extremities for each share. Note that, due to our mod-
ified assignment of the shares, there will be no over-
lap between any two coalitions C′ ∈ Li, C

′′ ∈ Ln−i

for which the agent is simultaneously calculating the
values (in Figure 4, see how the connected coalitions
in agent a5’s share do not overlap). Based on this,
and after calculating the values of C′ and C′′, the
agent evaluates the coalition structure {C′, C′′} by
summing these two values. Moreover, since the agent
already knows the values of singletons, it also evaluates
{C′, {aj}aj∈C′′} and {{aj}aj∈C′ , C′′}.

• Each agent keeps track of the maximum and average
values in its share of every list, as well as the best
coalition structure that it found so far.

The above modifications ensure that the coalition struc-
tures of sizes 1, 2, and n are evaluated in a decentralized
manner. This is particularly interesting since it has been
shown that, by evaluating exactly these coalition structures,
it is possible to establish a worst-case guarantee β = n

2
on

the quality of the best solution found [10]. Our modified
version of DCVC also enables the agents to search, in a de-
centralized manner, through SI∈In : I = {k, 1, 1, . . . , 1} for
all k ∈ {2, 3, . . . , n− 1}.

Communication stage 1: Now that the agents have car-
ried out the first stage of IP in a distributed manner, they
next need to carry out the second one, and in order to do so,
they each need to have the required data at hand. In partic-
ular, as mentioned in Section 3.2, the second stage of IP re-
quires CS∗

N as well as Maxs and Avgs for all s ∈ {1, . . . , n}
(see Figure 2). Note that each agent at this point knows
only the maximum and average values of the coalitions in its
share, as well as the best of all the coalition structures that
it found, but this is not sufficient to compute the required
data, especially since each agent does not know the values
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Figure 4: The resulting distribution of our modified
version of DCVC given 6 agents.

of the coalitions in the other agents’ shares. Therefore, the
agents exchange their maximum and average values as well
as the best coalition structure that each of them found and,
using this information, each agent then independently com-
putes CS∗

N and Maxs, Avgs ∀s ∈ {1, . . . , n}.

[D-IP.2] Calculating bounds and pruning subspaces:
Using the data transmitted above, each agent is able to in-
dependently compute Maxs and Avgs for every list Ls and,
consequently, can compute UBI and LBI for every subspace
SI as in equation (1). Moreover, each agent independently
computes CS∗

N as well as UB∗ and LB∗ using equations
(2) and (3) respectively. Finally, it establishes a worst-case
guarantee β = min(n

2
, UB∗
V (CS∗

N
)
) and prunes any unpromising

subspaces.

Communication stage 2: At this point, the agents would
have performed the first two stages of IP in a distributed
manner, and they now need to search through the remain-
ing subspaces if there are any. Specifically, in order to search
through a subspace SI , the agents first need to exchange the
values of the coalitions in the lists Ls : s ∈ I. Now since
these lists can be exponentially long, we apply what we call
filter rules to determine a priori which coalitions cannot be
in an optimal coalition structure so that the agents avoid
exchanging them among themselves. More specifically, we
use two filter rules, namely FR1 and FR2:

Filter Rule 1 (FR1): Given a coalition C ∈ 2A, if the
following condition holds then do not consider C since it
cannot be part of an optimal coalition structure:

v(C) <
∑
aj∈C

v({aj})

For instance, if v({a1a2}) < v({a1}) + v({a2}), then any
coalition structure CS � {a1a2} cannot be optimal because
we can replace {a1a2} with {a1}, {a2} and end up with an-
other coalition structure CS′ such that V (CS′) > V (CS).
Based on this, any coalition that satisfies FR1 is not ex-
changed among the agents. Note, however, that the effec-
tiveness of FR1 depends on the values of singletons with
respect to the values of other coalitions. While, for both
normal and uniform distributions, this rule filters an aver-
age of 50% of all coalitions, in the worst case not even one
coalition is filtered. Based on this, we propose the second
filter rule:

Filter Rule 2 (FR2): Given a subspace SI and a coalition
C : |C| ∈ I, if the following condition holds then do not
consider C since the best coalition structure, i.e., the one
with the highest value, in SI cannot contain it:

v(C) + UBIk −Max|C| < V (CS∗
N ) (5)

The logic behind FR2 is as follows. While Max|C| is
used when computing UBI , we replace it with v(C) and,
hence, obtain a tighter upper bound on the values of all the
coalition structures in SI that contain C. Now, if this new
bound happens to be smaller than V (CS∗

N ), then any coali-
tion structure containing C can be skipped while searching
SI . Conceptually, FR2 is similar to the branch-and-bound
technique of [9] except that FR2 is applied before, and not
during, the search of a subspace.

A key point to note here is that, unlike FR1 which is in-
dependent of any subspace, FR2 depends on the subspace
being searched. Therefore, it might intuitively seem that
any coalition filtered using FR2 while searching a particu-
lar subspace can still be useful while searching another, in
which case it still needs to be exchanged among the agents.
However, against this intuition the following lemma holds.

Lemma 1. If a coalition C is filtered using FR2 given a
particular subspace SI , then it will also be filtered using FR2
given any other subspace SJ : UBJ ≤ UBI .

Now since the subspaces are searched starting with the
one with the highest upper bound then the second highest
etc., the above lemma implies that, after the promising coali-
tions from a list have been exchanged (while searching some
subspace SI), no other coalition from this list will have to
be exchanged again while searching other subspaces.

A key point to note, here, is that the above two filter rules
can also be incorporated into other optimal CSG algorithms
as a preprocessing stage to reduce the number of coalitions
taken into consideration, especially since these rules only
require performing a number of calculations that grows lin-
early with the size of the input.

[D-IP.3] Distributed search of promising subspaces:
The order by which the subspaces are searched is similar to
IP, i.e., based on their upper bounds. As mentioned above,
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before a subspace S{i1,...,im} can be searched in a distributed
manner, the agents first exchange their filtered shares of the
lists Li1 , . . . , Lim . Now, given the depth-first nature of the
search technique used by IP, it is possible to distribute the
calculations among the agents by simply dividing the filtered
coalitions of the first list (i.e., Li1) into segments and left-
overs (as in DCVC) among the agents. Then, every agent
ai cycles through the coalitions in its share of Li1 and, for
every such coalition, cycles through the relevant coalitions
in Li2 , . . . , Lim as in IP (see section 3.2 for more details).
In order to speed up this distributed search, we modify it as
follows:

• Although the agents’ shares of Li1 are equal, this does
not necessarily mean that the agents will each evalu-
ate the same number of coalition structures, and that
is mainly due to the branch-and-bound technique be-
ing applied during the search (i.e., some agents might
prune more coalition structures than others). Based on
this, once an agent ai finishes its calculations, it sends
a signal to another randomly-chosen agent aj which,
in turn, responds with the number of coalitions that
are yet to be examined in its share of Li1 . These coali-
tions are then divided between ai and aj without the
need for further communication, and that is because
ai (like every other agent) already has the values of all
filtered coalitions in Li1 , including those in aj ’s share.

• While the ordering of the lists does not affect the cor-
rectness of the search (i.e., it doesn’t matter which
list comes first and which comes second etc.), it does
indeed affect its efficiency. This is due to the branch-
and-bound technique being used, which is based on
equation (4). In particular, by looking at the equa-
tion, we can see that any coalition structure pruned
given a particular ordering of its coalitions might not
be pruned at all given another ordering, or might be
pruned but at a later stage of the search (i.e., it might
be pruned while cycling through the ith list, instead of
the jth, where i > j). Based on this, we optimize the
ordering of the lists before any subspace is searched.
More specifically, for every list, we estimate the num-
ber of coalitions at which the branch-and-bound tech-
nique is activated (i.e., at which the depth-first search
stops going any deeper into the search tree). These es-
timations are then used to order the lists based on the
proportion of coalitions that activate the branch-and-
bound technique in each list. We first put the list with
the highest proportion, and then the second highest,
and so on. Our estimations are based on the follow-
ing lemma, which comes from comparing equations (4)
and (5):

Lemma 2. If a coalition is filtered by FR2 given
a particular subspace, then this coalition will activate
branch-and-bound if it is encountered during the search
of that subspace.

This implies that, for any given list Ls, and for any
subspace SI : I � s, the number of coalitions that
are filtered by FR2 is actually an upper bound on the

number of coalitions that activate branch-and-bound
in that list. Against this background, we assume in our
heuristics that the lists with higher upper bounds have
higher proportions of coalitions activating branch-and-
bound. This rather simple heuristic can lead to sub-
stantial improvements (see Section 5 for more details).
More importantly, this rules can be incorporated into
other centralized algorithms as a preprocessing stage
to reduce the number of coalitions that are taken into
consideration.

Having explained every stage of D-IP in detail, we now
evaluate its performance in the following section.

5. EXPERIMENTAL EVALUATION
In order to evaluate the performance of D-IP, we imple-
mented it using JADE6 (Java Agent DEvelopment Frame-
work), and used 14 Intel Core 2 Duo 2.0 GHz workstations
that are connected via a 1Gb Ethernet network to simulate
up to 28 agents.

Following, among others, Sandholm et al. [10] and Rah-
wan et al. [8], we consider two probability distributions of
coalition values:

• Normal: v(C) = max(0, |C| × p), for p ∈ N(1, 0.1);

• Uniform: v(C) = max(0, |C| × p), for p ∈ U(0, 1);

In our experiments, we measure the time required by D-IP
to run to completion, comparing with both IP (the central-
ized version of D-IP) as well as IDP-IP (the current state-
of-the-art algorithm).7 We also calculate the percentage of
coalitions that need to be exchanged among the agents. In
this context, note that the main cost to our distributed ap-
proach, compared to other centralized ones, is the commu-
nication required among the agents. Therefore, it is crucial
that we reduce this cost as much as possible. Finally, re-
garding the anytime property, instead of showing how the
solution quality and worst-case guarantees grow over the
running time of the algorithm, we simply refer the reader to
[9], and that is because D-IP is almost identical to IP in this
aspect.

Our simulation results are shown in Figure 5. As can be
seen, our filter rules significantly reduce the percentage of
coalitions that are exchanged among the agents, e.g., given
26 agents and a uniform distribution, on average only 9000
out of 67 million coalitions need to be exchanged, that is
0.013%. Moreover, this percentage monotonically decreases
as the number of agents increases for both normal and uni-
form distributions. It can also be seen from the figure that
D-IP is significantly faster than IP (e.g., given 26 agents, it
only takes 9.6% of the required time given a normal distri-
bution, and only 4.04% given a uniform distribution). These
improvements come from our more-informed way of ordering
the lists, as well as the fact that the computations are now
done in parallel, and involve a smaller number of coalitions,

6For more details, see http://jade.tilab.com.
7Although Rahwan et al. did not explicitly specify in [9]
and [7] how the lists were ordered in their simulations, the
authors have informed us that the lists were actually ordered
in a descending order based on the size of the coalitions in
each list.
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Figure 5: Simulation results

i.e., only the filtered ones. Finally, the figure shows that
D-IP is consistently faster than IDP-IP, the fastest available
algorithm in the literature. This means that, by developing
D-IP, we do not only provide the first decentralized algo-
rithm for optimal coalition structure generation, but we also
set a new benchmark in terms of the time required to solve
this problem optimally.

6. CONCLUSIONS & FUTURE WORK
In this paper, we have proposed the first decentralized algo-
rithm for optimal coalition structure generation. The distri-
bution is performed in such a way that the computational
load is balanced among the agents, and virtually no redun-
dant calculations are performed. We have also introduced
novel filtering rules that significantly reduce the communi-
cation requirements of our decentralized approach, and can
also be incorporated into other centralized approaches as a
preprocessing stage to reduce the number of coalitions taken
into consideration if, for example, a significantly improved
algorithm became available. Moreover, we have proposed
a more-informed way of ordering the lists, compared to IP,
when searching different subspaces. When evaluating the
speed up obtained by our distributed approach, as opposed
to centralized ones, we compared it with the state-of-the-art
IDP-IP algorithm and showed that it is significantly faster.
By using D-IP, the agents can now solve the CSG problem
in a much faster and more robust manner, without having a
performance bottleneck and a single point of failure.
Although we implement a more informed way of ordering

the coalition lists during a subspace search, we believe this
could still be improved even further. In particular, in our
future work, we would like to determine whether there is an
optimal way of ordering the lists. Moreover, while our filter
rules significantly reduce the number of coalitions that need
to be exchanged between the agents, we would like to try
and reduce the communication overhead even further, by
developing additional rules. Finally, we would like to con-
sider other value distributions besides Normal and Uniform
in our experiments, e.g. the NDCS distribution recently in-
troduced by Rahwan et al. [9].
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