
Fundamenta Informaticae 92 (2009) 373–396 373

DOI 10.3233/FI-2009-80

IOS Press

Towards a Formal Semantics for the Process Model of the Taverna
Workbench. Part II

Jacek Sroka∗†

Institute of Informatics, University of Warsaw

Poland

sroka@mimuw.edu.pl

Jan Hidders

Faculty EEMCS, Delft University of Technology

The Netherlands

a.j.h.hidders@tudelft.nl

Abstract. Workflow development and enactment workbenches are becoming a standard tool for
conductingin silico experiments. Their main advantages are easy to operate userinterfaces, special-
ized and expressive graphical workflow specification languages and integration with a huge number
of bioinformatic services. A popular example of such a workbench is Taverna, which has many ad-
ditional useful features like service discovery, storing intermediate results and tracking data prove-
nance.

We discuss a detailed formal semantics for Scufl - the workflowdefinition language of the Taverna
workbench. It has several interesting features that are notmet in other models including dynamic and
transparent type coercion and implicit iteration, controledges, failure mechanisms, and incoming-
links strategies. We study these features and investigate their usefulness separately as well as in
combination, and discuss alternatives.

The formal definition of such a detailed semantics not only allows to exactly understand what is be-
ing done in a given experiment, but is also the first step toward automatic correctness verification and
allows the creation of auxiliary tools that would detect potential errors and suggest possible solutions
to workflow creators, the same way as Integrated DevelopmentEnvironments aid modern program-
mers. A formal semantics is also essential for work on enactment optimization and in designing the
means to effectively query workflow repositories.

∗Supported by Polish government grant no. N206 007 32/0809
†Address for correspondence: Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

374 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

This paper is the second of two. In the first one [13] we have defined, explained and discussed
fundamental notions for describing Scufl graphs and their semantics. Here, in the second part, we
use these notions to define the semantics and show that our definition can be used to prove properties
of Scufl graphs.

Keywords: formal semantics, Scufl, workflows, Taverna workbench

1. Introduction

Taverna [11] is an easy to operate workbench for workflow development and enactment. It allows users
to graphically construct workflows from libraries of available components and is intended for use in
bioinformatics data analysis experiments. The most important virtues of Taverna are that it is very
easy to use, has a specialized and expressive graphical specification language and integrates many data
analysis tools. In [12] it is stated that the number of such tools exceeds 1000. It also includes additional
useful features like service discovery, storing intermediate results and tracking of data provenance. The
workbench is being constantly developed, but it is already considered stable and has been used in real
life research, e.g., [14, 7].

This paper is the second of two. In the first part [13] we have defined, explained and discussed
fundamental notions for describing Scufl graphs and their semantics. Here, in the second part, we use
these notions to define the semantics and show that our definition can be used to prove properties of Scufl
graphs. To account for side effects the semantics is defined as a transition system. Finally, this part also
includes a more elaborate comparison with the work in [15].

For the convenience of the reader we briefly recall some of theformal notions that were introduced
in the first part. The setVtav contains all thecomplex valueswhich are constructed from MIME values
and recursively nested lists. We use⊥ as a special marker to indicate the absence of a value. The setG is
the set of allScufl graphswhich are defined as tuplesg = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv) where
I is the set of workflow inputs,O is the set of workflow outputs,πi andπo are the sets of processor input
ports and output ports, respectively,Ed is the set of dataflow edges,Ec is the set of control flow edges,
λ is the function that assigns to each processor either a service name or a nested Scufl graph,ils is the
function that assigns incoming links strategies to processor input ports and workfow outputs,ps is the
function that assigns product strategies to processors anddv is the function that assigns default values to
some processor input ports. Given a Scufl graphg we definethe nesting graphNg to be the graph over
all the Scufl graphs ing, includingg itself, that indicates which graph is nested in which other graph. The
functiontypei gives for each processorp in a Scufl graph the tuple type that describes its input interface.

The setVext contains the extended complex values which are recursivelynested lists that contain
tuples of complex values. For each product strategys a function [[s]]τ defines the semantics ofs by
mapping a tuple of complex values containing a field for each port label ins to an extended complex
value. The result represents the value over which a processor with product strategys will iterate. It
contains tuples of the tuple typeτ , which is the input value type expected by the processor, andeach of
these tuples represent the input of a single iteration step of the processor.

The setI contains all complex value indices, i.e., path expressionssuch as1/3/2 that indicate
positions in complex values and extended complex values. Finally, there are the functionsfirst, get,
put andnext for iterating over and constructing complex values. The function first(v) finds the first

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 375

position in the extended complex valuev at which we find a tuple value. The functionget(v, β) finds the
value at positionβ in the extended complex valuev. The functionput(v, α,w) inserts into the complex
valuev at positionα the complex valuew and returns the result. Finally, the functionnext(v, α) finds in
extended complex valuev the first position after positionα that contains a tuple.

2. Transition system semantics

In this section we define the semantics of Scufl graphs in termsof a transition system, i.e., we specify
a set of possible states of the Scufl graph and which transitions are possible between these states. The
following subsection discusses the states, it is followed by subsections on auxiliary notions for describing
the transitions, then the transitions themselves are discussed, and the final subsection shows that the
defined semantics can be used in proofs of properties of Scufl graphs.

2.1. Scufl graph state

The state of a Scufl graph is described in two levels. At the lowest level we describe the so-calledlocal
stateof each of the subgraphs. This local state consists of a description of the states of the workflow
inputs and outputs, the processor input and output ports, and the processors themselves, but only those
that are directly part of the subgraph in question. At the highest level theglobal stateof a Scufl graph
g is described by giving the local states of all the Scufl graphsin Gg, i.e., all subgraphs ofg including
g itself. In the following we first define the notion of local state, followed by a definition of the global
state.

We start with an informal introduction of the components of alocal state. Consider the Scufl graph
g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv). Theworkflow input value mappingIv : I → (Vtav ∪ ⊥)
stores the value associated with each workflow input. The⊥ represents the lack of value, which here
means that it has not been inserted yet or has already been pushed to the connected processor input
ports. Next, theworkflow output value mappingOv : O → (Vtav ∪ ⊥), the input port value map-
ping ipv : πi → (Vtav ∪ ⊥) and theoutput port value mappingopv : πo → (Vtav ∪ ⊥) store the
values associated with workflow outputs, processor input ports and processor output ports respectively.
The stored values are constructed by the incoming-links strategy function (see Section 2.3 of [13]) in
case of the workflow output value mapping and the input port value mapping, or by theput func-
tion (see Section 2.2 of [13]) in case of the output port valuemapping. This means that even if they
have already been defined, i.e., are not equal to⊥, they may still be extended with additional val-
ues arriving from further data edges or iteration steps, respectively. Next, each processor itself can
be in several states like “scheduled” or “preparing”, whichis specified by theexecution state mapping
es : P → {“scheduled”, “preparing”, “waiting” , “finished”, “failed”}. The state “scheduled” indicates
that the processor has not yet been used. The state “preparing” indicates that execution of this processor
has already started but the input value, or in case of iteration some of its subvalues, have still to be pro-
cessed. The state “waiting” indicates that the processor iswaiting for a nested Scufl graph or an external
service to return a result1. The state “finished” indicates that it has finished with success. The final
state “failed” indicates that it has finished with failure. Finally, since a processor might have to iterate

1In official Taverna terminology the states that we call “preparing” and “waiting” are divided intoexecuting anditerating

for when the processor is either processing a value of its expected type or a value that is more deeply nested, respectively.

376 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

over subvalues of the input value, the current position in the input value is stored by theiteration index
mappingii : P → I.

Definition 2.1. (Local state)
Given a Scufl graphg = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv), a local state ofg is a tuple ls =
(Iv,Ov, ipv, opv, es, ii) such that:

• Iv : I → (Vtav ∪ ⊥) is the workflow input value mapping,

• Ov : O → (Vtav ∪⊥) is the workflow output value mapping,

• ipv : πi → (Vtav ∪ ⊥) is the input port value mapping,

• opv : πi → (Vtav ∪ ⊥) is the output port value mapping,

• es : P → {“scheduled”, “preparing”, “waiting” , “finished”, “failed”} is the processor state map-
ping,

• ii : P → I is the iteration index mapping.

We refer to the set of all local states for all Scufl graphs asLS. The input port value of an input port
(p, l), normally denoted asipv((p, l)), will also be written asipv(p, l). Likewise the output port value of
an output port(p, l) will also be written asopv(p, l).

Scufl graphs do not have stateful features, such as counters or data-stores, that can be read and
updated during a run of the Scufl graph. So the definition of a local state does not contain anything
that represents the state of such elements. Of course these can be simulated by defining a set of special
basic processors that have as their semantics that they reador write certain data stores. However, also
for such basic processors that represent calls to stateful services, we do not represent the state of the
service in the local state. This is because we consider this state not a part of the Taverna system but
a part of the environment with which it communicates. It is possible to reason about the behavior of
Taverna while taking into account that a service it calls hascertain stateful behavior, e.g., is a counter.
For that a description of that behavior, ideally also in the form of a state transition system, has to be
composed with Taverna’s state transition system such that their mutual transitions, i.e., the service calls,
are synchronized.

Definition 2.2. (Global state)
A global state of a Scufl graphg is a functiongs : Gg → LS that associates with each subgraphg′ ∈ Gg

a local state ofg′.

Note that only one state is associated with each subgraph which means that it executes only one run
at any moment. Since we restrict ourselves to hierarchically nested Scufl graphs (see Section 1.5 of [13])
this cannot lead to resource contention between different parts of the Scufl graph. Although in Taverna
it is possible to choose whether the iteration steps are executed sequentially or in parallel, we will only
describe here sequential execution. It is possible to describe a semantics that would allow parallelism,
see for example [5, 4], but we have chosen not to do so in this paper because it would complicate the
presentation of the main concepts of the semantics of Scufl.

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 377

2.2. Ready ports and enabled processors

The fundamental notion that determines the execution of a Scufl graph is the notion ofenablednessof
a processor, i.e., whether in a certain state a processor canstart processing its input. One necessary
condition for this is that all its input ports areready, i.e., store a fully constructed input value. In the
following we describe these two notions in more detail.

Informally, a processor input port is said to be ready, if thevalue assigned to it will not be further
extended by the incoming-links strategy function (see Section 2.3 of [13]).

Definition 2.3. (Ready input port)
Given a Scufl graphg = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv) we say that input portpin ∈ πi is ready
in a local statels = (Iv,Ov, ipv, opv, es, ii) iff pin either has no incoming data edges or ifpin has
incoming data edges then it holds that :

(i) if ils(pin) = first, then the first value forpin has already arrived, i.e.,ipv(pin) 6= ⊥, and

(ii) if ils(pin) = merge, then all the values forpin have already arrived, i.e., theipv(pin) is a list with
length equal to the number of data edges ending inpin.

Recall that input ports with no incoming edge must have a default value specified, and therefore are
always ready.

Note that if a select-first incoming-links strategy is specified, the port does not wait for values from all
incoming data edges, but is ready after receiving the first one. On the other hand, if the merge incoming-
links strategy is specified, the port has to wait for a value from every incoming data edge. This way the
merge setting can be viewed as a shortcut for an intermediaryprocessor with a separate input port for
each incoming data edge and one output port, that composes values from distinct ports into a list2.

The notion of readiness is extended to workflow outputs, which is natural since the values stored
there will also be constructed by the incoming-links strategy function (see Section 2.3 of [13]). There
is a small exception to this in the behavior of Taverna 1.7.1,where a workflow output with themerge

strategy may become ready even if only values from some of theincoming data edges arrived and it is
certain that no more will since the processors that should produce them failed. However, this behavior
seems to be idiosyncratic.

The notion of readiness now allows us to define the notion of enabledness. Informally, a processor is
said to be enabled, when it can start processing its input. There are three conditions that have to hold for
that to happen. First, it has to be scheduled, which means that in the current run of the Scufl graph it was
not used yet. Second, all the processors that it synchronizes with through the control edges must have
already finished without a failure. Finally, every one of itsinput ports has to be ready, i.e., a value has to
be available to be consumed from it, either one that was produced during the computation or provided as
default. Formally:

Definition 2.4. (Enabled processor)
Given a Scufl graphg = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv) and its local statels = (Iv,Ov, ipv, opv,
es, ii), a processorp ∈ P is said to beenablediff it holds that:

2Although, in the intermediary processor case the ordering of the elements of the result list would be always the same and not
correspond to the order in which the input values have arrived.

378 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

(i) es(p) = “scheduled”, and

(ii) for every control edge(p′, p) ∈ Ec, es(p′) = “finished”, and

(iii) each input port ofp is ready inls.

Notice that during one Scufl graph run each processor at the top level can start processing of the input
at most once, so it can produce at most one result value and thus each data edge transports at most one
value.

2.3. Finished Scufl graphs

Here we explain when a Scufl graph is considered to befinished. Informally, a Scufl graph is finished
when all the workflow input values were propagated, all values on processor output ports were propagated
and there are no more processors that can start preparing, are preparing or are waiting.

Definition 2.5. (Finished Scufl graph)
A Scufl graphg = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv) is said to befinished in a local statels =
(Iv,Ov, ipv, opv, es, ii) iff it holds that:

(i) for every workflow inputi ∈ I it holds thatIv(i) = ⊥,

(ii) for every processor output port(p, l) ∈ πo it holds thatopv(p, l) = ⊥,

(iii) none of the scheduled processors is enabled, and

(iv) there are no preparing or waiting processors.

Furthermore, we say that the Scufl graphfinished with a success, when its every workflow outputo ∈ O
is ready, otherwise we say itfinished with a failure.

This definition of finishing with a success or failure is implied by the fact that a Scufl graph can be
nested and thus must produce values for its every workflow output, so that the processor in which it is
nested can produce values on its every output port. However,in the real Taverna two exceptions are
present which we briefly discuss here. First, for a Scufl graphthat is not nested, i.e., the top level Scufl
graph, it is enough to have at least one of its workflow outputsready so that it finishes with a success.
Second, a nested Scufl graph that iterates, i.e., was executed for a nested value in the value computed
by the product strategy, always finishes with a success, evenif none of its workflow outputs are ready.
In the result of such iteration the empty string is used to fillin the missing results for workflow outputs
that were not ready, but only when in a subsequent iteration step this workflow output becomes ready.
However, if during all iterations a nested Scufl graph has notproduced any value on a certain port, then
the associated nested processor will fail anyway. For example, assume a nested Scufl graph with one
workflow input and one workflow output is defined such that it returns its input value when it is unequal
to “x”, and no value otherwise. Then, if it iterates over[“x” , “y” , “x” , “y” , “x”] it returns[“” , “y” , “” , “y”].
However, iterating with such a nested Scufl graph over a list with just “x” elements causes a failure of
the nested processor.

The inclusion of the extra empty values seems an attempt to save such iterating nested Scufl graph
from failure. However, the empty values will probably be misinterpreted in the remaining part of the

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 379

Scufl graph in which the iteration over the nested Scufl graph occurred. Moreover, the absence of the
extra empty values when they are not followed by ordinary results, may also confuse the user. For
example, consider the Scufl graph in Fig. 1, where the nested Scufl graph is used to submit a paper to a
PhD symposium and apply for a grant to visit it, and the “Declaration of expenses” processor has the dot
product strategy specified. Let us assume, that this Scufl graph is started with a list of three PhD students
{“X” , “Y” , “Z” } and during the iteration the papers written by “X” and “Z” areaccepted, but for some
formal reasons they do not get grants and the paper written by“Y” is rejected, but he gets a grant anyway
since the money are available. That is the list{“” , “gnY” }, where “gnY” is the grant number for “Y” is
returned on the output portgrant number, and the list{“idX” , “” , “idZ” }, where “idX” is the accepted
paper identifier for “X” while “idZ” for “Z”, is returned on the output portconference name. Now,
if the “Declarationof expenses” processor is not prepared to handle empty values,“X” will have his
expenses refunded even though he had no grant, “Y” will get money from his grant even though he did
not go to the symposium and “Z” will not have his expenses refunded, despite the fact that he was in the
same situation as “X”. Although the first thing is not bad in this context, the remaining two probably are.
Furthermore, if the symposium chair was used to running thisScufl graph for individual PhD students,
he would probably be dissatisfied by the different behavior,i.e., running this Scufl graph separately for
any of “X”, “Y” and “Z” would alert him with an error.

Therefore we have chosen not to allow in our formal semanticsTaverna’s exception for nested Scufl
graphs and define them also to be finished with failure if not all their workflow outputs have produced
a value. For uniformity we also do not allow Taverna’s exception for the top level Scufl graph, so also
there we define the notion such that all workflow outputs must produce a result in order for it to finish
with success.

Figure 1. Iteration over a nested Scufl graph

2.4. Scufl graph initialization and result collection

When a Scufl graph starts execution its state needs to be resetsuch that any remaining state properties
such as intermediate and final results of the previous execution are removed. Therefore we introduce the
notion of aninitial state in which we reset the workflow outputs, the processor input ports, the processor
output ports, the processor states and the iteration indices. Note that the workflow inputs are not required
to be empty. Formally the notion is defined as follows.

Definition 2.6. (Initial state)
A local statels = (Iv,Ov, ipv, opv, es, ii) of Scufl graphg = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv) is

380 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

said to be aninitial state iff:

(i) Ov = {(o,⊥) | o ∈ O},

(ii) ipv = {(pin,⊥) | pin ∈ πi},

(iii) opv = {(pout,⊥) | pout ∈ πo},

(iv) es = {(p, “scheduled”) | p ∈ P}, and

(v) ii = {(p, ǫ) | p ∈ P}.

An initial state for whichIv−1({⊥}) = ∅, with Iv−1(X) := {i | Iv(i) ∈ X}, is calledfull, if
Iv−1({⊥}) = I it is calledcleanand otherwise the initial state is calledpartial.

In addition we define the functioninit to return the initial local state of a given Scufl graph after
initiating its workflow inputs with values stored on fields ofa given tuple. Formally, the functioninit :
G × Vtup → LS is defined as a partial function such that for a Scufl graphg and a tuplet where
dom(t) ⊆ I it holds thatinit(g, t) is the initial state(t ∪ t̄, Ov, ipv, opv, es, ii) of g, wheret̄ = {(i,⊥) |
i ∈ (I \ dom(t))}. Note that the returned initial state is full ifdom(t) = I.

We also define the functionresult to return the tuple of values computed on the workflow outputsin
a given local state of a given Scufl graph. Formally, the partial functionresult : LS → Vtup is defined
such thatresult(ls) = Ov if ls = (Iv,Ov, ipv, opv, es, ii) andOv ∈ Vtup. Observe thatresult(ls) is
defined if a Scufl graphg finished with a success in local statels.

2.5. State transitions

In this section we describe the possible transitions of the state of a Scufl graph. Recall that a system and
its state is defined by a hierarchical Scufl graphg and a global stategs of g. For each type of transition
we will specify a precondition overgs that must be satisfied and specify the new global stategs′ such
that the transitiongs gs′ is possible.

Before we proceed with the formal description of the transitions, we summarize them in a brief and
informal overview:

Propagation of values from workflow inputs (PROPWI) The values in the workflow inputs are prop-
agated to the processor input ports and workflow outputs to which they are connected by data
edges. At their destination they are added to any value that is already present there according to
the incoming-links strategy.

Initializing processor execution (INITPE) A scheduled and enabled processor is prepared for execu-
tion, i.e., the output port values are initialized and the iteration index is set to the first suitable value
in the result computed by the product strategy.

Starting a service call by a basic processor (STARTSC)A call is made to the service associated with
the basic processor, with the value indicated by the iteration index as a parameter.

Finishing successfully a service call by a basic processor (SUCFSC) A call to a service succeeds and
returns a value. The value is distributed and inserted into the different output port values of the
processor. The iteration index is moved to the next suitablevalue.

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 381

Failure of a service call by a basic processor (FAILSC)A call to a service fails and so the whole ex-
ecution of the processor fails.

Starting a nested Scufl graph execution (STARTNSGE)The nested Scufl graph is initialized with the
value indicated by the iteration index.

Finishing successfully a nested Scufl graph execution (SUCFNSGE) The nested Scufl graph finishes
with success and returns a value. This value is distributed and inserted into the different output
port values of the processor. The iteration index is moved tothe next suitable value.

Failure of a nested Scufl graph execution (FAILSGE)The nested Scufl graph finishes with failure,
and so the whole execution of the processor fails.

Finishing processor execution (FINPE)If the iteration index is undefined because there is no next
suitable value, the executing of the processor finishes witha success.

Propagation of values from processor output ports (PROPOP)When a processor is finished, but not
failed, the values of its output ports are propagated to the processor input ports and workflow
outputs to which they are connected by data edges. At their destination they are added to any value
that is already there according to the specified incoming-links strategy.

We now describe the transitions in full detail using the following notation. For a local statels =
(Iv,Ov, ipv, opv, es, ii) we let ls[Iv := Iv′] denote the local state(Iv′, Ov, ipv, opv, es, ii). In a sim-
ilar fashion we definels[Ov := Ov′], ls[ipv := ipv′], ls[opv := opv′], ls[es := es′] andls[ii := ii′],
as the local states equal tols but with the indicated tuple position replaced with the new value. For a
functionf and valuesx andy, we letf [x 7→ y] denote the function that is equal tof except that it maps
x to y, i.e., the function{(x′, y′) | (x′, y′) ∈ f, x′ 6= x} ∪ {(x, y)}. For two functionsf andh, we
let f [h] denote the function equal off except for valuesx for which h is defined, which are mapped to
h(x), i.e., the function{(x′, y′) ∈ f | ¬∃y′′ : (x′, y′′) ∈ h} ∪ h.

2.5.1. Propagation of values from workflow inputs (PROPWI)

Consider a workflow inputi ∈ I. If the value ofi is defined, i.e.,Iv(i) 6= ⊥, then this value is removed
from the workflow input and added to the input ports and workflow outputs to whichi is connected
with a data edge. For each such input port and workflow output the data is added as specified by the
corresponding incoming-links strategy. Formally:

precondition: g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv,Ov, ipv, opv, es, ii),
i ∈ I, Iv(i) 6= ⊥

transition: gs gs[g 7→ ls′] where
ls′ = ls[Iv := Iv[i 7→ ⊥]][Ov := Ov[Ov′]][ipv := ipv[ipv′]], with
Ov′ = {(o, [[ils(o)]](Ov(o), Iv(i)) | o ∈ O, (i, o) ∈ Ed} and
ipv′ = {(pin, [[ils(pin)]](ipv(pin), Iv(i))) | pin ∈ πi, (i, pin) ∈ Ed}

Note that if a workflow input has no outgoing data edges, its value is anyway reset to⊥.

382 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

2.5.2. Initializing processor execution (INITPE)

Consider an enabled processorp ∈ P in state “scheduled” and letv be the value computed by the product
strategy ofp from its available input port values and default values, i.e., v = [[ps(p)]]typei(p)(t1∪t2) where
t1 is the tuple constructed from the available values on the input ports andt2 is the tuple constructed from
the default values for the input ports for which no value is available, i.e.,t1 = {(l, ipv(p, l)) | (p, l) ∈
πi, ipv(p, l) ∈ Vtav} andt2 = {(l, dv(p, l)) | (p, l) ∈ πi, ipv(p, l) = ⊥}. The output port values of the
output ports of the processorp are initialized with an empty list, the iteration index ofp is set to the first
iteration value inv, and the state of the processor is set to “preparing”. Formally:

precondition: g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv,Ov, ipv, opv, es, ii),
p ∈ P , p is enabled inls, es(p) = “scheduled”,
t1 = {(l, ipv(p, l)) | (p, l) ∈ πi, ipv(p, l) ∈ Vtav},
t2 = {(l, dv(p, l)) | (p, l) ∈ πi, ipv(p, l) = ⊥},
v = [[ps(p)]]typei(p)(t1 ∪ t2)

transition: gs gs[g 7→ ls′] where
ls′ = ls[opv := opv[opv′]][es := es[p 7→ “preparing”]][ii := ii[p 7→ first(v)]], with opv′ =
{((p, l), []) | (p, l) ∈ πo}

2.5.3. Starting a service call by a basic processor (STARTSC)

Consider preparing basic processorp ∈ P and letv again be the value computed by the product strategy
of p from its input port values. The precondition is that inv there is a next iteration element, i.e.,
ii(p) ∈ I, and that the service was not yet called for this element, i.e., es(p) = “preparing”, then the
execution state ofp is set to “waiting”. This models the real world event that theserviceλ(p) is called
with the parametersget(v, ii(p)). Formally:

precondition: g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv,Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ TS, es(p) = “preparing”,ii(p) ∈ I

transition: gs gs[g 7→ ls[es := es[p 7→ “waiting”]]]

2.5.4. Finishing successfully a service call by a basic processor (SUCFSC)

Consider a basic processorp ∈ P that is waiting for the result of a service call, i.e.,es(p) = “waiting”,
and letv again be the value computed by the product strategy ofp from its input port values. For a
possible result of such a service call the respective fields are inserted into the output port values at the
position indicated by the iteration index, the execution state is set to “preparing” and the iteration index
is advanced one position. This models the real world event that the previously made service call succeeds
and returns a certain value. Formally:

precondition: g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv,Ov, ipv, opv, es, ii),

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 383

p ∈ P , λ(p) ∈ TS, es(p) = “waiting”,
t1 = {(l, ipv(p, l)) | (p, l) ∈ πi, ipv(p, l) ∈ Vtav},
t2 = {(l, dv(p, l)) | (p, l) ∈ πi, ipv(p, l) = ⊥},
v = [[ps(p)]]typei(p)(t1 ∪ t2), (get(v, ii(p)), t) ∈ [[λ(p)]],

transition: gs gs[g 7→ ls[opv := opv[opv′]][es := es′][ii := ii′]] where
opv′ = {((p, l), put(opv(p, l), ii(p), t(l))) | (p, l) ∈ πo},
es′ = es[p 7→ “preparing”] and
ii′ = ii[p 7→ next(v, ii(p))]

2.5.5. Failure of a service call by a basic processor (FAILSC)

Consider a basic processorp ∈ P . If the processor is waiting for the result of a call, i.e.,es(p) =
“waiting”, then the call might fail and its execution state becomes “failed”. This models the real world
event that the call to the serviceλ(p) failed. This leads to the following formal specification of the
transition:

precondition: g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv,Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ TS, es(p) = “waiting”

transition: gs gs[g 7→ ls[es := es[p 7→ “failed”]]]

2.5.6. Starting a nested Scufl graph execution (STARTNSGE)

This transition is very similar to the starting of a service call by a basic processor, except that the proces-
sor is not a basic processor but a nested Scufl graph and ratherthan starting a call to a service the nested
Scufl graphλ(p) is initialized for this iteration element. Formally:

precondition: g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv,Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ G, es(p) = “preparing”,ii(p) ∈ I,
t1 = {(l, ipv(p, l)) | (p, l) ∈ πi, ipv(p, l) ∈ Vtav},
t2 = {(l, dv(p, l)) | (p, l) ∈ πi, ipv(p, l) = ⊥},
v = [[ps(p)]]typei(p)(t1 ∪ t2)

transition: gs gs[g 7→ ls[es := es′]][λ(p) 7→ init(λ(p), get(v, ii(p)))] where
es′ = es[p 7→ “waiting”]

2.5.7. Finishing successfully a nested Scufl graph execution (SUCFSGE)

This transition is very similar to the finishing successfully of a service call by a basic processor, except
that the processor is not a basic processor but a nested Scufl graph and it is required in the precondition
that the nested Scufl graphλ(p) must have finished with success ings(λ(p)), and the result tuple is
composed from the output ports of the nested Scufl graph, i.e., t = result(gs(λ(p))). Formally:

384 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

precondition: g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv,Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ G, es(p) = “waiting”,
λ(p) finished with a success ings(λ(p)),
t1 = {(l, ipv(p, l)) | (p, l) ∈ πi, ipv(p, l) ∈ Vtav},
t2 = {(l, dv(p, l)) | (p, l) ∈ πi, ipv(p, l) = ⊥},
v = [[ps(p)]]typei(p)(t1 ∪ t2), t = result(gs(λ(p))),

transition: gs gs[g 7→ ls[opv := opv[opv′]][es := es′][ii := ii′]] where
opv′ = {((p, l), put(opv(p, l), ii(p), t(l))) | (p, l) ∈ πo},
es′ = es[p 7→ “preparing”] and
ii′ = ii[p 7→ next(v, ii(p))]

2.5.8. Failure of a nested Scufl graph execution (FAILSGE)

This transition is very similar to the failure of a service call by a basic processor, except that the processor
is not a basic processor but a nested Scufl graph and it is required in the precondition that the nested Scufl
graphλ(p) must have finished with a failure in its local stategs(λ(p)). Formally:

precondition: g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv,Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ G, es(p) = “waiting”,
λ(p) finished with a failure ings(λ(p))

transition: gs gs[g 7→ ls[es := es[p 7→ “failed”]]]

2.5.9. Finishing processor execution (FINPE)

If the processor is preparing and there is no next iteration index, then the state of the processor becomes
“finished”. Formally:

precondition: g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv,Ov, ipv, opv, es, ii),
p ∈ P , es(p) = “preparing”,ii(p) = ⊥

transition: gs gs[g 7→ ls[es := es[p 7→ “finished”]]]

2.5.10. Propagation of values from processor output ports (PROPOP)

Consider a processor output port(p, l) ∈ πo. If the value of(p, l) is defined, i.e.,opv(p, l) 6= ⊥ and the
processor is finished, but not failed, then this value is removed from the processor output port and added
to the input ports and workflow outputs to which output port(p, l) is connected with a data edge. For each
such input port and workflow output the data is added as specified by the corresponding incoming-links
strategy. Formally:

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 385

precondition: g = (I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv,Ov, ipv, opv, es, ii),
(p, l) ∈ πo, opv(p, l) 6= ⊥, es(p) = “finished”

transition: gs gs[g 7→ ls′] where
ls′ = ls[Ov := Ov[Ov′]][ipv := ipv[ipv′]][opv := opv[(p, l) 7→ ⊥]], with
Ov′ = {(o, [[ils(o)]](Ov(o), opv(p, l)) | o ∈ O, ((p, l), o) ∈ Ed} and
ipv′ = {(pin, [[ils(pin)]](ipv(pin), opv(p, l))) | pin ∈ πi, ((p, l), pin) ∈ Ed}

Note that if a processor output port has no outgoing edges, its value is anyway reset to⊥.

2.5.11. Scufl graph run

The specification of possible transitions defines a transition system that can be used to describe the
semantics of Scufl graphs. An instance of a computation of a particular Scufl graphg, i.e., a sequence
of successive global states reached during the computation, will be called arun. We will denote a run
of global statesgs1, . . . , gsn of g asgs1 . . . gsn, by which we mean thatgsi gsi+1 for each
1 ≤ i ≤ n − 1.

A run gs1 . . . gsn of g will be called acleanly initialized runif it starts with an initial local
state ofg, i.e.,gs1(g) is initial, and clean initial local states of all the nested graphs, i.e., for allg′ ∈ Gg

such thatg′ 6= g the local stategs1(g
′) is a clean initial state.

2.6. Soundness of the transition system

To check the completeness of our semantics definition we are going to formally prove a property of Scufl
graphs, which states that for every Scufl graphg all its cleanly initialized runs that start withg initialized
with any input values of any type3 and possibly missing input values eventually finish, eitherwith success
or with failure.

At the same time this exercise shows that the formal semantics as defined in this paper can be used
in proofs of this kind.

Theorem 2.1. For every Scufl graphg and any of its cleanly initialized runsgs1 . . . gsn:

(i) there is a maximum number of steps that this run can be extended with, i.e., suchm ∈ N that for
every rungs1 . . . gsn gsn+1 . . . gsk of g it holds thatk ≤ m, and

(ii) if in gsn none of the transitions is possible theng is finished.

Proof:
In the following we assumeg to be a Scufl graph andgs its global state.

We first show that the runs are of finite length. The idea is to show that the global state ofg in some
sense decreases with each transition and this decreasing cannot proceed indefinitely. For that we define
a global state vectorwhich is a natural number vector. The composition of the vector is based on the
properties of combined local states of the Scufl graphs that occupy the same level of the tree given by

3Under our liberal type semantics this includes heterogeneous values, and therefore all complex values.

386 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

the nesting graphNg (in the following referred to as the nesting tree)4, i.e., graphs that as the nodes
of the tree have the same depth. LetNg(k) be the set of graphs at depthk of the nesting treeNg, i.e.,
Ng(0) = {g} andNg(k + 1) = {g′ | (g, p, g′) ∈ E, g ∈ Ng(k)}. For each non-empty levelk of
the nesting tree the vector contains six subsequent properties: (1) the total number of workflow inputs
of graphsgk ∈ Ng(k) which in gs(gk) are not empty, (2) the total number of processors of graphs
gk ∈ Ng(k) that ings(gk) are scheduled, (3) the total number of processors of graphsgk ∈ Ng(k) that
in gs(gk) are neither finished nor failed, (4) the total number of elements that still have to be iterated by
processors of graphsgk ∈ Ng(k) in gs(gk), (5) the total number of processors in graphsgk ∈ Ng(k) that
in gs(gk) are preparing (6) the total number of processor output portsin gk ∈ Ng(k) that ings(gk) are
empty.

The following functions of signatureN → N give the values of those properties. We assume that
gk = (Ik, Ok, P k, πk

i , πk
o , Ek

d , Ek
c , λk, ilsk, psk, dvk) andgs(gk) = (Ivk, Ovk, ipvk, opvk, esk, iik).

1. notewfigs
g (k) =

∣

∣{ i | i ∈ Ik, Ivk(i) 6= ⊥, gk ∈ Ng(k) }
∣

∣

2. pschedgs
g (k) =

∣

∣{ p | p ∈ P k, esk(p) = “scheduled”, gk ∈ Ng(k) }
∣

∣

3. pnotffgs
g (k) =

∣

∣{ p | p ∈ P k, esk(p) 6= “finished”, esk(p) 6= “failed” , gk ∈ Ng(k) }
∣

∣

4. iterleftgs
g (k) =

∑

{ togo(v, i) | p ∈ P k, iik(p) = i, gk ∈ Ng(k) }

5. pprep
gs
g (k) =

∣

∣{ p | p ∈ P k, esk(p) = “preparing”, gk ∈ Ng(k) }
∣

∣

6. ewfogs
g (k) =

∣

∣{ o | o ∈ Ok, Ovk(i) = ⊥, gk ∈ Ng(k) }
∣

∣

wheretogo(v, i) : Vext × I → (Vext ∪ ⊥) is defined such thattogo(v, i) = 0 if next(v, i) = ⊥ and
togo(v, i) = 1+ togo(v, next(v, i)) if next(v, i) 6= ⊥. It is easy to see that the functions are well defined
in any state of a cleanly initialized run.

In the vector the components corresponding to smaller depths in the nesting tree precede the ones for
bigger depths. Formally the vector is defined as follows:

(notewfigs
g (0), pschedgs

g (0), pnotffgs
g (0), iterleftgs

g (0), pprepgs
g (0), ewfogs

g (0)

. . .

notewfigs
g (hg), pschedgs

g (hg), pnotffgs
g (hg), iterleft

gs
g (hg), pprepgs

g (hg), ewfogs
g (hg))

wherehg is the height of the nesting tree, i.e., the biggest numberk such thatNg(k) 6= ∅. Observe that
the vector is thus of finite size determined by the height of the nesting tree, i.e., its size is equal six times
the height of the nesting tree.

We are now going to show that under a lexicographical ordering each transition in a cleanly initialized
run decreases the global state vector. For that we are going to list how each state transition changes the
vector:

PROPWI does not increase any component and decreases the number of not empty workflow inputs
(1),

4We assume Scufl graphs to be hierarchical and thus the nestinggraphNg is a tree (see Section 1.5 of [13]).

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 387

INITPE increases the number of remaining iterations (4) and the number preparing processors (5), but
at the same time decreases the number of scheduled processors (2),

STARTSC does not increase any component and decreases the number of preparing processors (5),

SUCFSC increases the number of preparing processors (5), but at thesame time decreases the number
of remaining iterations (4),

FAILSC does not increase any component and decreases the number of processors that are neither
finished nor failed (3),

STARTNSGE increases the part of the vector that corresponds to the nested Scufl graph, which is on a
bigger depth thus less important in our ordering, and decreases the number of scheduled processors
(2),

SUCFSGE similarly as SUCFSC increases the number of preparing processors (5), but at the same time
decreases the number of remaining iterations (4),

FAILSGE does not increase any component and decreases the number of processors that are neither
finished nor failed (3),

FINPE does not increase any component and decreases the number of processors that are neither fin-
ished nor failed (3),

PROPOP decreases the number of empty workflow outputs (6).

It is well known from set theory that the set of natural numbervectors of a given length with lexicograph-
ical ordering is a well-founded partially ordered set and thus it does not contain an infinite descending
chain. For the self containment of this work we show this formally in the Appendix A (see Corollary A.1).
This proves that all runs are of finite length, since from the non-existence of an infinite descending chain
it follows that there is a bound on the number of transitions by which a given run can be extended.

To complete the proof of Theorem 2.1 we are going to show that if a state has been reached in which
no transitions are possible, i.e., none of the transitions has its preconditions satisfied, theng is finished.
The proof will follow by induction on the height of the nesting treeNg

We first assume that the nesting treeNg is of height 1 and that in a global stategs′ of g none of the
transitions has its preconditions satisfied. We will show that g is finished ings′(g). For that we look
at the four conditions in definition 2.5. It is clear that (i) directly follows from the unfulfillment of the
preconditions for transition PROPWI, (ii) directly follows from the unfulfillment of the preconditions for
transition PROPOP and (iii) directly follows from the unfulfillment of the preconditions for transition
INITPE. As for (iv) let us first notice that if the nesting treeNg is of height 1, theng contains only
basic processors, i.e.,Ng = {{g}, ∅}. If there would be any preparing processor, then either STARTSC
or FINPE transitions would be possible depending on whetherthere is a next iteration element for that
processor. Also, if there would be any waiting processor, then both the SUCFSC and FAILSC transitions
would be possible5. Thus all the conditions for a finished Scufl graph are satisfied.

5Recall that we do not include the state of the external services in our formal model and thus there is no dependency on any
such state in the preconditions for the transitions.

388 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

We now assume that the thesis holds for all the Scufl graphs with the nesting tree of height smaller
or equal ton and we are going to show that it also holds for all graphs with the nesting tree of height
n + 1. Let the nesting treeNg be of heightn + 1 and letgs′ be a global stateg such that none of the
transitions has its preconditions satisfied. We will show thatg is finished ings′(g). As before we look at
the conditions in the definition 2.5. For conditions (i), (ii) and (iii) the reasoning follows. As for (iv) the
argument for non-existence of preparing processors remains the same. Similarly for the non-existence
of waiting basic processors. The only thing left to show is that there are no waiting processors that
represent nested Scufl graphs. Let us assume by contradiction that a waiting processorp exists ing and
represents a nested Scufl graph. Because preconditions for SUCFSGE and FAILSGE transitions are not
satisfied, then the nested Scufl graph ofp cannot be finished. Yet, the nesting tree of that nested Scufl
graph is of height smaller or equal ton and since we have assumed that no transitions are possible, it
follows from the induction assumption that the nested Scufl graph is finished. This completes the proof
by contradiction and thus the proof by induction. ⊓⊔

It is easy to see that a cleanly initialized run of a Scufl graphmay finish with failure if (1) not all
input port values are available or if (2) a basic processor fails. In both cases some processors can never
produce their output which may prevent some or all workflow outputs from becoming ready. It can also
be observed that (1) and (2) are the only reasons for a Scufl graph not to succeed and thus for every Scufl
graphg all its cleanly initialized runs that start withg in a fully initialized local state, i.e., with all the
workflow input values present, eventually terminate with success if we exclude the failure of transitions.
Although we do not give here a formal proof, this follows intuitively from the facts that processors
without input ports are immediately enabled, all processorinput ports have either incoming data edges
or a default value specified and because Scufl graphs contain no cycles.

3. Dealing with heterogeneous values in Taverna

Until now in the discussion of the semantics of Scufl we focused our attention on homogeneous lists. Yet,
heterogeneous values can be created in Taverna with the use of the merge incoming-links strategy or by
an iteration on a processor that returns values with variousnesting depths in its subsequent executions,
e.g., sometimes lists and sometimes lists of list. Unfortunately, heterogeneous values are not processed
consistently in the current implementation of Scufl. In Section 1.2 of [13] we showed that some services,
such as the built-in flatten operation, do not handle such values consistently. Furthermore, the way the dot
product is implemented in Taverna yields sometimes rather unexpected results for heterogeneous values.
Informally, the dot product in Taverna is computed by iterating over the tuples in both arguments. During
the iteration, the subsequent pairs of tuples are combined,i.e., first with first, second with second and so
on. The combinations are placed in the result nested list on positions pointed by the longer of the indexes
of the combined tuples. If both indexes have the same length,the left one is chosen. This is different from
our definition of the· operator from Section 2.4 of [13] because we structure the result according to the
argument with the higher nesting depth, which means that theindexes for tuples combinations are taken
from an argument chosen in advance and not determined for each combination of tuples separately. Of
course, for homogeneous values both methods produce the same results, since for homogeneous list all its
tuple indexes have the same length. Yet, in Taverna the resulting indexing can contain gaps. For example,
if a, b, c, x, y andz are tuples, and a dot product of[[[a, b]], c] and[[x, y, z]] is computed, then the result
would contain:a ∪ x on index1/1/1, b ∪ y on index1/1/2 andc ∪ z on index1/3. The1/2 position

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 389

would have to be filled up by some kind of empty value. This problem does not occur if the definitions
of dot product from Section 2.4 of [13] are taken, i.e.,[[[a, b]], c] · [[x, y, z]] = [[[a∪ x, b∪ y]], c ∪ z] and
[[[a, b]], c] ·r [[x, y, z]] = [[[a ∪ x]]].

Here we discuss two possible solutions to the heterogeneousvalues problem in Taverna. One, is to
adopt the formal semantics from this paper which seems intuitive while at the same time allows hetero-
geneous values everywhere and deals with them consistently. We elaborate on this in Section 3.1. The
other solution is to avoid heterogeneous values at all, which we discuss in further detail in Section 3.2.

3.1. Allowing heterogeneous lists

The semantics defined in this paper deals with heterogeneouslists intuitively and consistently, yet its
adoption in the workbench may require additional effort foradjusting some of the services. For exam-
ples, for the built-in flatten operation a definition is possible that processes the heterogeneous values
consistently, that is:

flat(x) =

{

[] if x = []

list(x1) + . . . + list(xn) if x = [x1, . . . , xn]

wherelist(x) = x for list values andlist(x) = [x] for mime values. Note, that with this definition,
flattening of[[x], [[y]]] yields [x, [y]] and not[[x], [y]] as it is the case in Taverna.

It is also possible to extend the type coercion mechanism described in Section 1.2 of [13]. If a
certain service that requires its input lists to be homogeneous and of a specific nesting depth, gets a value
that is non homogeneous or is of lower nesting depth, then there is always an intuitive interpretation of
subvalues in that value as more deeply nested ones, namely bynesting them in singleton lists. For this
a homogenisation functionhomτ : [[τ]] → [[τ]] can be used, that maps all complex values of typeτ to
homogeneous complex value with the maximum nesting depth possible inτ . It is defined such that:

• homM(x) = x,

• hom[τ](x) = [homτ (x)], if x ∈ [[τ]], and

• hom[τ]([x1, . . . , xn]) = [homτ (x1), . . . , homτ (xn)], if [x1, . . . , xn] 6∈ [[τ]].

The functionhomτ packs values that do not have the maximum nesting depth allowed in τ into sin-
gleton lists, and if the value does have the right nesting depth andτ = [σ] then it applies itself to
the elements of the list for the typeσ. For example,hom[[[M]]]([1, [2]]) = [hom[[M]]([1, [2]])] =
[[hom[M](1), hom[M]([2])]] = [[[homM(1)], [homM(2)]]] = [[[1], [2]]]. Thanks to this function we can
safely assume that all services can deal with all homogeneous and heterogeneous complex values that
belong to their input type.

It is worth pointing out that the existence of such type coercion is consistent with Taverna’s philoso-
phy of trying to fix the type mismatches for the user.

3.2. Adapting the semantics to avoid heterogeneous lists

An alternative to allowing heterogeneous lists and dealingwith them consistently is to disallow them
completely and allow only homogeneous lists. This means that we have to make sure that, under the

390 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

assumption that values containing heterogeneous lists cannot be entered by the user, no computation can
produce values with heterogeneous lists. New values appearin a Scufl graph in the following cases: (1)
they are produced in a processor execution, (2) they are created in the incoming-links strategy compu-
tation, (3) they are created in the product strategy computation, or (4) they are produced in a processor
iteration.

As for (1), a service that was provided with only homogeneousvalues as arguments could produce
heterogeneous results. One possibility is to interpret this as a failure, another is to always adapt the result
value with the homogenisation function, i.e., if the service call returnsv, then usehomτ (v) as the result,
whereτ is the smallest type ofv.

As for (2), the select-first strategy does not change the values, so it cannot cause a heterogeneous
value to appear. Yet, the merge strategy can, if the subsequent values provided to it are of different
nesting depth. Similarly as in (1), this can be remedied withthe use of the homogenisation function to
extend the merge function as follows:

[[mergehom]](t, v) =

{

[v] if t = ⊥

hommin({τ |(t+[v])∈[[τ]]})(t + [v]) otherwise

wheremin : P(Ttav) → Ttav returns the minimal type in a set of types.
As for (3), neither the dot nor the cross product can produce heterogeneous values from homogeneous

arguments, regardless which definition is chosen, so no extra care is necessary.
Finally, as for (4), a heterogeneous value can be created, ifthe processor returns results with different

nesting depths in the subsequent iteration steps. Again, this can be solved with the use of homogenisation
function, this time to extend theput function such that:

puthom(v, α, t) =

{

put(v, α, t) if put(v, α, t) = ⊥

hommin({τ |put(v,α,t)∈[[τ]]})(put(v, α, t)) otherwise

4. Related work

We start with comparing the presented work with that of Turi et al. in [15]. In that work a calculus
is defined to represent Scufl graphs and a semantics is defined for them in terms of function that map
workflow input values to a workflow output value.

The most important difference is that in our work we assume that calls to services have side effects,
or, in other words, are observable events that are part of thebehavior of the system. This means that
two computations that call services in a different order or adifferent number of times, are not considered
as equivalent, even if they compute the same output value. Therefore we describe the semantics of the
system not in terms of functions, but in terms of a transitionsystem that describes which calls are made
in which order, which arguments were passed, and which output values are produced in the workflow
outputs as the result of the Scufl graph. A consequence of the side-effect assumption is that, contrary
to what Turi et al. assume, nesting a Scufl graph is no longer a purely syntactic construct because it
synchronizes the consumption of values on the input ports and the production of values on the output
ports, and so changes the observable behavior of the transition system. The same holds for the control
edge, which can only have meaning if the order of computations is an observable aspect of the system.

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 391

The second difference with the work by Turi et al. is that their syntax is defined by a statically typed
calculus. Since a Scufl graph is polymorphic and can work on inputs of different types, its semantics
cannot always be described by a single calculus expression and may require a different one for each
possible type of input value. In addition, the coercion to more deeply nested list types by wrapping and
the implicit iteration strategy have to be made explicit in calculus expressions. As a result the mapping of
a real Scufl graph, as described in our work, given certain presumed input types for the workflow inputs,
to a calculus expression is not simple. We list the main threereasons why this is not straightforward:

1. Values that contain no basic vales, such as[], [[]] and [[], [[]]] belong to multiple types. This has
sometimes unexpected consequences. For example, assume a processor with one input port that
expects values of type[M] and one output port that produces values of type[M]. Given the
polymorphic iteration mechanism one would expect that whenpresented with input of type[[M]]
this processor will produce a result of type[[M]]. However, if the value[] is offered, which is
of type [[M]], it will not iterate since the value is also of the expected type [M], and therefore
produce a value of type[M] and not of type[[M]]. As a consequence it is not true that if the
type of the input of the input values is known, there is a single type that describes all possible
outputs. Hence there cannot be a calculus expression that describes the behavior of a Scufl graph
for a certain input type.

2. During iteration at deeper nesting levels, certain emptylists are removed. If the identity processor
that expects values of typeM receives the value[[[]], [[v,w], []], [[]], [[x]], [[]]] with v,w, x ∈ VM,
it returns[[], [[v,w]], [], [[x]]]. Simulating this in the calculus would require a test for empty lists.

3. Another problematic case is the dot product at deeper nesting levels. Assume a processor with
two input ports that computes the functionF (x, y), expectsM on both its ports, and has the
dot product iteration strategy. If it receivesv = [[v1, v2], [v3, v4]] and w = [w1, w2, w3] with
v1, v2, v3, v4, w1, w2, w3 ∈ VM, then the result is[[F (v1, w1), F (v2, w2)], [F (v3, w3)]]. It is pos-
sible to computeF for the listed combinations by first flatteningv, but the result would then be the
flat list [F (v1, w1), F (v2, w2), F (v3, w3)]. The difficulty lies in simulating that the result is nested
according to the structure ofv.

A more fundamental difference between the calculus and our semantics is that failure of processors
and Scufl graphs is not taken into account in the calculus. It can be argued that this aspect should be
dealt with at a lower abstraction level, and in Taverna 1 there are indeed other mechanisms such as the
specification of the number of retries and alternative services to deal with this. Moreover, in Taverna
2 the concept is replaced by special error values that indicate that certain subvalues were not produced
correctly. However, we maintain that it is an interesting and useful feature to have at the language
level, for example for specifying powerful fall-back strategies in Scufl itself. It is also essential for
understanding the semantics of Scufl in Taverna 1, if only because it is used to represent conditional
branching as discussed in Section 1.4 of [13].

Other related work defines the semantics with the use of workflow models based on Petri net [1]
formalism like the DFL language [5] which was designed by theauthors of this work for describing
scientific workflows. Yet, we have found that the combinationof Scufl’s select-first incoming-links
strategy and failure mechanism makes the mapping to Petri net based formalisms, and in particular to
DFL, involved and creating little insight into the semantics of Taverna. This is because for example

392 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

extensive additional constructs are necessary to clean thetokens that are left in the simulation of select-
first strategy and the exact number of such tokens is not knownin advance if failures are possible.

For an extensive overview of systems and different approaches in the young but very active area of
scientific workflows, the reader is referred to [3]. In the remainder of this section we will focus on one
of these systems that shares with Taverna the distinct possibility of defining polymorphic workflows that
can work on inputs of different types.

Kepler [9] is a scientific workflow system similar to Taverna in scope and application area. It also
is mainly applied in bioinformatics but has been used in other areas like ecology, oceanography and
geology. It is based on the Ptolemy II [2] system, which is a modeling and simulation environment
with a formal semantics based on the Tagged Signal Model [8, 6], and extends it with new features
and components for scientific workflow design and for efficient workflow execution. A distinguishing
feature of Kepler is its ability to enact one and the same workflow according to different computation
models which the workflow author specifies with the so calleddirector. Kepler includes directors that
correspond to process network, synchronous dataflow, continuous time, discrete event, and finite state
machine computation models. As in Taverna the execution in aprocess network workflow model is
driven by input data availability, i.e., an actor can fire, ifsome input data tokens are available on all its
input ports. On the output ports it produces tokens with the result values, which are usually immediately
transfered to further actors.

In [10] an extension of Kepler is proposed that allows polymorphic workflows to be defined. This is
based on a technique that is similar to that of Taverna, wherean actor that expects input of a certain type
can also operate on collections of other types by automatically identifying nested values of the right type
and operating on them. This type of polymorphic actor is referred to by the authors as acollection-aware
actor and the workflows that contain themcollection-oriented workflows. A difference with Taverna is
that the user can specify in more detail how such nested values are identified and how they are iterated
over, where in Taverna this is completely transparent. Another difference with Taverna is that Kepler
features an elaborate and refined type system which explicitly allows heterogeneous values and this type
system is used in the specification of the aforementioned collection-aware actors.

5. Conclusion

In these two papers (for the first part see [13]) we have presented a formal definition of the syntax and
semantics of Scufl, the workflow specification language of theTaverna environment. The syntax is based
on hierarchically nested graphs and the semantics is given by a transition system whose state is defined
by the local states of each graph in the hierarchy, which in turn is defined by the state of each component
in that graph.

We maintain that an expressive and effective formalism for describing its semantics is important for
Scufl. Not only do we think it helps to build a correct and consistent implementation that is easy to
understand by users, but it is also a requirement for formal research on a wide variety of subjects such
as provenance, optimization, transformation and verification of soundness properties. A nice case in
point is the Ptolemy system where formal semantics was investigated in an early stage [6] and played
an important role in its development [8]. The semantics of Scufl as defined by us is very thorough and
consistent with the observed behavior of the real implementation, but at the same time very involved and
giving too much attention to behavior that might be considered as irrelevant detail. Clearly a simpler and

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 393

more elegant formalism would be more effective in the mentioned applications. Yet, we believe that a
careful examination of all the details is a necessary first step to guarantee that more elegant definition
does not oversimplify and stays close enough to the behaviorof the defined Scufl graph. In addition, we
believe that for any language that describes non-trivial systems of which users must sometimes precisely
understand the semantics, verifying the possibility of an elegant formalization is the best way to test if
the language is well-designed. This work contributes to such verification by highlighting the following
aspects of the current implementation:

• The type coercion and implicit iteration mechanisms do not always protect from construction of
heterogeneous values and the version of Taverna that we haveinvestigated (version 1.7.1) not
always deals consistently with them. This can be easily fixed, but as we show a definition of
semantics is possible and even simpler with a type system that explicitly allows heterogeneous
values. Therefore two semantics were proposed, one in whichheterogeneous lists are allowed and
consistently dealt with, and one in which they are not allowed and their creation is prevented.

• The polymorphic semantics of Scufl make the mapping of Scufl graphs to calculi such as pre-
sented by Turi et al. problematic, and in some cases even impossible. As explained in Section 4
this is partially because of the subtle behavior on empty lists, and partially because of how the
polymorphic behavior of the product strategies is defined.

• During iteration over a value that contains empty lists someof them can be omitted, e.g., an identity
processor iterating on[[[]], [[1, 2], []], [], [[3]], [[]], []] yields [[], [[1, 2]], [], [[3]]].

The purpose of the definitions in this paper and its previous part [13] is not only to provide a semantics
of Scufl that gives a precise and formally analyzable description of the defined Scufl graph, but also to
investigate the different design choices that were made in assigning semantics to the various constructs
in Scufl. In particular two issues were addressed. The first, is the already mentioned inclusion of the
heterogeneous values. The second, is the semantics of the product strategies such as the dot product and
the cross product. Based on their formal definitions they areanalyzed and alternatives are proposed and
evaluated.

References

[1] van der Aalst, W.: The application of Petri Nets to Workflow Management,The Journal of Circuits, Systems
and Computers, 8(1), 1998, 21–66.

[2] Department of EECS, U. B.: Ptolemy II project and system,http://ptolemy.eecs.berkeley.edu/

ptolemyII, 2008.

[3] Guan, Z., Hernandez, F., Bangalore, P., Gray, J., Skjellum, A., Velusamy, V., Liu, Y.: Grid-Flow: a Grid-
enabled scientific workflow system with a Petri-net-based interface,Concurrency and Computation: Practice
and Experience, 18(10), 2006, 1115–1140.

[4] Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz,J., Van den Bussche, J.: Petri net + nested rela-
tional calculus = dataflow,Proc. 13th Int. Conf. on Cooperative Information Systems (CoopIS), LNCS 3760,
Springer, Agia Napa, 2005.

[5] Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz,J., Van den Bussche, J.: DFL: A dataflow language
based on Petri nets and nested relational calculus,Information Systems, 33(3), 2008, 261–284, ISSN 0306-
4379.

394 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

[6] Lee, E. A., Sangiovanni-Vincentelli, A.: Comparing models of computation,ICCAD ’96: Proceedings of the
1996 IEEE/ACM international conference on Computer-aideddesign, IEEE Computer Society, Washington,
DC, USA, 1996, ISBN 0-8186-7597-7.

[7] Li, P., Hayward, K., Jennings, C., Owen, K., Oinn, T., Stevens, R., Pearce, S., Wipat, A.:Proceedings of the
UK e-Science All Hands Meeting 2004, Nottingham, UK, September 2004.

[8] Liu, X., Lee, E. A.: CPO Semantics of Timed Interactive Actor Networks, Technical Report UCB/EECS-
2007-131, EECS Department, University of California, Berkeley, Nov 2007.

[9] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D.,Jaeger, E., Jones, M., Lee, E. A., Tao, J., Zhao, Y.:
Scientific workflow management and the Kepler system: Research Articles, Concurr. Comput. : Pract.
Exper., 18(10), 2006, 1039–1065, ISSN 1532-0626.

[10] McPhillips, T. M., Bowers, S., Ludäscher, B.: Collection-Oriented Scientific Workflows for Integrating and
Analyzing Biological Data,DILS (U. Leser, F. Naumann, B. A. Eckman, Eds.), 4075, Springer, 2006, ISBN
3-540-36593-1.

[11] Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood,M., Carver, T., Wipat, A., Li, P.: Taverna: A tool for
the composition and enactment of bioinformatics workflows,Bioinformatics, 2004.

[12] Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., Ferris, J., Glover, K., Goble, C., Goderis, A., Hull, D.,
Marvin, D., Li, P., Lord, P., Pocock, M. R., Senger, M., Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in
creating a workflow environment for the life sciences: Research Articles, Concurr. Comput. : Pract. Exper.,
18(10), 2006, 1067–1100, ISSN 1532-0626.

[13] Sroka, J., Hidders, J.: Towards a formal semantics for the process model of the Taverna workbench. Part I,
Fundamenta Informaticae, 92(3) 2009, 279–299.

[14] Stevens, R., Tipney, H., Wroe, C., Oinn, T., Senger, M.,Goble, C., Lord, P., Brass, A., Tassabehji, M.:
Exploring Williams-Beuren Syndrome usingmyGrid, Proceedings of 12th International Conference on In-
telligent Systems in Molecular Biology, 2004.

[15] Turi, D., Missier, P., Goble, C., De Roure, D., Oinn, T.:Taverna Workflows: Syntax and Semantics,e-Science
and Grid Computing, IEEE International Conference on, 2007.

Appendix

A. Basic properties of lexicographical ordering of number vectors

Definition A.1. (Number vector)
A number vector of dimensionn ∈ N is a tuplec̄ = (c1, . . . , cn) with c1, . . . , cn ∈ N. The set of all such
vectors is denoted asNn.

If c̄ = (c1, . . . , cn), then we let(c0, c̄) denote the number vector(c0, c1, . . . , cn).

Definition A.2. (Number vector ordering)
OverNn we let≤n denote the lexicographical ordering, i.e., it holds that:

(i) () ≤0 (), and

(ii) (c1, c̄) ≤
n+1 (d1, d̄) iff (a) c1 < d1 or (b) c1 = d1 andc̄ ≤n d̄.

J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II 395

Proposition A.1. (Nn,≤n) is a partially ordered set for eachn ∈ N.

Proof:
We show this by induction onn. Forn = 0 this is clear sinceN0 = {()} and() ≤0 (). Forn + 1 we can
show, using the induction assumption forn, the reflexivity, antisymmetry and transitivity as follows:

A0.0.1. Reflexivity Let (c1, c̄) be an arbitrary vector fromNn+1. By induction we know that̄c ≤n c̄
and by (2b) it then follows that(c1, c̄) ≤

n+1 (c1, c̄).

A0.0.2. Antisymmetry Let c̄′, d̄′ ∈ N
n+1 such that̄c′ ≤n+1 d̄′ and d̄′ ≤n+1 c̄′ wherec̄′ = (c1, c̄)

and d̄′ = (d1, d̄). Based on the definition of number vector ordering this is only possible ifc1 ≤ d1

and at the same timed1 ≤ c1 which together implyc1 = d1. From this and thēc′ ≤n+1 d̄′ it follows
that c̄ ≤n d̄. Similarly we getd̄ ≤n c̄. Now from the induction assumption we know thatc̄ = d̄ which
completes the proof since we already showed thatc1 = d1.

A0.0.3. Transitivity Assume that(c1, c̄) ≤n+1 (d1, d̄) and that(d1, d̄) ≤n+1 (e1, ē). Then one of
the following cases holds: (i)c1 < d1 andd1 < e1, (ii) c1 < d1 andd1 = e1, (iii) c1 = d1 andd1 < e1,
and (iv)c1 = d1 = e1, c̄ ≤n d̄ andd̄ ≤n ē. In the first three cases (i), (ii) and (iii) it follows thatc1 < e1,
and therefore(c1, c̄) ≤

n+1 (e1, ē). In case (iv) it follows thatc1 = e1 and by induction that̄c ≤n ē, and
therefore(c1, c̄) ≤

n+1 (e1, ē). ⊓⊔

Definition A.3. (Well-founded)
A partially ordered set(V,≤V) is said to bewell-foundedif it holds for every non-empty subsetV ′ ⊆ V
that it contains at least one minimal element, i.e., an element v ∈ V ′ such that for allw ∈ V ′ if w ≤V v
thenw = v.

Proposition A.2. The partial order(Nn,≤n) is well-founded.

Proof:
We prove this with induction onn. Forn = 0 it holds since there is only one element inN

0. Next, we
considern + 1. Let c′1 be the smallest number in{c1 | (c1, c̄) ∈ N

n+1}. Then letc̄′ be the minimal
element in{c̄ | (c′1, c̄) ∈ N

n+1} w.r.t. ≤n, which by induction exists. We now show that(c′1, c̄
′) is a

minimal element ofNn+1. Assume that(c1, c̄) ≤n+1 (c′1, c̄
′). By the definition of≤n+1 it holds that

c1 ≤ c′1 and by the definition ofc′1 thatc′1 ≤ c1, and soc1 = c′1. From this it follows that̄c ≤n c̄′. By
induction and the fact that̄c′ is a minimal element of a set of which̄c is also an element, it follows that
c̄′ = c̄. It therefore holds that(c1, c̄) = (c′1, c̄

′). ⊓⊔

Proposition A.3. (V,≤V) is well-founded iffV contains no infinite descending chains, i.e., there exists
no injective functionf : N → V such that for everyn ∈ N it holdsf(n + 1) ≤V f(n).

Proof:
We will prove both implications by contradiction. LetV ′ ⊆ V be a non-empty subset without a minimal
element. The sequencef : N → V ′ can be defined as follows.f(0) is an arbitrary element ofV ′. If
f is defined for allk ≤ n and for everyk < n it holds f(k + 1) ≤V f(k) but f(k + 1) 6= f(k) then

396 J. Sroka and J. Hidders / Toward a Formal Semantics for the Process Model of the Taverna Workbench. Part II

asf(n + 1) we choose any other element fromV ′ such thatf(n + 1) ≤V f(n). The existence of such
element follows from the fact thatf(n) is not minimal inV ′. The other way around, if there exists an
infinite descending chainf , then the image{f(1), f(2), . . .} is a non-empty subset ofV that has no
minimal element. ⊓⊔

Corollary A.1. The partially ordered set(Nn,≤n) contains no infinite descending chains.

Proof:
This follows directly from Propositions A.2 and A.3. ⊓⊔

