Fundamenta Informaticae 92 (2009) 373—-396 373
DOI 10.3233/FI-2009-80
10S Press

Towards a Formal Semantics for the Process Model of the Tavea
Workbench. Part Il

Jacek Sroka '

Institute of Informatics, University of Warsaw
Poland

sroka@mimuw.edu.pl

Jan Hidders

Faculty EEMCS, Delft University of Technology
The Netherlands

a.j.h.hidders@tudelft.nl

Abstract. Workflow development and enactment workbenches are begpanstandard tool for
conductingn silico experiments. Their main advantages are easy to operatmteséaces, special-
ized and expressive graphical workflow specification laggsand integration with a huge number
of bioinformatic services. A popular example of such a wekth is Taverna, which has many ad-
ditional useful features like service discovery, storingeimediate results and tracking data prove-
nance.

We discuss a detailed formal semantics for Scufl - the workéefinition language of the Taverna
workbench. It has several interesting features that armebin other models including dynamic and
transparent type coercion and implicit iteration, con&dges, failure mechanisms, and incoming-
links strategies. We study these features and investigaie tsefulness separately as well as in
combination, and discuss alternatives.

The formal definition of such a detailed semantics not orliywad to exactly understand what is be-
ing done in a given experiment, but is also the first step tdwatomatic correctness verification and
allows the creation of auxiliary tools that would detectguital errors and suggest possible solutions
to workflow creators, the same way as Integrated DevelopB@ritonments aid modern program-
mers. A formal semantics is also essential for work on enaetrmptimization and in designing the
means to effectively query workflow repositories.

*Supported by Polish government grant no. N206 007 32/0809
tAddress for correspondence: Institute of Informatics Marsity of Warsaw, Banacha 2, 02-097 Warsaw, Poland

374 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

This paper is the second of two. In the first one [13] we havenddfi explained and discussed
fundamental notions for describing Scufl graphs and theiresgics. Here, in the second part, we
use these notions to define the semantics and show that owitidefcan be used to prove properties
of Scufl graphs.

Keywords: formal semantics, Scufl, workflows, Taverna workbench

1. Introduction

Taverna [11] is an easy to operate workbench for workflow ldgreent and enactment. It allows users
to graphically construct workflows from libraries of avdila components and is intended for use in
bioinformatics data analysis experiments. The most ingmbrvirtues of Taverna are that it is very
easy to use, has a specialized and expressive graphic#ficgiemn language and integrates many data
analysis tools. In [12] it is stated that the number of sudistexceeds 1000. It also includes additional
useful features like service discovery, storing interratlresults and tracking of data provenance. The
workbench is being constantly developed, but it is alreamhysitlered stable and has been used in real
life research, e.g., [14, 7].

This paper is the second of two. In the first part [13] we haviindd, explained and discussed
fundamental notions for describing Scufl graphs and theivasgics. Here, in the second part, we use
these notions to define the semantics and show that our d@&findn be used to prove properties of Sculfl
graphs. To account for side effects the semantics is definadransition system. Finally, this part also
includes a more elaborate comparison with the work in [15].

For the convenience of the reader we briefly recall some ofdimal notions that were introduced
in the first part. The sé¥;,, contains all thecomplex valuesvhich are constructed from MIME values
and recursively nested lists. We uses a special marker to indicate the absence of a value. Tlheiset
the set of allScufl graphsvhich are defined as tuples= (I, O, P, w;, 7o, Eq4, E¢, A, ils, ps,dv) where
1 is the set of workflow inputg) is the set of workflow outputss; andr, are the sets of processor input
ports and output ports, respectivelyy is the set of dataflow edgesg.. is the set of control flow edges,
A is the function that assigns to each processor either aceemaime or a nested Scufl grapls, is the
function that assigns incoming links strategies to proamesgput ports and workfow outputgs is the
function that assigns product strategies to processordaisthe function that assigns default values to
some processor input ports. Given a Scufl grapte definethe nesting graphV, to be the graph over
all the Scufl graphs ip, including g itself, that indicates which graph is nested in which otlrapf. The
functiontype; gives for each processprin a Scufl graph the tuple type that describes its input iaterf

The setV,,; contains the extended complex values which are recursivedyed lists that contain
tuples of complex values. For each product strategyfunction[s]” defines the semantics efby
mapping a tuple of complex values containing a field for eamtt fabel ins to an extended complex
value. The result represents the value over which a procegtio product strategy will iterate. It
contains tuples of the tuple type which is the input value type expected by the processoreactl of
these tuples represent the input of a single iteration dtépegrocessor.

The setZ contains all complex value indices, i.e., path expresseguch asl/3/2 that indicate
positions in complex values and extended complex valuesalllgj there are the functionférst, get,
put and next for iterating over and constructing complex values. Thecfiom first(v) finds the first

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 375

position in the extended complex valuat which we find a tuple value. The functigat(v, 3) finds the
value at position3 in the extended complex value The functionput(v, a, w) inserts into the complex
valuewv at positiona the complex valuev and returns the result. Finally, the functioext(v,) finds in
extended complex valugthe first position after position that contains a tuple.

2. Transition system semantics

In this section we define the semantics of Scufl graphs in tefmastransition system, i.e., we specify

a set of possible states of the Scufl graph and which transitioe possible between these states. The
following subsection discusses the states, it is followedubsections on auxiliary notions for describing
the transitions, then the transitions themselves are skscl) and the final subsection shows that the
defined semantics can be used in proofs of properties of Seythg.

2.1. Scufl graph state

The state of a Scufl graph is described in two levels. At theekievel we describe the so-calliedal
stateof each of the subgraphs. This local state consists of aigésor of the states of the workflow
inputs and outputs, the processor input and output portsttenprocessors themselves, but only those
that are directly part of the subgraph in question. At thénegy level theglobal stateof a Scufl graph
g is described by giving the local states of all the Scufl graphg,, i.e., all subgraphs aof including
g itself. In the following we first define the notion of local stafollowed by a definition of the global
state.

We start with an informal introduction of the components ¢deal state. Consider the Scufl graph
g = (1,0, P, 7,7, Eq, Ec, \,ils, ps,dv). Theworkflow input value mappingv : I — (Vi U L)
stores the value associated with each workflow input. Thepresents the lack of value, which here
means that it has not been inserted yet or has already bebardts the connected processor input
ports. Next, theworkflow output value mappinQv : O — (Vi U L), theinput port value map-
ping ipv : m; — (Vi U L) and theoutput port value mappingpv : 7, — (Vi U L) store the
values associated with workflow outputs, processor inptis@nd processor output ports respectively.
The stored values are constructed by the incoming-linketegdy function (see Section 2.3 of [13]) in
case of the workflow output value mapping and the input poliesanapping, or by theut func-
tion (see Section 2.2 of [13]) in case of the output port vahapping. This means that even if they
have already been defined, i.e., are not equal tahey may still be extended with additional val-
ues arriving from further data edges or iteration stepspeetively. Next, each processor itself can
be in several states like “scheduled” or “preparing”, whiglspecified by thexecution state mapping
es : P — {"scheduled’ “preparing”, “waiting”, “finished”, “failed” }. The state “scheduled” indicates
that the processor has not yet been used. The state “prg@paniticates that execution of this processor
has already started but the input value, or in case of itaratbme of its subvalues, have still to be pro-
cessed. The state “waiting” indicates that the processsaiting for a nested Scufl graph or an external
service to return a restilt The state “finished” indicates that it has finished with sssc The final
state “failed” indicates that it has finished with failurein&lly, since a processor might have to iterate

YIn official Taverna terminology the states that we call “@epg” and “waiting” are divided int@zecuting anditerating
for when the processor is either processing a value of itearg type or a value that is more deeply nested, respactivel

376 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

over subvalues of the input value, the current position @itiput value is stored by thteration index
mappingii : P — 7.

Definition 2.1. (Local state)
Given a Scufl grapty = (1,0, P, m;, 7, Eq, Ec, \,ils,ps,dv), a local state ofy is a tuplels =
(Iv, Ov,ipv, opv, es, ii) such that:

o J[v:I— (Vi U L) isthe workflow input value mapping,

e Ov:0 — (Vg U L) is the workflow output value mapping,
e ipv:m; — (Vi U L) is the input port value mapping,

e opv: m; — (Ve U L) is the output port value mapping,

e es: P — {“scheduled’“preparing”, “waiting”, “finished”, “failed” } is the processor state map-
ping,

e ii : P — T is the iteration index mapping.

We refer to the set of all local states for all Scufl graphd.&s The input port value of an input port
(p,1), normally denoted a®v((p, 1)), will also be written aspv(p,). Likewise the output port value of
an output portp, 1) will also be written aspv(p,).

Scufl graphs do not have stateful features, such as countetatastores, that can be read and
updated during a run of the Scufl graph. So the definition ofcallstate does not contain anything
that represents the state of such elements. Of course thrdeecsimulated by defining a set of special
basic processors that have as their semantics that theyoremuite certain data stores. However, also
for such basic processors that represent calls to statefuices, we do not represent the state of the
service in the local state. This is because we consider this got a part of the Taverna system but
a part of the environment with which it communicates. It isgible to reason about the behavior of
Taverna while taking into account that a service it calls ¢er$ain stateful behavior, e.g., is a counter.
For that a description of that behavior, ideally also in therf of a state transition system, has to be
composed with Taverna’s state transition system suchhieatmutual transitions, i.e., the service calls,
are synchronized.

Definition 2.2. (Global state)
A global state of a Scufl graphis a functiongs : G, — LS that associates with each subgraple G,
a local state ofy'.

Note that only one state is associated with each subgrapthwinéans that it executes only one run
at any moment. Since we restrict ourselves to hierarcRicedsted Scufl graphs (see Section 1.5 of [13])
this cannot lead to resource contention between differaris @f the Scufl graph. Although in Taverna
it is possible to choose whether the iteration steps areua@sequentially or in parallel, we will only
describe here sequential execution. It is possible to desersemantics that would allow parallelism,
see for example [5, 4], but we have chosen not to do so in thierpaecause it would complicate the
presentation of the main concepts of the semantics of Scufl.

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 377

2.2. Ready ports and enabled processors

The fundamental notion that determines the execution ofufl §caph is the notion oénablednessf
a processor, i.e., whether in a certain state a processostaenprocessing its input. One necessary
condition for this is that all its input ports aready; i.e., store a fully constructed input value. In the
following we describe these two notions in more detail.

Informally, a processor input port is said to be ready, if thkie assigned to it will not be further
extended by the incoming-links strategy function (seeiSe@&.3 of [13]).

Definition 2.3. (Ready input port)

Given a Scufl graply = (1,0, P, 7;, 7o, Eg, E., \,ils, ps, dv) we say that input pon;,, € ; is ready
in a local statds = (v, Owv,ipv,opuv,es,ii) iff p;, either has no incoming data edges opif has
incoming data edges then it holds that :

(i) if ils(pin) = first, then the first value fop;,, has already arrived, i.epv(p;,) # L, and

(i) if ils(pin) = merge, then all the values fop;,, have already arrived, i.e., thgv(p;,) is a list with
length equal to the number of data edges ending,in

Recall that input ports with no incoming edge must have aulefalue specified, and therefore are
always ready.

Note that if a select-first incoming-links strategy is sfiedi, the port does not wait for values from all
incoming data edges, but is ready after receiving the first @n the other hand, if the merge incoming-
links strategy is specified, the port has to wait for a valeenfevery incoming data edge. This way the
merge setting can be viewed as a shortcut for an intermegiagessor with a separate input port for
each incoming data edge and one output port, that compokess\feom distinct ports into a li&t

The notion of readiness is extended to workflow outputs, kvigcnatural since the values stored
there will also be constructed by the incoming-links stygtéunction (see Section 2.3 of [13]). There
is a small exception to this in the behavior of Taverna 1.WHere a workflow output with thenerge
strategy may become ready even if only values from some ahtteming data edges arrived and it is
certain that no more will since the processors that showddypre them failed. However, this behavior
seems to be idiosyncratic.

The notion of readiness now allows us to define the notion abkrlness. Informally, a processor is
said to be enabled, when it can start processing its inpureTare three conditions that have to hold for
that to happen. First, it has to be scheduled, which meabthize current run of the Scufl graph it was
not used yet. Second, all the processors that it synchmmiith through the control edges must have
already finished without a failure. Finally, every one ofiitput ports has to be ready, i.e., a value has to
be available to be consumed from it, either one that was extiduring the computation or provided as
default. Formally:

Definition 2.4. (Enabled processor)
Given a Scufl graph = (I, O, P, m;, 7o, Eq4, Ec, A, ils, ps, dv) and its local statés = (Iv, Ov, ipv, opv,
es,ii), a processop € P is said to beenablediff it holds that:

2Although, in the intermediary processor case the orderfrigeelements of the result list would be always the same abd n
correspond to the order in which the input values have atrive

378 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

(i) es(p) = “scheduled”, and
(i) for every control edgéyp’,p) € E., es(p’) = “finished”, and
(iii) each input port ofp is ready inis.

Notice that during one Scufl graph run each processor at thietel can start processing of the input
at most once, so it can produce at most one result value ascetith data edge transports at most one
value.

2.3. Finished Scufl graphs

Here we explain when a Scufl graph is considered tfirished Informally, a Scufl graph is finished
when all the workflow input values were propagated, all valugprocessor output ports were propagated
and there are no more processors that can start preparingregraring or are waiting.

Definition 2.5. (Finished Scufl graph)
A Scufl graphg = (1,0, P, m;, m, Eq, Ec, A, ils, ps,dv) is said to befinishedin a local statels =
(Iv, Ov,ipv, opv,es, i) iff it holds that:

(i) for every workflow inputi € I it holds that/v(i) = L,

(i) for every processor output pofp,) € 7, it holds thatopv(p,l) = L,
(iii) none of the scheduled processors is enabled, and
(iv) there are no preparing or waiting processors.

Furthermore, we say that the Scufl grdptished with a succeswhen its every workflow output € O
is ready, otherwise we sayfihished with a failure

This definition of finishing with a success or failure is ingaliby the fact that a Scufl graph can be
nested and thus must produce values for its every workflogubuso that the processor in which it is
nested can produce values on its every output port. Howeévehe real Taverna two exceptions are
present which we briefly discuss here. First, for a Scufl gthphis not nested, i.e., the top level Sculfl
graph, it is enough to have at least one of its workflow outpegly so that it finishes with a success.
Second, a nested Scufl graph that iterates, i.e., was erefarta nested value in the value computed
by the product strategy, always finishes with a success, iEveme of its workflow outputs are ready.
In the result of such iteration the empty string is used tdrithe missing results for workflow outputs
that were not ready, but only when in a subsequent iteratigm this workflow output becomes ready.
However, if during all iterations a nested Scufl graph hasonatiuced any value on a certain port, then
the associated nested processor will fail anyway. For el@n@gsume a nested Scufl graph with one
workflow input and one workflow output is defined such thattiines its input value when it is unequal
to “x”, and no value otherwise. Then, if it iterates oy , “y” ,“x” ,“y” , “X” | it returns[*” | “y” ,*" [“y" |.
However, iterating with such a nested Scufl graph over a it just “x” elements causes a failure of
the nested processor.

The inclusion of the extra empty values seems an attemptvsech iterating nested Scufl graph
from failure. However, the empty values will probably be misrpreted in the remaining part of the

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 379

Scufl graph in which the iteration over the nested Scufl gragtuiwed. Moreover, the absence of the
extra empty values when they are not followed by ordinaryltes may also confuse the user. For
example, consider the Scufl graph in Fig. 1, where the negtefl §aph is used to submit a paper to a
PhD symposium and apply for a grant to visit it, and the “Deatian.of_expenses” processor has the dot
product strategy specified. Let us assume, that this Scyfhgssstarted with a list of three PhD students
{“X”,“Y” ,“Z" } and during the iteration the papers written by “X” and “Z” aecepted, but for some
formal reasons they do not get grants and the paper writté¥’lig rejected, but he gets a grant anyway
since the money are available. That is the{iSt,“gnY” }, where “gnY” is the grant number for “Y” is
returned on the output pogt-ant_number, and the lis{*idX” ,*” ,“idZ” }, where “idX” is the accepted
paper identifier for “X” while “idZ” for “Z”, is returned on tke output poricon ference_name. Now,

if the “Declarationof_expenses” processor is not prepared to handle empty vakesyill have his
expenses refunded even though he had no grant, “Y” will gatapdrom his grant even though he did
not go to the symposium and “Z” will not have his expensesneéa, despite the fact that he was in the
same situation as “X”. Although the first thing is not bad irstbontext, the remaining two probably are.
Furthermore, if the symposium chair was used to runningSbisfl graph for individual PhD students,
he would probably be dissatisfied by the different behavier, running this Scufl graph separately for
any of “X”, “Y” and “Z” would alert him with an error.

Therefore we have chosen not to allow in our formal semaitdegrna’s exception for nested Scufl
graphs and define them also to be finished with failure if niathelir workflow outputs have produced
a value. For uniformity we also do not allow Taverna’s eximpfor the top level Scufl graph, so also
there we define the notion such that all workflow outputs muostipce a result in order for it to finish
with success.

RIS I IO . Worlflow Outputs
- Workflow Inputs : get_positions :

. hire :
A - | department [positions : v

position A..l/,/\‘
: et_applying_scientists eEmpna emp_numbers .
. department | gecappiing. scientist : :

department | scientists

Figure 1. lteration over a nested Scufl graph

2.4, Scufl graph initialization and result collection

When a Scufl graph starts execution its state needs to bestgsdethat any remaining state properties
such as intermediate and final results of the previous execate removed. Therefore we introduce the
notion of aninitial statein which we reset the workflow outputs, the processor inputspthe processor
output ports, the processor states and the iteration isndiete that the workflow inputs are not required
to be empty. Formally the notion is defined as follows.

Definition 2.6. (Initial state)
A local statels = (Iv, Ov,ipv, opv, es, ii) of Scufl graphy = (1,0, P, m;, 7o, Eq, Ec, \,ils, ps,dv) is

380 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

said to be arnitial stateiff:
(i) Ov={(o,L)]0€0},
(i)) ipv = {(Pin, L) | Pin € ™},
(iii) opv = {(Pout: L) | Pout € o},
(iv) es = {(p,"“scheduled) | p € P}, and

(v) ii = {(p,€) | p € P}.

An initial state for whichIv=1({1}) = 0, with Tv=1(X) = {i | Iv(i) € X}, is calledfull, if
Iv~t({L}) = I itis calledcleanand otherwise the initial state is callpdrtial.

In addition we define the functiomit to return the initial local state of a given Scufl graph after
initiating its workflow inputs with values stored on fieldsafjiven tuple. Formally, the functionit :
G x Vwp — LS is defined as a partial function such that for a Scufl grapdnd a tuplet where
dom(t) C I it holds thatinit(g, t) is the initial statt U ¢, Ov, ipv, opv, es, ii) of g, wheret = {(i, L) |
i € (I'\ dom(t))}. Note that the returned initial state is fulldbm(¢) = 1.

We also define the functioresult to return the tuple of values computed on the workflow outputs
a given local state of a given Scufl graph. Formally, the gbftinctionresult : LS — Vy,, is defined
such thatresult(ls) = Owv if s = (Iv, Ov, ipv, opv, es, i) andOv € Vy,,,. Observe thatesult(ls) is
defined if a Scufl graph finished with a success in local stdte

2.5. State transitions

In this section we describe the possible transitions of thie ©f a Scufl graph. Recall that a system and
its state is defined by a hierarchical Scufl grgpdnd a global states of g. For each type of transition
we will specify a precondition oveys that must be satisfied and specify the new global sjatesuch
that the transitiorys ~~ gs’ is possible.

Before we proceed with the formal description of the traos#t, we summarize them in a brief and
informal overview:

Propagation of values from workflow inputs (PROPW!I) The values in the workflow inputs are prop-
agated to the processor input ports and workflow outputs tiehwtihey are connected by data
edges. At their destination they are added to any value shalteéady present there according to
the incoming-links strategy.

Initializing processor execution (INITPE) A scheduled and enabled processor is prepared for execu-
tion, i.e., the output port values are initialized and tleedtion index is set to the first suitable value
in the result computed by the product strategy.

Starting a service call by a basic processor (STARTSCA call is made to the service associated with
the basic processor, with the value indicated by the i@ndtidex as a parameter.

Finishing successfully a service call by a basic process@(CFSC) A call to a service succeeds and
returns a value. The value is distributed and inserted imodifferent output port values of the
processor. The iteration index is moved to the next suitedlige.

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 381

Failure of a service call by a basic processor (FAILSC)A call to a service fails and so the whole ex-
ecution of the processor fails.

Starting a nested Scufl graph execution (STARTNSGE)Trhe nested Scufl graph is initialized with the
value indicated by the iteration index.

Finishing successfully a nested Scufl graph execution (SUGKKGE) The nested Scufl graph finishes
with success and returns a value. This value is distributetimserted into the different output
port values of the processor. The iteration index is movdtamext suitable value.

Failure of a nested Scufl graph execution (FAILSGE)The nested Scufl graph finishes with failure,
and so the whole execution of the processor fails.

Finishing processor execution (FINPE)If the iteration index is undefined because there is no next
suitable value, the executing of the processor finishes avitiiccess.

Propagation of values from processor output ports (PROPOP)MWhen a processor is finished, but not
failed, the values of its output ports are propagated to tleegssor input ports and workflow
outputs to which they are connected by data edges. At thsiind¢ion they are added to any value
that is already there according to the specified incominkslistrategy.

We now describe the transitions in full detail using thedaling notation. For a local state =
(Iv, Ov,ipv,opv, es,ii) we letls[Iv := Iv'] denote the local statdv’, Ov, ipv, opv, es, ii). In a sim-
ilar fashion we definés[Ov := Ov'], Is[ipv := ipv'], Is[opv := opv'], Is[es := es] andis[ii := 7],
as the local states equal o but with the indicated tuple position replaced with the nesue. For a
function f and values: andy, we let f[z — y] denote the function that is equal feexcept that it maps
x to y, i.e., the function{(2’,y') | («',v) € f,2' # x} U {(z,y)}. For two functionsf andh, we
let f[h] denote the function equal gfexcept for values: for which & is defined, which are mapped to
h(z), i.e., the function{(2',y') € f | =3y" : («/,y") € h} Uh.

2.5.1. Propagation of values from workflow inputs (PROPWI)

Consider a workflow input € I. If the value ofi is defined, i.e.Jv(i) # L, then this value is removed
from the workflow input and added to the input ports and workftmutputs to whichi is connected
with a data edge. For each such input port and workflow outpetdtta is added as specified by the
corresponding incoming-links strategy. Formally:

precondition: g = (1,0, P, 7;, s, Eq, Ec, \,ils, ps, dv),
9s(g) = ls = (Iv, Ov, ipv, opv, es, ii),
i€l Tv(i) # L

transition: gs ~ gs[g — ls'| where
ls" = 1s[Iv := Iv[i — L]][Ov := Ov[OV']][ipv := ipv[ipv']], with
Ov' = {(o, [ils(0)](Ov(0), Iv(7)) | 0 € O, (i,0) € E;} and
iv! = {(pon, [l3(pin)] i (pin). T0(0))) | pi € 70, (00 i) € Eu}

Note that if a workflow input has no outgoing data edges, ilsev&s anyway reset ta .

382 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

2.5.2. |Initializing processor execution (INITPE)

Consider an enabled procesgog P in state “scheduled” and letbe the value computed by the product
strategy ofy from its available input port values and default values, i.e= [ps(p)]®¥P%) (t; Ut,) where

t1 is the tuple constructed from the available values on thetipprts ands is the tuple constructed from
the default values for the input ports for which no value iaikble, i.e..t; = {(l,ipv(p,1)) | (p,1) €
i, ipv(p, 1) € Vigw} andty = {(1,dv(p,1)) | (p,1) € m;,ipv(p,l) = L}. The output port values of the
output ports of the processprare initialized with an empty list, the iteration indexofs set to the first
iteration value inv, and the state of the processor is set to “preparing”. Fdymal

precondition: g = (1,0, P, m;, s, Eq, Ec, \,ils, ps, dv),
9s(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p € P, pis enabled ifls, es(p) = “scheduled”,
t1 = {(l,ipv(p,1)) | (p,1) € Ti,ipv(p,1) € Viav},
ta = {(l,dv(p,1)) | (p,1) € mi,ipv(p,1) = L},
v = [ps(p)]¥Pe®)(t; Uty)

transition: gs ~ gs[g — [ls'] where
ls' = lslopv := opv[opt']|[es := es[p — “preparing’][ii := ii[p — first(v)]], with opv’ =

{((: D,) | (p, 1) € 7o}

2.5.3. Starting a service call by a basic processor (STARTSC

Consider preparing basic procesgas P and letv again be the value computed by the product strategy
of p from its input port values. The precondition is thatrthere is a next iteration element, i.e.,
ii(p) € Z, and that the service was not yet called for this element,disép) = “preparing”, then the
execution state gf is set to “waiting”. This models the real world event that gesvice\(p) is called
with the parameterget(v, ii(p)). Formally:

precondition: g = (1,0, P, 7;, o, Eg, E¢, A, ils, ps, dv),
g9s(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p € P, \(p) € TS, es(p) = “preparing”,ii(p) € T

transition: gs ~~ gs[g — Ils[es := es[p — “waiting”]]]

2.5.4. Finishing successfully a service call by a basic pressor (SUCFSC)

Consider a basic processor= P that is waiting for the result of a service call, i.es(p) = “waiting”,

and letv again be the value computed by the product strategy fobm its input port values. For a
possible result of such a service call the respective figlelsrserted into the output port values at the
position indicated by the iteration index, the executi@tesis set to “preparing” and the iteration index
is advanced one position. This models the real world evexttlie previously made service call succeeds
and returns a certain value. Formally:

precondition: g = (1,0, P, 7;, o, Eg, E¢, A, ils, ps, dv),
g9s(g) = ls = (Iv, Ov, ipv, opv, es, ii),

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 383

p € P, \(p) € TS, es(p) = “waiting”,

t1 ={(,ipv(p,1)) | (p,1) € 7, ipv(p,1) € Viav},

ta = {(l,dv(p,1)) | (p,1) € mi,ipv(p,1) = L},

v = [ps(p)]"P<iP)(t; Uty), (get(v,ii(p)),t) € [A(p)],

transition: gs ~ gs[g — ls[opv := opv[opv']][es := es'][ii := ii']] where
opv" = {((p,1), put(opv(p, 1), ii(p), t(1))) | (p,1) € 7o},
es’ = es[p — “preparing’] and
it" = ii[p — next(v, i(p))]

2.5.5. Failure of a service call by a basic processor (FAILSIC

Consider a basic processpre P. If the processor is waiting for the result of a call, i.es(p) =
“waiting”, then the call might fail and its execution statedomes “failed”. This models the real world
event that the call to the servicgp) failed. This leads to the following formal specification et
transition:

precondition: g = (1,0, P, 7;, o, Eq, Ec, A, ils, ps, dv),
g9s(g) = ls = (Iv, Ov, ipv, opv, es, i),
p € P, \(p) € TS, es(p) = “waiting”

transition: gs ~ gs[g — Is[es := es[p — “failed”]]]

2.5.6. Starting a nested Scufl graph execution (STARTNSGE)

This transition is very similar to the starting of a servied! by a basic processor, except that the proces-
sor is not a basic processor but a nested Scufl graph and tiaimestarting a call to a service the nested
Scufl graph\(p) is initialized for this iteration element. Formally:

precondition: g = (1,0, P, m;, m,, Eq, Ec, \,ils, ps, dv),
9s(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p € P, \(p) € G, es(p) = “preparing”,ii(p) € Z,
t1 = {({l,ipv(p,1)) | (p,1) € i, ipv(p, 1) € Viav},
ta = {(l,dv(p,1)) | (p,1) € m;,ipv(p,1) = L},
v = [ps(p)]Pei®)(t; Uty)

transition: gs ~ gs[g — ls[es := es']][A(p) — init(\(p), get(v, ii(p)))] where
es’ = es[p — “waiting”]

2.5.7. Finishing successfully a nested Scufl graph executi(SUCFSGE)

This transition is very similar to the finishing successfulf a service call by a basic processor, except
that the processor is not a basic processor but a nested &apifi gnd it is required in the precondition
that the nested Scufl grapt(p) must have finished with success ga(A(p)), and the result tuple is
composed from the output ports of the nested Scufl grapht keresult(gs(A(p))). Formally:

384 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

precondition: g = (1,0, P, 7;, o, Eg, E¢, A, ils, ps, dv),
g9s(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p € P, \(p) € G, es(p) = “waiting”,
A(p) finished with a success ifs(A(p)),
t1 = {(laipv(p’l)) | (p’l) € Wiaipv(pa l) € Vtav};
t2 = {(l,dv(p,1)) | (p,1) € mi,ipv(p,1) = L},
v = [ps(P) P (1, Uts), t = result(gs(A(p))),

transition: gs ~ gslg — ls[opv := opv[opv']][es := es'|[ii := i7']] where
opt’ = {((p 1), put(opv(p,) i(p), 11))) | (p,1) € Tol,
es’ = es[p — “preparing’] and
i1’ = ii[p — next(v, ii(p))]

2.5.8. Failure of a nested Scufl graph execution (FAILSGE)

This transition is very similar to the failure of a servicdl by a basic processor, except that the processor
is not a basic processor but a nested Scufl graph and it igeelgnithe precondition that the nested Scufl
graph\(p) must have finished with a failure in its local stat€\(p)). Formally:

precondition: g = (1,0, P, 7;, o, Eg, Ec, A, ils, ps, dv),
g9s(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p € P, \(p) € G, es(p) = “waiting”,
A(p) finished with a failure inys(A(p))

transition: gs ~ gs[g — Is[es := es[p — “failed”]]]

2.5.9. Finishing processor execution (FINPE)

If the processor is preparing and there is no next iteratidex, then the state of the processor becomes
“finished”. Formally:

precondition: g = (1,0, P, 7;, o, Eg, E¢, A, ils, ps, dv),
g9s(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p € P, es(p) = “preparing”,ii(p) = L

transition: gs ~ gs[g — Is[es := es[p — “finished”]]]

2.5.10. Propagation of values from processor output portsHROPOP)

Consider a processor output péptl) € m,. If the value of(p, 1) is defined, i.e.opv(p,l) # L and the
processor is finished, but not failed, then this value is reddrom the processor output port and added
to the input ports and workflow outputs to which output gort) is connected with a data edge. For each
such input port and workflow output the data is added as spddify the corresponding incoming-links
strategy. Formally:

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 385

precondition: g = (1,0, P, ;, o, Eq, Ec, A, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv,opv, es, i),
(p,1) € mo, opu(p,1) # L, es(p) = “finished”

transition: gs ~~ gslg — [s’] where
ls" = 1s[Ov := Ov[OV']][ipv := ipv[ipv']][opv := opv|(p,) — L]], with
Ov' = {(o, [ils(0)](Ov(0), opv(p,1)) | 0 € O,((p,1),0) € E4} and
ipv" = {(pin, [ils(pin) | (ipv(pin), opv(p, 1)) | Pin € 75, ((p, 1), pin) € Ea}

Note that if a processor output port has no outgoing edgesaltie is anyway reset to.

2.5.11. Scufl graph run

The specification of possible transitions defines a tramwsiiystem that can be used to describe the
semantics of Scufl graphs. An instance of a computation ofticpkar Scufl graply, i.e., a sequence
of successive global states reached during the computatitirbe called arun. We will denote a run
of global stategs, ..., gs, of g asgs; ~ ... ~ gs,, by which we mean thajs; ~» gs;+1 for each
1<1<n—1.

Arungs; ~ ... ~ gs, Of g will be called acleanly initialized runif it starts with an initial local
state ofg, i.e., gs1(g) is initial, and clean initial local states of all the nestedphs, i.e., for aly’ € Gy
such thayy’ # g the local states;(¢') is a clean initial state.

2.6. Soundness of the transition system

To check the completeness of our semantics definition weaing go formally prove a property of Sculfl
graphs, which states that for every Scufl grg@ll its cleanly initialized runs that start withinitialized
with any input values of any tygend possibly missing input values eventually finish, eithiéh success
or with failure.

At the same time this exercise shows that the formal sensaasialefined in this paper can be used
in proofs of this kind.

Theorem 2.1. For every Scufl graph and any of its cleanly initialized rungs; ~ ... ~ gsy:

(i) there is a maximum number of steps that this run can bendeg with, i.e., sucln € N that for
EVery rungsy ~> ... ~> gsy ~> gSpt1 ~ ... ~ gs; Of g it holds thatk < m, and

(ii) ifin gs, none of the transitions is possible theis finished.

Proof:
In the following we assume to be a Scufl graph angk its global state.

We first show that the runs are of finite length. The idea is tmsthat the global state @fin some
sense decreases with each transition and this decreasingtqaoceed indefinitely. For that we define
a global state vectowhich is a natural number vector. The composition of the ameist based on the
properties of combined local states of the Scufl graphs thaipy the same level of the tree given by

SUnder our liberal type semantics this includes heterogemealues, and therefore all complex values.

386 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

the nesting grapt\V; (in the following referred to as the nesting trée)e., graphs that as the nodes
of the tree have the same depth. 1Mf(k) be the set of graphs at depthof the nesting treeV, i.e.,
Ng(0) = {g} andNy(k +1) = {¢' | (9,p,¢') € E,g € Ny(k)}. For each non-empty levél of
the nesting tree the vector contains six subsequent pirege(tl) the total number of workflow inputs
of graphsg;, € N,(k) which in gs(gi) are not empty, (2) the total number of processors of graphs
gr € Ny(k) thatings(gy) are scheduled, (3) the total number of processors of grgpksN, (k) that
in gs(gx) are neither finished nor failed, (4) the total number of eletsi¢hat still have to be iterated by
processors of graphg € N, (k) in gs(gx), (5) the total number of processors in graghss N, (k) that
in gs(gx) are preparing (6) the total number of processor output porgs € N, (k) that ings(gy) are
empty.

The following functions of signatur® — N give the values of those properties. We assume that
gt = (I*, OF, Pk rk rk Eg,Ef,)\k,ilsk,psk,dvk) andgs(g*) = (Iv*, Ov* ipv*, opv®, es® ii%).

sy Ny Moo

=

. notewfid® (k) = |{i | i € I*, Iv¥(i) # L, g% € Ny(k) }|

2. psched?*(k) = |{p | p € P*, es*(p) = “scheduled’ g* € N, (k) }|

3. pnotff9*(k) = |{p | p € P, es*(p) # “finished”, es* (p) # “failed”, g* € Ny(k) }|
4. iterleft?® (k) = > { togo(v,i) | p € P*,ii*(p) = i,g* € Ny(k)}

5. pprepj’ (k) = |[{p | p € P*,es*(p) = “preparing’, g* € Ny (k) }|

. ewfo¥®(k) = [{o | 0 € OF, 00%(i) = L, g* € Ny(k)}|

(o2}

wheretogo(v,i) : Vegt X T — (Vegr U L) is defined such thabogo(v,i) = 0 if next(v,i) = L and
togo(v,i) = 1+togo(v, next(v, 7)) if next(v,i) # L. Itis easy to see that the functions are well defined
in any state of a cleanly initialized run.

In the vector the components corresponding to smaller dapttine nesting tree precede the ones for
bigger depths. Formally the vector is defined as follows:

(notewfi?®(0), psched?”(0), pnotff9°(0), iterleft?*(0), pprep®(0), ewfod*(0)

notewfi?” (hg), psched?®(hy), pnotff§®(hy), iterleft) (hy), pprep§’ (hy), ewfol®(hy))

whereh, is the height of the nesting tree, i.e., the biggest numlmrch that\y (k) # (. Observe that
the vector is thus of finite size determined by the height efrtésting tree, i.e., its size is equal six times
the height of the nesting tree.

We are now going to show that under a lexicographical ordexach transition in a cleanly initialized
run decreases the global state vector. For that we are goilig} how each state transition changes the
vector:

PROPWI does not increase any component and decreases the numhmreshpty workflow inputs

@,

“We assume Scufl graphs to be hierarchical and thus the nggtipg/\, is a tree (see Section 1.5 of [13]).

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 387

INITPE increases the number of remaining iterations (4) and thebeuipreparing processors (5), but
at the same time decreases the number of scheduled pracé&gor

STARTSC does not increase any component and decreases the numipepaifipg processors (5),

SUCFSC increases the number of preparing processors (5), but athe time decreases the number
of remaining iterations (4),

FAILSC does not increase any component and decreases the numberce$gors that are neither
finished nor failed (3),

STARTNSGE increases the part of the vector that corresponds to thed&stufl graph, which is on a
bigger depth thus less important in our ordering, and deesethe number of scheduled processors

2,

SUCFSGE similarly as SUCFSC increases the number of preparing psoee (5), but at the same time
decreases the number of remaining iterations (4),

FAILSGE does not increase any component and decreases the numbrece$gors that are neither
finished nor failed (3),

FINPE does not increase any component and decreases the numbyece$sors that are neither fin-
ished nor failed (3),

PROPOP decreases the number of empty workflow outputs (6).

Itis well known from set theory that the set of natural numiaators of a given length with lexicograph-
ical ordering is a well-founded partially ordered set anastit does not contain an infinite descending
chain. For the self containment of this work we show this falfynin the Appendix A (see Corollary A.1).
This proves that all runs are of finite length, since from tbe-existence of an infinite descending chain
it follows that there is a bound on the number of transitiopsvhich a given run can be extended.

To complete the proof of Theorem 2.1 we are going to show flzastiate has been reached in which
no transitions are possible, i.e., none of the transitiassits preconditions satisfied, thgris finished.
The proof will follow by induction on the height of the negjitree N/,

We first assume that the nesting treg is of height 1 and that in a global staje’ of g none of the
transitions has its preconditions satisfied. We will shout this finished ings’(g). For that we look
at the four conditions in definition 2.5. It is clear that (ijettly follows from the unfulfillment of the
preconditions for transition PROPWI, (ii) directly foll@drom the unfulfillment of the preconditions for
transition PROPOP and (iii) directly follows from the urffliment of the preconditions for transition
INITPE. As for (iv) let us first notice that if the nesting treé, is of height 1, thery contains only
basic processors, i.e\; = {{g},0}. If there would be any preparing processor, then either STRR
or FINPE transitions would be possible depending on whetiene is a next iteration element for that
processor. Also, if there would be any waiting processam thoth the SUCFSC and FAILSC transitions
would be possibR Thus all the conditions for a finished Scufl graph are satisfie

SRecall that we do not include the state of the external sesvie our formal model and thus there is no dependency on any
such state in the preconditions for the transitions.

388 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

We now assume that the thesis holds for all the Scufl graplistiét nesting tree of height smaller
or equal ton and we are going to show that it also holds for all graphs withriesting tree of height
n + 1. Let the nesting tred/, be of heightn + 1 and letgs’ be a global statg such that none of the
transitions has its preconditions satisfied. We will shoat this finished ings’(g). As before we look at
the conditions in the definition 2.5. For conditions (i)) @nd (iii) the reasoning follows. As for (iv) the
argument for non-existence of preparing processors renthemsame. Similarly for the non-existence
of waiting basic processors. The only thing left to show iattthere are no waiting processors that
represent nested Scufl graphs. Let us assume by contradilciba waiting processerexists ing and
represents a nested Scufl graph. Because preconditiont)€@F SGE and FAILSGE transitions are not
satisfied, then the nested Scufl graphpafannot be finished. Yet, the nesting tree of that nested Scufl
graph is of height smaller or equal toand since we have assumed that no transitions are possible, i
follows from the induction assumption that the nested Sawaibly is finished. This completes the proof
by contradiction and thus the proof by induction. O

It is easy to see that a cleanly initialized run of a Scufl grapy finish with failure if (1) not all
input port values are available or if (2) a basic processits. fin both cases some processors can never
produce their output which may prevent some or all workflowpats from becoming ready. It can also
be observed that (1) and (2) are the only reasons for a Scpt grat to succeed and thus for every Scufl
graphg all its cleanly initialized runs that start withiin a fully initialized local state, i.e., with all the
workflow input values present, eventually terminate witbcass if we exclude the failure of transitions.
Although we do not give here a formal proof, this follows iitittely from the facts that processors
without input ports are immediately enabled, all procedsput ports have either incoming data edges
or a default value specified and because Scufl graphs cordaiyctes.

3. Dealing with heterogeneous values in Taverna

Until now in the discussion of the semantics of Scufl we fodumar attention on homogeneous lists. Yet,
heterogeneous values can be created in Taverna with thd tlteermmerge incoming-links strategy or by
an iteration on a processor that returns values with vamassing depths in its subsequent executions,
e.g., sometimes lists and sometimes lists of list. Unfately, heterogeneous values are not processed
consistently in the current implementation of Scufl. In &ecfl.2 of [13] we showed that some services,
such as the built-in flatten operation, do not handle sudlegtonsistently. Furthermore, the way the dot
product is implemented in Taverna yields sometimes rathexpected results for heterogeneous values.
Informally, the dot product in Taverna is computed by itExgbver the tuples in both arguments. During
the iteration, the subsequent pairs of tuples are combireedfirst with first, second with second and so
on. The combinations are placed in the result nested lispeitipns pointed by the longer of the indexes
of the combined tuples. If both indexes have the same letiggheft one is chosen. This is different from
our definition of the operator from Section 2.4 of [13] because we structure thgltraccording to the
argument with the higher nesting depth, which means thahttexes for tuples combinations are taken
from an argument chosen in advance and not determined foraeaobination of tuples separately. Of
course, for homogeneous values both methods produce theeresanits, since for homogeneous list all its
tuple indexes have the same length. Yet, in Taverna thetiregindexing can contain gaps. For example,
if a, b, ¢, z, y andz are tuples, and a dot product [z, b]], ¢] and[[z, y, z]] is computed, then the result
would contain:a U = on index1/1/1, b U y on index1/1/2 andc U z on index1/3. Thel/2 position

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 389

would have to be filled up by some kind of empty value. This f@obdoes not occur if the definitions
of dot product from Section 2.4 of [13] are taken, i[fa, b]],] - [[z,y,2]] = [[[aUz,bUy]],cUz] and
[[la, 8]l c] -+ [[z, y, 2]] = [[[a U 2]]].

Here we discuss two possible solutions to the heterogeneduss problem in Taverna. One, is to
adopt the formal semantics from this paper which seemdivguivhile at the same time allows hetero-
geneous values everywhere and deals with them consist&kéyelaborate on this in Section 3.1. The
other solution is to avoid heterogeneous values at all, e discuss in further detail in Section 3.2.

3.1. Allowing heterogeneous lists

The semantics defined in this paper deals with heterogerd&tsisntuitively and consistently, yet its
adoption in the workbench may require additional effortddjusting some of the services. For exam-
ples, for the built-in flatten operation a definition is pb$sithat processes the heterogeneous values
consistently, that is:

flat(z) = {H to =1

list(xy) + ...+ list(xy) ifz=[x1,...,2,]

wherelist(x) = =z for list values andist(x) = [z] for mime values. Note, that with this definition,
flattening of{[z], [[y]]] yields [z, [y]] and not[[x], [y]] as it is the case in Taverna.

It is also possible to extend the type coercion mechanisroribesl in Section 1.2 of [13]. If a
certain service that requires its input lists to be homogas&nd of a specific nesting depth, gets a value
that is non homogeneous or is of lower nesting depth, thene ikealways an intuitive interpretation of
subvalues in that value as more deeply nested ones, namalgstimg them in singleton lists. For this
a homogenisation functiohom. : [r] — [r] can be used, that maps all complex values of tyge
homogeneous complex value with the maximum nesting deshilple inr. It is defined such that:

e hompy(z) = =z,
e hom(;(z) = [hom,(z)], if x € [r], and
e hom;([x1,...,2s]) = [hom(z1),... ,hom ()], if [z1,...,2,] & [7].

The functionhom, packs values that do not have the maximum nesting depth edlowr into sin-
gleton lists, and if the value does have the right nestingldepdr = [o] then it applies itself to
the elements of the list for the type. For examplehomag([1,[2]]) = [homg([1,[2]])] =
[[homaq (1), hompag ([2])] = [[[homaq(1)], [homa(2)]] = [[[1],[2]]]. Thanks to this function we can
safely assume that all services can deal with all homogenand heterogeneous complex values that
belong to their input type.

It is worth pointing out that the existence of such type cimerés consistent with Taverna'’s philoso-
phy of trying to fix the type mismatches for the user.

3.2. Adapting the semantics to avoid heterogeneous lists

An alternative to allowing heterogeneous lists and deahit§y them consistently is to disallow them
completely and allow only homogeneous lists. This meanswvileahave to make sure that, under the

390 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

assumption that values containing heterogeneous listeotée entered by the user, no computation can
produce values with heterogeneous lists. New values ajypeabcufl graph in the following cases: (1)
they are produced in a processor execution, (2) they aréecréathe incoming-links strategy compu-
tation, (3) they are created in the product strategy contipataor (4) they are produced in a processor
iteration.

As for (1), a service that was provided with only homogenealaes as arguments could produce
heterogeneous results. One possibility is to interprstdhia failure, another is to always adapt the result
value with the homogenisation function, i.e., if the seeviall returns, then uséhom(v) as the result,
wherer is the smallest type af.

As for (2), the select-first strategy does not change theegalso it cannot cause a heterogeneous
value to appear. Yet, the merge strategy can, if the subsegades provided to it are of different
nesting depth. Similarly as in (1), this can be remedied Withuse of the homogenisation function to
extend the merge function as follows:

[v] ift =1
[[mergehom]] (tv U) = .
{hommm({ﬂ(tJr[UDE[T]]})(t + [v]) otherwise

wheremin : P(Tiav) — Tiap returns the minimal type in a set of types.

As for (3), neither the dot nor the cross product can prodeterbgeneous values from homogeneous
arguments, regardless which definition is chosen, so na eate is necessary.

Finally, as for (4), a heterogeneous value can be creattth ffrocessor returns results with different
nesting depths in the subsequent iteration steps. Agaatdh be solved with the use of homogenisation
function, this time to extend thgut function such that:

put(v, a, t) if put(v,a,t) = L
homyin (rlput(v.a.t)elrl}) (PUt(v; s 1)) - otherwise

puty,.,, (v, a,t) = {

4. Related work

We start with comparing the presented work with that of Taréle in [15]. In that work a calculus
is defined to represent Scufl graphs and a semantics is defindldein in terms of function that map
workflow input values to a workflow output value.

The most important difference is that in our work we assuraé ¢hlls to services have side effects,
or, in other words, are observable events that are part db¢havior of the system. This means that
two computations that call services in a different order different number of times, are not considered
as equivalent, even if they compute the same output valuerefdre we describe the semantics of the
system not in terms of functions, but in terms of a transiggstem that describes which calls are made
in which order, which arguments were passed, and which pwgdues are produced in the workflow
outputs as the result of the Scufl graph. A consequence ofidbecffect assumption is that, contrary
to what Turi et al. assume, nesting a Scufl graph is no longarrelypsyntactic construct because it
synchronizes the consumption of values on the input pordstla production of values on the output
ports, and so changes the observable behavior of the tmamsitstem. The same holds for the control
edge, which can only have meaning if the order of computatismn observable aspect of the system.

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 391

The second difference with the work by Turi et al. is thattlsgihtax is defined by a statically typed
calculus. Since a Scufl graph is polymorphic and can work patmof different types, its semantics
cannot always be described by a single calculus expressidmeay require a different one for each
possible type of input value. In addition, the coercion taendeeply nested list types by wrapping and
the implicit iteration strategy have to be made explicitatcalus expressions. As a result the mapping of
areal Scufl graph, as described in our work, given certaisypned input types for the workflow inputs,
to a calculus expression is not simple. We list the main theasons why this is not straightforward:

1. Values that contain no basic vales, such|af]] and][], [[]]] belong to multiple types. This has
sometimes unexpected consequences. For example, assuoeesspr with one input port that
expects values of typeM] and one output port that produces values of tyfp¢|. Given the
polymorphic iteration mechanism one would expect that wiresented with input of typgM]]
this processor will produce a result of tyfie1]]. However, if the valug] is offered, which is
of type [[M]], it will not iterate since the value is also of the expectegety\M]|, and therefore
produce a value of typeM|] and not of type[[M]]. As a consequence it is not true that if the
type of the input of the input values is known, there is a g@ingpe that describes all possible
outputs. Hence there cannot be a calculus expression thatiloks the behavior of a Scufl graph
for a certain input type.

2. During iteration at deeper nesting levels, certain erfigty are removed. If the identity processor
that expects values of typet receives the valug[]], [[v, w], [|], [[]] [[]], [[]]] with v, w,z € V4,
it returns][], [[v, w]], [], [[x]]]. Simulating this in the calculus would require a test for gnlists.

3. Another problematic case is the dot product at deepemgelgvels. Assume a processor with
two input ports that computes the functidf(x, y), expectsM on both its ports, and has the
dot product iteration strategy. If it receives= [[v1,v9], [us,v4]] @ndw = [w1, we,ws] with
V1, V2, U3, Vg, W1, wo, w3 € Vg, then the result i§ F(vy, wy), F(va, we)], [F(vs,ws)]]. Itis pos-
sible to computé for the listed combinations by first flattenimgbut the result would then be the
flat list [F'(v1,w1), F(ve, we), F(vs, ws3)]. The difficulty lies in simulating that the result is nested
according to the structure of

A more fundamental difference between the calculus and @miastics is that failure of processors
and Scufl graphs is not taken into account in the calculusarithee argued that this aspect should be
dealt with at a lower abstraction level, and in Taverna letse indeed other mechanisms such as the
specification of the number of retries and alternative sesvito deal with this. Moreover, in Taverna
2 the concept is replaced by special error values that iteliteat certain subvalues were not produced
correctly. However, we maintain that it is an interestingl arseful feature to have at the language
level, for example for specifying powerful fall-back segtes in Scufl itself. It is also essential for
understanding the semantics of Scufl in Taverna 1, if onlyabse it is used to represent conditional
branching as discussed in Section 1.4 of [13].

Other related work defines the semantics with the use of wawkihodels based on Petri net [1]
formalism like the DFL language [5] which was designed by &l¢hors of this work for describing
scientific workflows. Yet, we have found that the combinatafnScufl’s select-first incoming-links
strategy and failure mechanism makes the mapping to Pdthased formalisms, and in particular to
DFL, involved and creating little insight into the semastiaf Taverna. This is because for example

392 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

extensive additional constructs are necessary to cleatokikas that are left in the simulation of select-
first strategy and the exact number of such tokens is not kimowdvance if failures are possible.

For an extensive overview of systems and different appesanthe young but very active area of
scientific workflows, the reader is referred to [3]. In the a@nder of this section we will focus on one
of these systems that shares with Taverna the distinctlplitysof defining polymorphic workflows that
can work on inputs of different types.

Kepler [9] is a scientific workflow system similar to Tavermasicope and application area. It also
is mainly applied in bioinformatics but has been used in iodreas like ecology, oceanography and
geology. It is based on the Ptolemy Il [2] system, which is adelimg and simulation environment
with a formal semantics based on the Tagged Signal Model][8ar&l extends it with new features
and components for scientific workflow design and for effitiorkflow execution. A distinguishing
feature of Kepler is its ability to enact one and the same flmrkaccording to different computation
models which the workflow author specifies with the so catledctor. Kepler includes directors that
correspond to process network, synchronous dataflow,reanis time, discrete event, and finite state
machine computation models. As in Taverna the execution pnoaess network workflow model is
driven by input data availability, i.e., an actor can firesdime input data tokens are available on all its
input ports. On the output ports it produces tokens with #seilt values, which are usually immediately
transfered to further actors.

In [10] an extension of Kepler is proposed that allows polyphic workflows to be defined. This is
based on a technique that is similar to that of Taverna, wéne=ector that expects input of a certain type
can also operate on collections of other types by autontigtidentifying nested values of the right type
and operating on them. This type of polymorphic actor isrrefibto by the authors ascallection-aware
actor and the workflows that contain theoollection-oriented workflowsA difference with Taverna is
that the user can specify in more detail how such nested vateidentified and how they are iterated
over, where in Taverna this is completely transparent. Aa@otifference with Taverna is that Kepler
features an elaborate and refined type system which expldibws heterogeneous values and this type
system is used in the specification of the aforementionddatmn-aware actors.

5. Conclusion

In these two papers (for the first part see [13]) we have ptedesnformal definition of the syntax and
semantics of Scufl, the workflow specification language offtherna environment. The syntax is based
on hierarchically nested graphs and the semantics is giyentiansition system whose state is defined
by the local states of each graph in the hierarchy, whichrimigidefined by the state of each component
in that graph.

We maintain that an expressive and effective formalism &scdbing its semantics is important for
Scufl. Not only do we think it helps to build a correct and cetesit implementation that is easy to
understand by users, but it is also a requirement for foresgarch on a wide variety of subjects such
as provenance, optimization, transformation and veritioabf soundness properties. A nice case in
point is the Ptolemy system where formal semantics was figaged in an early stage [6] and played
an important role in its development [8]. The semantics affiSzs defined by us is very thorough and
consistent with the observed behavior of the real impleat&nt, but at the same time very involved and
giving too much attention to behavior that might be congdeas irrelevant detail. Clearly a simpler and

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 393

more elegant formalism would be more effective in the mewibapplications. Yet, we believe that a
careful examination of all the details is a necessary fiegh 8 guarantee that more elegant definition
does not oversimplify and stays close enough to the behabite defined Scufl graph. In addition, we
believe that for any language that describes non-trivistesyps of which users must sometimes precisely
understand the semantics, verifying the possibility of legant formalization is the best way to test if
the language is well-designed. This work contributes tdsuggification by highlighting the following
aspects of the current implementation:

e The type coercion and implicit iteration mechanisms do mwags protect from construction of
heterogeneous values and the version of Taverna that weilaesigated (version 1.7.1) not
always deals consistently with them. This can be easily fiked as we show a definition of
semantics is possible and even simpler with a type systetre®mdicitly allows heterogeneous
values. Therefore two semantics were proposed, one in vigitdrogeneous lists are allowed and
consistently dealt with, and one in which they are not alidaad their creation is prevented.

e The polymorphic semantics of Scufl make the mapping of Scafblyg to calculi such as pre-
sented by Turi et al. problematic, and in some cases evensgitge. As explained in Section 4
this is partially because of the subtle behavior on emptg,liand partially because of how the
polymorphic behavior of the product strategies is defined.

e During iteration over a value that contains empty lists sofitbem can be omitted, e.g., an identity
processor iterating off(]], [[1, 2], {1} [J, [[3]], [[]], [I] yields [], [[1, 2]], {1, [[3]]]-

The purpose of the definitions in this paper and its previ@us[f3] is not only to provide a semantics
of Scufl that gives a precise and formally analyzable desoripof the defined Scufl graph, but also to
investigate the different design choices that were madassigaing semantics to the various constructs
in Scufl. In particular two issues were addressed. The fgdhe already mentioned inclusion of the
heterogeneous values. The second, is the semantics ofdthegpistrategies such as the dot product and
the cross product. Based on their formal definitions theyaasdyzed and alternatives are proposed and
evaluated.

References

[1] van der Aalst, W.: The application of Petri Nets to WorkilManagementThe Journal of Circuits, Systems
and Computers3(1), 1998, 21-66.

[2] Department of EECS, U. B.: Ptolemy Il project and systebttp://ptolemy.eecs.berkeley.edu/
ptolemyII, 2008.

[3] Guan, Z., Hernandez, F., Bangalore, P., Gray, J., SkjellA., Velusamy, V., Liu, Y.: Grid-Flow: a Grid-
enabled scientific workflow system with a Petri-net-baséstface Concurrency and Computation: Practice
and Experiencgl8(10), 2006, 1115-1140.

[4] Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewidz,VVan den Bussche, J.: Petri net + nested rela-
tional calculus = dataflowProc. 13th Int. Conf. on Cooperative Information Systemsof@S), LNCS 3760
Springer, Agia Napa, 2005.

[5] Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewitz,Van den Bussche, J.: DFL: A dataflow language
based on Petri nets and nested relational calcuhfermation System83(3), 2008, 261-284, ISSN 0306-
4379.

394 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

[6] Lee, E. A., Sangiovanni-Vincentelli, A.: Comparing medsl of computationlCCAD '96: Proceedings of the
1996 IEEE/ACM international conference on Computer-aidesign IEEE Computer Society, Washington,
DC, USA, 1996, ISBN 0-8186-7597-7.

[7] Li, P., Hayward, K., Jennings, C., Owen, K., Oinn, T.,\#&es, R., Pearce, S., Wipat, ARroceedings of the
UK e-Science All Hands Meeting 20MMottingham, UK, September 2004.

[8] Liu, X., Lee, E. A.: CPO Semantics of Timed Interactive Actor Netwprkechnical Report UCB/EECS-
2007-131, EECS Department, University of California, Beely, Nov 2007.

[9] Ludascher, B., Altintas, I., Berkley, C., Higgins, Dlaeger, E., Jones, M., Lee, E. A., Tao, J., Zhao, Y.
Scientific workflow management and the Kepler system: Rebkearticles, Concurr. Comput. : Pract.
Exper, 18(10), 2006, 1039-1065, ISSN 1532-0626.

[10] McPhillips, T. M., Bowers, S., Ludascher, B.: Colleet-Oriented Scientific Workflows for Integrating and
Analyzing Biological DataDILS (U. Leser, F. Naumann, B. A. Eckman, Eds.), 4075, Sprind#¥62 ISBN
3-540-36593-1.

[11] Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwodd,, Carver, T., Wipat, A., Li, P.: Taverna: A tool for
the composition and enactment of bioinformatics workfloBinformatics 2004.

[12] Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., K&, J., Glover, K., Goble, C., Goderis, A., Hull, D.,
Marvin, D., Li, P., Lord, P., Pocock, M. R., Senger, M., SteseR., Wipat, A., Wroe, C.: Taverna: lessons in
creating a workflow environment for the life sciences: Regearticles, Concurr. Comput. : Pract. Exper.
18(10), 2006, 1067—-1100, ISSN 1532-0626.

[13] Sroka, J., Hidders, J.: Towards a formal semanticstfergrocess model of the Taverna workbench. Part |,
Fundamenta Informatica®2(3) 2009, 279-299.

[14] Stevens, R., Tipney, H., Wroe, C., Oinn, T., Senger, Globle, C., Lord, P., Brass, A., Tassabehji, M.:
Exploring Williams-Beuren Syndrome usiftty Grid, Proceedings of 12th International Conference on In-
telligent Systems in Molecular Biolog3004.

[15] Turi, D., Missier, P., Goble, C., De Roure, D., Oinn, Taverna Workflows: Syntax and SemantiesScience
and Grid Computing, IEEE International Conference @007.

Appendix

A. Basic properties of lexicographical ordering of number \ectors

Definition A.1. (Number vector)
A number vector of dimensione Nis a tuplec = (cy, ..., ¢,) With ¢1,..., ¢, € N. The set of all such
vectors is denoted as”.

If ¢ =(c1,...,c,), then we let ¢y, ¢) denote the number vectofy, c1, ..., c,).

Definition A.2. (Number vector ordering)
OverN"™ we let<™ denote the lexicographical ordering, i.e., it holds that:

@ ()<°(),and

(II) (61,5) SnJrl (dl,J) iff (a) c1 < djor (b) c1 = dp ande <™ d.

J. Sroka and J. Hidders / Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part 11 395

Proposition A.1. (N, <") is a partially ordered set for eache N.

Proof:
We show this by induction on. Forn = 0 this is clear sinc&” = {()} and() <° (). Forn + 1 we can
show, using the induction assumption farthe reflexivity, antisymmetry and transitivity as follows

A0.0.1. Reflexivity Let(ci,¢) be an arbitrary vector froi"*!. By induction we know that <" ¢
and by (2b) it then follows thafc;, ¢) <"t (cy,).

A0.0.2. Antisymmetry Leté,d € N**! such thatt <"*! @’ andd’ <"*! & whereé = (c1,¢)
andd’ = (di,d). Based on the definition of number vector ordering this ig/ uissible ifc; < d;
and at the same tim& < ¢; which together implye; = d;. From this and the’ <"*! &' it follows
thatéc <™ d. Similarly we getd <™ & Now from the induction assumption we know tl#at d which
completes the proof since we already showed ¢hat d;.

A0.0.3. Transitivity Assume thatcy,¢) <"*! (di,d) and that(dy,d) <"*! (e1,€). Then one of
the following cases holds: (& < dy andd; < e, (i) ¢; < dy anddy, = ey, (i) ¢ = d; andd; < ey,
and (iv)c; = d; = eq, ¢ <" dandd <" é. In the first three cases (i), (i) and (iii) it follows that < e,
and therefordc;,¢) <"*! (e, €). In case (iv) it follows that; = e; and by induction that <" &, and
therefore(cy, ¢) <"1 (eq, €). 0

Definition A.3. (Well-founded)

A partially ordered setV, <y) is said to bevell-foundedf it holds for every non-empty subsgt C V'
that it contains at least one minimal element, i.e., an eldme V' such that for alkw € V' if w <y v
thenw = v.

Proposition A.2. The partial ordef(N", <™) is well-founded.

Proof:

We prove this with induction on. Forn = 0 it holds since there is only one elementN. Next, we
considern + 1. Let ¢, be the smallest number ifr; | (c;,¢) € N**1}1. Then let¢’ be the minimal
element in{¢ | (c,¢) € N**1} w.rt. <", which by induction exists. We now show thaf,c) is a
minimal element ofN"™!. Assume thatc;,¢) <"*! (¢},&). By the definition of<"*! it holds that
c1 < ¢} and by the definition o] thatc| < ¢;, and soc; = ¢|. From this it follows that <" ¢. By
induction and the fact that is a minimal element of a set of whichis also an element, it follows that
¢ = ¢. It therefore holds thafc;, ¢) = (¢}, 7). O

Proposition A.3. (V, <y) is well-founded iff/” contains no infinite descending chains, i.e., there exists
no injective functionf : N — V such that for every. € Nit holds f(n + 1) <y f(n).

Proof:

We will prove both implications by contradiction. L&t C V' be a non-empty subset without a minimal
element. The sequenge: N — V' can be defined as followsf (0) is an arbitrary element df”’. If

f is defined for allt < n and for everyk < n it holds f(k + 1) <y f(k) but f(k+ 1) # f(k) then

396 J. Sroka and J. Hidders/ Toward a Formal Semantics for the®se Model of the Taverna Workbench. Part I

asf(n + 1) we choose any other element frd such thatf(n + 1) <y f(n). The existence of such
element follows from the fact that(n) is not minimal inV’. The other way around, if there exists an
infinite descending chairf, then the imag€q f(1), f(2),...} is a non-empty subset &f that has no
minimal element. 0

Corollary A.1. The partially ordered s¢lN", <™) contains no infinite descending chains.

Proof:
This follows directly from Propositions A.2 and A.3. O

