Fundamenta Informaticae 92 (2009) 279-299 279
DOI 10.3233/FI-2009-75
10S Press

Towards a Formal Semantics for the Process Model of the Tavea
Workbench. Part |

Jacek Sroka '

Institute of Informatics, University of Warsaw
Poland

sroka@mimuw.edu.pl

Jan Hidders

Faculty EEMCS, Delft University of Technology
The Netherlands

a.j.h.hidders@tudelft.nl

Abstract. Workflow development and enactment workbenches are begpanstandard tool for
conductingn silico experiments. Their main advantages are easy to operatmteséaces, special-
ized and expressive graphical workflow specification laggsand integration with a huge number
of bioinformatic services. A popular example of such a wekth is Taverna, which has many ad-
ditional useful features like service discovery, storingeimediate results and tracking data prove-
nance.

We discuss a detailed formal semantics for Scufl - the workéefinition language of the Taverna
workbench. It has several interesting features that armebin other models including dynamic and
transparent type coercion and implicit iteration, con&dges, failure mechanisms, and incoming-
links strategies. We study these features and investigaie tsefulness separately as well as in
combination, and discuss alternatives.

The formal definition of such a detailed semantics not orliywad to exactly understand what is be-
ing done in a given experiment, but is also the first step tdwatomatic correctness verification and
allows the creation of auxiliary tools that would detectguital errors and suggest possible solutions
to workflow creators, the same way as Integrated DevelopB@ritonments aid modern program-
mers. A formal semantics is also essential for work on enaetrmptimization and in designing the
means to effectively query workflow repositories.

*Supported by Polish government grant no. N206 007 32/0809
tAddress for correspondence: Institute of Informatics Marsity of Warsaw, Banacha 2, 02-097 Warsaw, Poland



280 J. Sroka and J. Hidders / Towards a Formal Semantics for tloe®ss Model of the Taverna Workbench. Part |

This paper is the first of two. It defines, explains and disesifsndamental notions for describing
Scufl graphs and their semantics. Then, in the second partjseghese notions to define the
semantics and show that our definition can be used to proyepies of Scufl graphs.

Keywords: formal semantics, Scufl, workflows, Taverna workbench

1. Introduction

Taverna [9] is an easy to operate workbench for workflow dgelent and enactment. It allows users
to graphically construct workflows from libraries of avdila components and is intended for use in
bioinformatics data analysis experiments. The most ingmbrvirtues of Taverna are that it is very
easy to use, has a specialized and expressive graphic#ficgiemn language and integrates many data
analysis tools. In [10] it is stated that the number of sudistexceeds 1000. It also includes additional
useful features like service discovery, storing interragalresults and tracking of data provenance. The
workbench is being constantly developed, but it is alreamhysitlered stable and has been used in real
life research, e.g., [13, 8].

The main motivation behind Taverna is to separate users frmvimplementation details of the
communication with the services that they want to use. Th&milar to the idea of hiding the details
of data storage access in the database management systeennalhandles communication with the
service and its execution. Users are freed of those detadlscan focus on what is really important
for them, which is analyzing the data. The conceptual lagguhat is used to define the data analysis
experiments, which we describe in Section 1.4, is intuiimel comprehensible for bioinformaticians,
who often have no programming experience. Workflows areifspeédn a graphical notation specially
designed for this purpose, which is call8inple conceptual unified flow languaggcufl).

The main concepts of the Scufl syntax and semantics weredglfgasented in [14]. Yet, several
Scufl features which are arguably important and unique anscientific workflow specification lan-
guages, like control edges used to synchronize servicdsside effects, dynamic and transparent type
coercion and implicit iteration, failure mechanisms, amebiming-links strategies are described at a very
high abstraction level or in a highly simplified manner. Weeghlternative and more detailed definitions
of the semantics of Scufl as it is implemented in Taverna 1VKHile doing so we pay special attention
to the aforementioned features, inspect their usefulregsarately as well as in combination and discuss
alternatives.

This paper is the first of two. It defines, explains and disesisandamental notions for describing
Scufl graphs and their semantics. Then, in the second partsaéhese notions to define the semantics
and show that our definition can be used to prove properti€&cofl graphs. To account for side effects
the semantics is defined as a transition system. Finallysebend part also includes a more elaborate
comparison with the work in [14].

1.1. Why formal semantics

We start with motivating why a precise formulation of a fofre@mantics for languages such as Scufl is
crucial.

Scufl includes high level features and mechanisms, likeigieration, that make the construction
of real life workflows simpler and allow the programmer todsmn the problem being solved. At the



J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part 1281

same time the workflows look less complex and can be used éares papers to convey the main idea
of anin silico experiment that was conducted. Yet, distributed datagsgiog experiments are complex
in nature and a highly expressive definition language trdgshimuch of the complexity of the workflow
behind implicit semantics is not the silver bullet. Whenldems appear, e.g., while debugging, it is
important to exactly understand what computation is bemged And even when the specification of the
workflow is successfully finished, it's merit has to be effesly and objectively assessed by reviewers.
For this a precise and formal semantics is needed.

It's also obvious that thim silico experiments that are being conducted become more and more co
plex and sooner or later automatic verification procedwssilar to those used for verifying complex
business transactions, will have to be developed. For seGfication the existence of formal semantics
is a necessary first step as well as for the creation of anxilals that would detect potential errors and
suggest possible solutions to workflow creators, the sanyeawéntegrated Development Environments
aid modern programmers.

Another domain for which the formal semantics is fundamieistanactment optimization. As with
database queries the programmer could only specify whatohlas done and the determination of the
most effective execution strategy would be left to the waskflengine. In addition, with workflows
being applied more and more frequently, and being sharedténriet repositories [6], their querying is
becoming an interesting scientific problem [4, 2]. A sucfidssorkflow query language should take
into account the semantics and not just the syntax, i.e.paoenwhat the workflows do and not only how
they are defined.

Finally, we argue that the very act of formulating a formahsatics is useful because it forces us
to do a complete and thorough analysis of the behavior ofrfaveThe formulation of an elegant and
natural formal semantics is a good litmus test for checkirlge current behavior is consistent and well
chosen. Such a test is not unimportant for large, complexaladively rapidly evolving systems such
as Taverna. In addition, as is shown in this paper later anait provide inspiration for other interesting
alternative semantics. Therefore the formulation of a fdrsemantics can help in the future design and
development of Taverna.

1.2. Scufl type system

As the Taverna authors notice “the problem of data typingféndciences is simply too hard to attack”.
There is only one basic type that describes binary data withtached MIME annotation and we will
denote this basic type agt. The MIME annotation is used to determine how a basic type dalue is
going to be presented to the user, e.g., whether a text, @ar@jatr its binary representation is going to
be displayed. The set of MIME values is denotedVas. For our examples we will usually assume it
contains at least the natural numbers and strings.

In Taverna we meet in practice only one collection type, dgnurdered lists, even though the
documentation suggests that Scufl was designed to suppertaillection types such as partial orders,
trees, bags and sets. Although the user documentationansranly homogeneous lists, the workbench
does not prevent the use of heterogeneous lists, i.e.cbstigining elements of different types such as
[1,[2], 3, [[4]]]. Heterogeneous lists can be obtained from homogeneousiorieg the computation. For
example, it is possible to specify in a Taverna workflow thairgout is computed from different outputs
of different processors by combining them into a single lisherefore we define the set of complex
values such that it includes heterogeneous lists.



282 J. Sroka and J. Hidders / Towards a Formal Semantics for tloe®&ss Model of the Taverna Workbench. Part |

The set of complex valugglenoted a¥’;,,, is defined as the smallest set such that1) C Viae

and (2) ifxy,...,xn € Vig, then the lisizy, ..., x,] isin Vy,,. The values of these list types will be
denoted a$l, 2, 3] and|[[1, 2], [3, 4], 5], the empty list is denoted d and the concatenation of lists is
denoted with+, so[1,2] + [1,5] + [] = [1,2,1,5]. Note, that this notion of complex value does not

include tuples or records.

Although heterogeneous lists can appear in Taverna, thellysause processors to fail and other-
wise are not always processed coherently, e.g., applymfjatien operation to the ligix], [[y]]], where
x andy are some basic values, results[fin], [y]] while flattening of|[[x]], [y]] results in[[z],y]. Itis
however quite possible to give an intuitive semantics farf&hat allows heterogeneous values every-
where and deals with them consistently. Therefore, we withe formal part of this paper, for the sake of
simplicity and consistency, assume that heterogeneouswalre allowed everywhere. If heterogeneous
values never appear, then the semantics defined in this papesponds to the observed behavior of
Taverna.

The consistent behavior for the heterogeneous values id tavihe coherent generalization of se-
mantics of product strategies expressions (see SectiQraBddimplicit iteration mechanism (see Sec-
tion 2.2). Despite this we usually limit the presentatiorhtaimogeneous values only and discuss in the
second part of this paper the strategies for adapting tharsiza such that the heterogeneous values are
consistently avoided.

Although Taverna does as little typing as possible it st notion ofcomplex typewhich is
defined by the following syntax:

T = MJ|I7]

Examples of such types aret, [M], [[M]], et cetera The set of all complex types is denotedZag, .
The semantics of these types are defined with induction angjetactic structure such that:

° [[./\/l]] = VM, and
o [[7]] = [r] U L([]) whereL(V') denotes the set of finite lists oveT.

Note, that the given type semantics is more liberal thanlusmuz explicitly allow heterogeneous lists.
So not only[[1], [2]] € [[[M]]] but also[1, [2]] € [[[M]]] sincel € [M] = 1 € [[M]]. Effectively the
type only restricts the maximum nesting depth of the compédes in its semantics.

Further motivation for the liberal list type semantics igegi by the fact that if the nesting depth of
a certain value is lower than expected there is always aitiugunterpretation of that value as a more
deeply nested one, namely by nesting it in singleton lists.ekample, if a certain processor expects on
a certain input port a list of protein identifiers and it reesi a value that is an unnested single protein
identifier, then it can interpret this as a singleton listtadming this protein. This principle can be applied
to every type, i.e., a value of typecan always be interpreted as a value of typeby assuming it is
packed in a singleton list. This is reflected in the type sdiosuby the fact thafr] C [[7]]. The idea
that types are given a semantics that is related to a coemogmmanism can be found in other work such
as [1].

Consistently with the given type semantics and the deattipge coercion we define a subtyping
relation, denoted biZ, over complex types such that_ o iff the nesting depth of is less than or equal
to the nesting depth of, i.e., eitherr = M, or 7 = [r'] ando = [¢'], wherer’ C ¢’. For example,



J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part 1283

M C [M], and[M] C [[[M]]], but[[M]] Z [M]. Clearly, this notion of subtyping is consistent with
the given semantics, i.e., for all complex typeando it holds thatr C o iff [7] C [o].

Since there is only one basic type, via4, it is not hard to see that defines a linear order over
the complex types. So we can define a functeax : P(7;4y) — Ziav, SUch thatmax(7') is the least
common upper bound @f, i.e., the smallest complex typesuch that for all types € T it holds thatr C
o. This means, for example, thatax(0)) = M, max({M, [M]}) = [M], andmax({[M], [[[M]]]}) =

[[M]]]-

1.3. Scufl global components

Here we list the Scufl components that are common to all wokisfloNe postulate a countably infinite
set PL of port labelsthat contains all names that can be given to input and outmts$ f processors
as well as to workflow inputs and outputs. The Taverna worgbammes with a huge library of built-
in bioinformatics operations, which are mainly externalvage intermediaries, i.e., programs that call
external services. We call this extensible collection afraions thélaverna serviceand model it by a
set of service names callddS which can contain an arbitrary number of names.

The interface of a service is defined by tuple types that diecinput type and the output type.
These tuple types are defined as partial functionsPL — 7, that map a finite subselom(o) C
PL, called thedomainof o, to complex types. We will denote tuple typé§.,71),..., (I, 7)} @s
(L : 71,...,0, : 7). The set of all tuple types is denoted &g, and the set of all tuple values as
Viup- The semantics of a tuple type= (I, : 7,...,l, : 7,,), denoted agc], is defined as the set all
functionst : dom(c) — V44, Such that for eacly € dom(o) it holds thatt(l;) € [r;]. Such a function
{(l,21), ..., (ln, zn)} Will be denoted agly = z1,...,l, = x, ). For later use we define a notation
for the projection of a tuple type on a set of labeld asc|; such that|, = {(I,7) € o |l € L} and
its counterpart for tuple values ds, = {({,v) € t | [ € L}.

To define the interface of the Taverna services we postutatdunctionstype; : TS — Ty, and
type, : TS — Ty that give the input type and output type, respectively, aheservice as a tuple
type. In addition we define the functiods: TS — P(PL) andO : T'S — P(PL) such that for
every service name € T'S I(s) gives the set of input port labels ard(s) the set of output port
labels, i.e.,I(s) = dom(type;(s)) andO(s) = dom(type,(s)). For example, the interface for the
string concatenation operation “Concaten@te_strings” € 7S is defined as follows (we abbreviate
“Concatenatgwo_strings” to “ct.s"):

I("cts”) = {stringl, string2}
type;(“c_ts") = (stringl : M, string2: M)
O(“c_ts”) = {output}
type,(“c_ts") = (output: M)

The semantics of a service is defined by a non-deterministiction that maps a tuple of the input
type of the service to one of possibly many tuples of the dutygpe. There are several reasons why the
result might not be functionally dependent on the input. ©hthem is that the services can have an
internal state which influences its result. Also the sergae use randomized approximation algorithms,
which is often the case in bioinformatics. Finally, the $sgvcan be based on a database which is
constantly updated. So it seems inappropriate to modelcgsrwith deterministic functions in the



284  J. Sroka and J. Hidders / Towards a Formal Semantics for tloe®ss Model of the Taverna Workbench. Part |

description of Taverna’s semantics. Therefore we assouidh each labek € T'S a relationF|s| C
[typei(s)] x [typeo(s)] such that for each tuplec [type;(s)] there is at least one tuptéee [type,(s)]
such that(t,t') € F|[s]. It should be noted at this point that the current implemtgreof Taverna does
not check if a service call returns a tuple with fields of theect type, but we chose not to model this in
the presented formal semantics.

1.4. Scufl syntax

We start with a brief informal introduction to the Scufl syntaA small example of a Scufl workflow
graph is given in Fig. 1 (a). A set of workflow inputs is indiedtby a dotted rectangle with a small trian-
gle pointing upwards, which in this case contains one ingioledpin. The graph also contains a set of
workflow outputs indicated by a dotted rectangle with a stnialhgle pointing downwards, here contain-
ing two outputs labeleghpout andpout. Furthermore, the graph contains several so-called psoces
which represent operations from the Taverna services amchvane labeled “GeNucleotide FASTA?,
“Merge_String list_to_string”, “emma”, “showalign” and “prettyplot”. For eachquessor, depending on
the view settings, the input ports are listed in the top rassalone here, or in the left column, as in some
of the following examples. Similarly, the output ports @stdd in the bottom row or in the right column.
For example, the processor with label “emma” has one inpadtigoeledsequence_data_direct and one
output port labele@dutseq.

The Scufl workflow graph defines a simple yet often needed ewpat. If apin input port is initiated
with a list of nucleotide sequence identifiers, then the “SatleotideFASTA’ processor implicitly
iterates on this list and with the use of an external ser¥iaegearches the GenBank database [3] returns
FASTA formatted nucleotide sequences that correspondetadimtifiers. The next processor merges
the list of those sequences into one long string, on whicH'dhema” processor, which is a wrapper
for the ClustalW operation of the EMBOSS [11] package, penfba sequence alignment. The final
two processors, “showalign” and “prettyplot” are used tegant the output respectively in a textual and
graphical manner.

As can be noticed, the graphical representation of the Sraghgcommunicates well the main intent
of the experiment. In the following examples we introdudeeotimportant features of the language and
then we proceed with formal definitions and discussions edetfeatures.

The second example is abstract and is presented in Fig. 1T{®.graph has three branches that
independently process their own input values. All the corgwalues, i.e., the results of “fool”, “foo2”
and “foo3” processors, are directed to the workflow output. Although it is not visible in the graphical
representation of the Scufl graph, for the workflow output anincoming-links strategis specified. It
determines how the value for a port is obtained in case ofipheltiata edges ending in it. This strategy
can be eithemergeor select-first wheremergewaits for values to arrive from all incoming data edges
and packs them into a list whilgelect-firstselects the first value that arrives and ignores the others.
Example use cases for the different incoming-links stiatem this abstract Scufl workflow graph would
be:

¢ for the merge strategy — obtaining nucleotide sequences roumber of databases and packing
them together into a list for further processing, e.g. ratignt,

¢ for the select-first strategy — requesting the same comniputatith different services and contin-
uing the processing with the result that arrives the quickes



J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part 1285

sequence_direct_data Sequence_or_ID

emma + '
outseq
sequence
# \\ ls_sequence
sequence_direct_data sequences_direct_data -
is_sequence
showalign prettyplot
outfile Graphics_in_PNG

rkflow Outputs

guery sequence_direct_data
------------------ ' fetchData seqret
(a) fetchDataR eturn outse g

Sequence A4 :

Figure 1. Taverna's visualisation of Scufl workflow graphragdes



286 J. Sroka and J. Hidders / Towards a Formal Semantics for tloe®ss Model of the Taverna Workbench. Part |

An extra feature of the select-first strategy is that the Wowkis less error prone. In Taverna processors
can fail, for example if no connection can be made with therar dkie Internet. Here the workflow
finishes properly if at least one of the used tools, i.e., fp6foo2” or “foo3”, finishes with success.

The third example is taken from the myExperiment workflowosfory [6]. It is presented in
Fig. 1 (c) and is incorporated as a building block into sevBrufl workflow graphs defining real-life
in silico experiments that are also published in the repository.t,Firshows that in the Scufl work-
flow graphs there are two kinds of edges. Hata edgesindicated by solid edges with an arrow head,
represent data flow by connecting workflow inputs or outputsof processors with input ports of
processors or workflow outputs. Thentrol edgesndicated by gray edges ending with a circle repre-
sent additional control flow. They connect two processoexifging that one can execute only when
the other has successfully finished. Second, the exampsemsehow a combination of failing pro-
cessors, control edges and ports with many incoming edgdshanselect-first strategy specified can
be used to model conditional behavior. The Scufl workflow Qregiurns a sequence in a FASTA for-
mat that corresponds to a sequence or sequence entry igleptifivided as an input. If a sequence
identifier, indatabase:identifier format, e.g. uniprot:wap rat, is provided as the input, then
the “Failif _sequence” processor succeeds but the “fFadentifier” fails and thus the “fetchData” pro-
cessor uses the EBI's WSDbfetch web service {8 : //www.ebi.ac.uk/Tools/webservices/
services/dbfetch) to retrieve the sequence in FASTA format. Otherwise thel “Fasequence” pro-
cessor fails but the “Faif _identifier” succeeds and the sequence is passed througloépab [7, 12]
“seqret” service to force itinto a FASTA format. Both conalital branches are joined with tiSequence
workflow output for which the select-first strategy is specifi

The last example of this informal introduction to Tavernatsy is presented in Fig. 2. We start with
the analysis of the top Scufl graph which may seem incompktause the:n2 has no incoming data
edges. For that port a default value is specified, but thahagaot visible in the graphical representation.

Another thing that the diagram does not show arepttogluct strategiesissociated with all proces-
sors. Such strategies are needed because of the impliaiioie semantics of Scufl that was illustrated
by the first processor in Fig. 1 (a). In general the implictration strategy states that if a processor
receives a value that is nested deeper than expected, itavdte over subvalues of the expected nest-
ing depth and combine the results again in a list. For exanifpdeprocessor that computes a function
f:{a: M)] — [(b: M)] receives on its port labeledthe value[“foo” , “bar”], then it will compute
the list[f((a = “fo0” ), f({a = “bar”))]. If a processor computes a function that expects many inputs
suchag : [(a: M,b: M)] — [(c: M)] and is presented with lists of mime values, then a product
strategy such asross producbr dot productis required to indicate how the input lists are combined into
a single list of tuples that represent the combination of glemvalues to which the function is applied
during the iteration. If the list on pott is [“foo” , “bar”] and the list on porb is [“X” ,“y” ,“z"] then the
cross product combines them inffda = “foo”,b = “X” ), (a = “fo0”,b = “y" ), (a = “fo0",b =
“2"), [{(a ="bar’,b = “X" ), (a = "bar",b ="y" ), (a = “bar”,b = “z” )]] and the dot product com-
bines them intd(a = “foo”,b = “X" ), (a = “bar”,b = "y” )]. For an arbitrary number of input ports a
product strategy is defined by an expression in the follovgygax:

ps == €| PL|(ps®ps)|(ps©ps)

in which each label irP L appears at most once. In this expressidlenotes the empty product strategy, a
port label product strategy transforms values into tuplesspresents the cross produand® represents

YFor lists the cross produdt; ® Lo is not equivalent withl, ® L1 because the order of the resulting tuples is not the same,



J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part 1287

A - Workflow Outputs

- | Nested_Scufl_graph \V4
~_ '* nin1
: nout -
gt NIN2 .

. Workflow Outputs © | © Workflow Outputs

| A E
in1 . ) foo : o
v_________-_—-. nin’ ___-_ - t
\J/@JEC 0
. nin . R [

Figure 2. An example of a nested Scufl workflow graph

the dot product. The set of all product strategies is denatefS and the set of port labels used
in product strategys is denoted a<(ps), i.e., it is defined such thaf(c) = 0, L£(a) = {a} and
L(ps1 ® pse) = L(ps1 © pse) = L(ps1) U L(ps2). The result of a product strategy is always a
possibly nested list of tuples with fieldYps), e.g., ifps = (a ® b) ® ¢, then this results in a possibly
nested list of tuples of the forfu = z,b = y,c = z).

A product strategy could be relevant for our example if thestedScuflgraph” processor had a
merge strategy specified for itginl input port, but expected only a single value and not a list. A
further explanation of the default value mapping, the intwHinks strategy and the product strategy is
provided in Sections 2.3 and 2.4 respectively.

The final feature presented by the example in Fig. 2 is thall 8aurkflow graphs are allowed to be
recursively nested. The nested Scufl graph is represented‘dgstedScufLgraph” processor and its
workflow inputs and outputs match the input ports and outputspof the processor. Nesting a part of
a Scufl workflow graph into a processor changes its semamtitvga ways. The first is that the nested
Scufl worklfow is not executed until all input ports are readpd the second is that it will apply the
implicit iteration strategy during its execution.

but in Taverna there is also a difference in how the resulested, as will be explained later on.



288 J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part |

The informal discussion until now was illustrated with aatan that is only one of the ways to
represent Scufl workflow graphs and more elaborate repedmTg are available in Taverna, although
none of them shows all relevant aspects for understandimgdamplete semantics of the defined Sculfl
workflow graph. We follow with a comprehensive formal defnit of Scufl workflow graphs — Scufl
graphs for short. Since these can be recursively nested idenan inductive definition. For this definition
we postulate a countably infinite sBtthat contains all possible processor identifiers that weusanin
Scufl graphs.

Definition 1.1. (Scufl graph)

The set of Scufl graphg is defined as the smallest set such that every Scufl graph caumd Scufl
graphs ing is also inG, where such a Scufl graph is defined as a tupl®, P, r;, o, Eq, E., A, ils, ps, dv)
such that

e [ C PLis afinite set of labels representing the workflow inputs,

e O C PLis afinite set of labels representing the workflow outputs,
e P C Pis afinite set of processors disjoint withandO,

e m; C P x PL afinite set representing processor input ports,

e 7, C P x PL afinite set representing processor output ports,

o £ C (I xm)U(m, xm;)U(m, x O) is a set of data edges,

e FE.C P x Pisasetof control edges,

e \: P — (TSUQG) isthe processor labeling function, that maps processasher a service label
in 'S or a nested Scufl graph such that for every procegserP it holds that/(A(p)) = {l |
(p,1) € m} andO(A(p)) = {l ] (p,1) € o},

e ils: (mUO) — {first, merge} gives the incoming-links strategy for every input port ofagessor
and the workflow outputs,

e ps : P — PS gives the product strategy for every processat P such thatC(ps(p)) = {l |
(p.1) € mi},
e dv : m; — Vi U{L} gives a default valifefor each input port, where. represents the lack of

default value and is only allowed if the port has at least agerning data edge, i.e.,dv((p, 1)) =
1, then there is a data edge, (p,()) € E; for somez,

e there are no cycles in treependency grapihich is defined as a directed graph o¥esuch that
there is an edgép, p2) iff there is a control edgép,, p2) € E. or there is a data edge of the form

((p1, 1), (p2,12)) € Eq,

where thel andO functions for labels irf'S are generalized for Scufl graphs such that for a Scufl graph
gwe let(g) andO(g) denote the andO component of;, respectively.

There can be no cycles in the dependency graph becauseutidanental assumption in the seman-
tics of Scufl that each processor starts executing only ohcénteresting question is if these semantics

2In Taverna 1.7.1, the version that was investigated forghjger, only strings were allowed as default values.



J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part 1289

can be adapted such that cycles can have a meaningful artizengemantics, but this is not investi-
gated in this paper. An interesting case for allowing suatiesyis made in [5] which attempts to show
the Turing completeness of Scufl, but does not take into axtdbat they are not allowed.

The restriction that a default value must be specified founimorts that have no arriving data edges
is more strict than in the real Taverna 1.7.1, where basicgasors are allowed to have input ports with
neither an incoming data edge nor a data value. This is an offed feature since basic processors
can wrap a service with many optional arguments and flags. eMexy for the sake of simplicity of
presentation we will assume that this is represented indfradl syntax by a basic processor that has
exactly the set of input ports that are provided and has timagtics that the real basic processor has for
that particular set of input ports.

Next to generalizing we also extend the functiotype; to Scufl graphs, i.etype; : (TS UG) —
Tiup- The main purpose of this type is to allow a processor, thithisled by\ with a Scufl graph, to
determine what type it actually expects, and use that tofdee & given complex value it will do an
implicit iteration or pass it on to the nested Scufl graph. dlehat if a processor receives a value that is
nested deeper than expected, then it will identify the suiegof the expected nesting depth and iterate
over those, i.e., pass them on one by one to the nested Squffl. gra

Informally, the input type of each workflow input is computey taking the maximum of the types
of processor input ports in the nested Scufl graph to which @tdnnected. So, for example, if the
workflow input is connected to two processor input ports #agiect|[[M]] and [M], then the Scufl
graph is assumed to expect the typ#1]] on this input port. The justification for taking the maximum
is that this way the processor that contains the nested Saphgnly starts implicit iteration if it is
really necessary, i.e., none of the nested processors tthvite value is passed on can deal with it
without iteration. For example, assume that the workflowtrip connected to a service with input type
(genes : [M]) that expects a list of genes encoded as DNA strands andss#lecshortest one. Also
assume that another service with input typen : M) is also connected to this workflow input. Then,
if the Scufl graph is given a list of genes, the implicit itéatis only needed for the second service and
not the whole Scufl graph. This way the first service can fingtwgtest gene in the whole input list and
not in every singleton list resulting from implicit iterati on the workflow input.

Formally, following the induction of, the input type of a Scufl graph= (1, O, P, 7;, 5, Eg, Ec, A,
ils,ps,dv) with I = {l1,...,1,}, is defined agype;(g) = (l1 : m,...,l, : ), Wherer; =
max({o (") | (L, (p,l")) € Eq,0 = type;(A(p))}). Note, that this is well defined since the domain
of type;(A(p)) is I(A(p)), which by the definition of Scufl graph is equal{t | (p,!’) € m;}.

1.5. Hierarchically nested Scufl graphs

The Scufl graph definition is an inductive definition that Bsilarger Scufl graphs by using smaller ones
as labels of its processors, i.e., as nested Scufl grapHkwsaus to define notions and prove theorems
with induction on the structure of a Scufl graph. Over the $etlloScufl graphs we can defindhe
nesting graptthat indicates which Scufl graph is nested in which Scufl gespfollows.

Definition 1.2. (The nesting graph)

The nesting grapis the directed edge-labeled grafph= (G, E) whereg is the set of nodes and the set
of edgesk C G x P x G is defined such thal, p, ¢') € E iff A\(p) = ¢ with X the labeling function of

g andp a processor img.



290 J. Sroka and J. Hidders / Towards a Formal Semantics for tloe®ss Model of the Taverna Workbench. Part |

It is easy to see that, sinckis required in its definition to be minimal, there are no dieglccycles in
N. Theset of subgraphs of a Scufl graphdenoted a§,, is defined as the set of nodes reachabl&/in
from g, includingy itself. Thenesting graph for a particular Scufl graphis denoted ad/, and defined
as subgraph ol induced byg,.

It is allowed that the same Scufl graph is reused as a label of than one processor in a certain
Scufl graph definition, either within the same subgraph oiffarént subgraphs. However, the definition
of a state of a Scufl graph can be simplified if such reuse islfwted and therefore we introduce the
notion ofhierarchically nested Scufl graphs

Definition 1.3. (Hierarchically nested Scufl graphs)
A Scufl graphy is said to behierarchically nestedff \, is a tree.

Observe that ify is a hierarchically nested Scufl graph then all Scufl graph,iare also necessarily
hierarchically nested.

If a Scufl graph is not hierarchical then it can be made so blacem each occurrence of a certain
Scufl graph with a different but isomorphic Scufl graph. Faraple, if processorg, andps are both
labeled with a Scufl grapd i.e.,\1(p1) = A2(p2), where\; and\, are the processor labeling function of
the subgraphs in whichy andp, appear respectively, then we redefineand )\, such that\; (p1) = g1
and)\z(p2) = g2, Whereg; andgs are different but isomorphic copies gthat do not appear as subgraphs
themselves. If we start with a certain Scufl graph and repeéaffor every two different processors in
subgraphs that are labeled with the same Scufl graph, thenilivebtain an equivalent hierarchically
nested Scufl graph.

In the remainder of this paper, where we describe the seosanttiScufl graphs, we will do this only
for hierarchically nested Scufl graphs, and therefore, whemnefer to a Scufl graph, we always mean a
hierarchically nested Scufl graph. The semantics of othafl §caphs is then defined as the semantics
of the corresponding hierarchically nested Scufl graphse fBlason for this is that in a hierarchically
nested Scufl graph we can describe the total state as a magpfp@agh Scufl graph that it contains to
its particular state. The exponential blow-up that can hesed by making a Scufl graph hierarchical,
is in some sense unavoidable, because it is linked to thenjpaite exponential number of Scufl graph
instances for which a state has to be described.

2. Processor execution

2.1. Anoverview of processor execution

A successful execution of a processor is a complex evenetptined by dividing it into several steps.
We give here an informal overview of those steps and discesdirtst two of them in the rest of this
section in further detail by defining the functions that comepthem. Then, in the second part of this
paper, using those functions and additional prerequidiéfised in Section 2.2, we discuss the execution
of a Scufl graph as a whole, look into all the steps togetheteaplore all possible scenarios including
the possibility of processor failure.

We now proceed with the informal description of the steps stiecessful execution of a processor:



J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part 1291

Computing the values in the input ports In the first step an input value for each input port is computed
from the values that were sent to it through the incoming ddtges. This is done by combining
these values into a single complex value according to themig-links strategy. The select-first
strategy simply takes the first value that arrives and ighdine others, and the merge strategy
creates a list containing all the arrived values.

Combining the input port values into the processor input valie Next, aprocessor input values com-
puted, which is a single tuple that can be processed by thiEedhat the processor represents, or
a possibly nested list of such tuples. If for every input pafrthe processor the value computed
in the previous step is of the type expected by the processarjs not overly nested, then the
processor input value is a tuple labeled by input port lahetsholding the input port values. For
example, if the input ports are labeledand b and their computed input port values and v,
are of the expected type, then the processor input valde isv,, b : v, ). If any of the values
computed in the preceding steps is too deeply nested, tleevatbes of the different input ports
must be combined into a single nested value, i.e., a list giesuover which the processor can
iterate. For example, assume thagtis a list of mime values and, is a list of lists, while the
processor expects typegl and[M], respectively. The computation of the processor inputevalu
can then be thought of as consisting of two steps. First,dheg that were computed for the input
ports are transformed into values where the subvalues afplecthat is expected are identified by
packing them in singleton tuples. Continuing the last eXanthe value for the input port labeled
a would be transformed to a list of tuples of type : M ) and the value for the input port labeled
b would be transformed to a list of tuples of typé : [M]). Second, the product strategy of the
processor describes which combinations of the identifiptbtuare taken and how they are nested
in the result. For example, a strategy consisting of a singles product will combine all tuples
in the first value with all tuples in the second, resulting idaubly nested list of tuples of type
(a: M,b:[M]).

Performing the execution or the iteration If the value computed in the preceding step is a tuple, the
processor is executed once, producing one result tuplewaitres for every output port. If the
processor input value is a list, it is iterated over by exeguthe processor for each tuple in it.
The result for each output port contains a list of values fresult tuples of subsequent iteration
steps that is structured accordingly to the nesting straabfithe processor input list. Following
the previous example, if the processor has two output pabelédec andd, and is associated with
a Taverna service with output tyge : [M],d : M ), then the iteration will produce a list of lists
with elements of typgM| for port labelede, and a list of lists with elements of typet for port
labeledd.

Copying the computed output port values When the normal execution or iteration has finished the
values computed in the processor output ports are copidbpmaessor input ports and workflow
outputs to which they are connected.

2.2. Extended complex value construction and deconstrucn

As explained in the informal description of the semanticproicessor execution in Section 2.1, we can
describe the execution of a processor after the procegsotalue has been computed as a process that



292  J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part |

takes a possibly nested list of tuples, iterates over aletupy executing the processor and while doing
so constructs for each output port a value by inserting,eaptsition of the original tuple, the value that
was computed for that output port by the iteration step.

SinceV,,,, includes tuples, but not lists of tuples, we define an extérudenplex value se¥.,; as
the smallest set such that (B),, C Ves+ and (2) ifzq,..., 2, € Veye then the listfzq, ..., z,] is in
Ve:):t-

In order to identify the position of tuples and other subealin an extended complex value we
introduce the notion of subvalue index. Bgabvalueof an extended complex valuewe mearw itself,
any element ob, any element of element of and so on, up to the tuples. For example, i [[a, b], [¢]],
wherea, b andc are tuples, then all subvalueswére: v, [a, b], |, a, b andec.

Definition 2.1. (Subvalue index)

A subvalue indexor simplyindex is a list of positive natural numbers. Such indices are thehby a
list of numbers separated by slashes, &,/8 and1/1, and the empty list is denoted asThe set of
all complex value indices is denotedAs

The numbers in an index are listed from most significant orefigto the least significant on the right.
Following the last example, the subsequent indexes of theiomed subvalues afare:e, 1,2,1/1,1/2
and2/1.

Formally, the subvalue indicated by an index is defined byfthetionget : Ve, X Z — Vet U
1) such thatget(v,e) = v, andget(v,i/a) = get(v;, ) If v = [v1,...,v,] and1l < ¢ < n, and
get(v,i/a) = L otherwise. For example, if = [[a, b], [c]], thenget(v,2/1) = ¢ andget(v,2/2) = L.

We assume that complex value indices are ordered accowlihg texicographical ordering, i.e., the
smallest binary relatiok overZ such that for every, j € Nanda, § € 7 it holds that (1) < «, (2) if
i < j,theni/a < j/4 and (3) ifa < 3, theni/a < i/3. As usual this defines a linear order oZer

In order to be able to iterate over all tuples in an extendedptex value we define a function that
retrieves the index of the first tuple and a function to jumgh&index of the next tuple. The first function
is first : Veyr — (Z U L) which is defined such théitrst(v) = o wherea is the smallest index such that
get(v, a) € Vyyp, andfirst(v) = L if there is no suclw. The second function isext : Ve xZ — (ZUL)
and is defined such thatxt(v, o) = g if 3 is the smallest index larger tharsuch thaget(v, 5) € Viup,
andnext(v, «) = L if such ag does not exist.

Finally, we define a functiomput(v, o, w) that inserts into the complex valueat positiona the
complex valuew, which can be used to construct complex values. For exarppté, [y]],2/1,2) =
[x,[z]] and put([],€,2) = z. If the positiona does not yet exist i then it is extended minimally
with empty lists to create it. For examplput([],1/1/1,2) = [[[z]]] and put([],2/1,2) = [[], [z]].
Formally, this functionput : Vig, X Z X Vigy — Viaw IS defined such that (put(v, e, w) = w,
(2) put(v,i/a,w) = put([],i/a,w) if v € Vg, (3) put([],1/a,w) = [put([], @, w)], (4) put([v] +
V', 1/a,w) = [put(v, a,w)] + ', (5) put([], i/, w) = [[]] + put([], (i — 1)/, w) if i > 1, (6) put([v] +
v i/a,w) = [v] + put(v', (i — 1) /a,w) if i > 1.

2.3. Incoming-links strategy semantics

Here we define the semantics of incoming-links strategyesgions which are used to indicate how to
compute the value for a processor input port or workflow oubhgucomposing it from values provided
from multiple incoming data edges. The computation is dowweeimentally, that is, a temporary result



J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part 1293

is extended each time a new value arrives from one of the dagsehat did not already supply a value.
The lack of a previous temporary value at the start of thege®ds represented hy.

The select-first incoming-links strategy picks the firsiueato arrive and ignores all the others. This
is the default behavior of processor input ports and workibauputs. The functiorffirst] : (Vg U
{L}) X Viaw) — Viaw takes as the first argument the current temporary resultstiteasecond the value
provided by the next data edge. As a result the new tempoeanjtris returned. Formally:

. v ift=_1
[first} (2,v) = {t otherwise
The merge incoming-links strategy combines all incominiges as elements of a list. It was added
to Taverna 1.3.1 to prevent the need for creation of userelbfirargument processors that compose their
arguments into a list. As with select-first, the merge fumefimerge] : (Viay \ [M]U{L}) X Vigy) —
Viaw has two arguments, yet now the temporary value is never & fypsince it is a list of values
provided so far. Formally:

[v] ift =1
t+ [v] otherwise

[merge](t,v) = {

Strictly speaking this is not a merge, but we stick to the Tiaaeerminology.

2.4. Product strategy semantics

Here we define the semantics of product strategy expresgioasP.S. The product strategy expressions
are used to transform values frov,,, that are provided on individual input ports of a given pssm

p, to extended complex values that contain tuples of type;(\(p)), i.e., lists of tuples ready to be
iterated upon by.

The values provided on a processors’ input ports have to bibiced into a processor input value
that is either a single tuple which can be processed by thé&edahat the processor represents or a nested
list of such tuples. This is done in two steps. The first stapdforms each of the values provided on
every input port into a single unary tuple or a list of unarglés. The tuples’ field is labeled with the
same label as the respective input port and they contairesaifithe type that is expected on that port.
The second step combines such preprocessed values fosgooeevith multiple input ports into a single
n-ary tuple or a nested list of those.

We now describe the first step in more detail. Its purpose igeatify the subvalues that are of
a nesting depth acceptable by the processor. For examhe ifalue on the input port with label
is [[1,2], ], [3]] and the processor expects a value of tyy¢| on it, then the value is transformed to
[(a=11,2]),(a =1]),(a=[3])]. If this is the only input port, then the processor will iter@ver the
three valuesl, 2], [| and[3]. If, on the other hand, a value of type! is expected, then it is transformed
to[[(a=1),(a=2)],[],[(a = 3)]] and the processor will iterate over the three valuesand3. This
is formalized by the packing functiopack;... : V.., — Ve, that identifies nested values of typeand
packs them into tuples of typd : 7). Formally, it is defined as follows:

(l=2x) if x €[]

ack,.(z) =
packi) {[packmm),...,packmw it w=lz1,...,on] & [7]



294  J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part |

This function is well defined for every € V;,,,, which can be shown with induction on the structure: of
and using the fact thaty, C [r] for anyr € 7,,. Itis possible that a value of typecontains a nested
value that is also of type. For example, ifr = [[M]] andx = [[[1]]], then there are in three nested
values of typer, namely1, [1] and[[1]]. In that case the nested value with the largest nesting depth
chosen and spack,,..(z) = [(a = [[1]] )]. For a more elaborate example consider:

pack,. (v ([, 121, 3, 41)
= [Packq.(aq([1]); Packa (g ([[2]; 3]), pack (g (4)]
= [(a = 1]}, [packq: 14 ([2]), Packe: 0 (3)]; ( =4)]
=[{a=[1]),[(a=12]),(a=3)],(a=4)]

Note, that the value3 and4 are in[[M]] and therefore also packed in a tuple.

We now proceed to the second step where we deal with the cggeadssors with multiple input
ports. There the extended complex values computed by théngafunction have to be combined. For
this the cross and dot product strategy expressions aretasegresent thex — cross and — dot
product function®. An intuition of how they work on flat lists has already beevegi in Section 1.4.

For higher level lists the dot product used in Taverna fubigtéins its arguments, operates on the flat
lists and structures the result according to the structfitheoargument with the highest nesting depth.
For example, ifa, b, ¢, d ande are tuples, thefu, b] - [[c], [d, €]] = [[a U ], [b U d]], where the union of
tuple values is a well defined tuple since in product strategyessions each label fromL appears at
most once. In the case where both arguments have the sanmgyraegth the structuring occurs with
respect to the left one. For the formal definition of the daidoict we define three auxiliary notions.

The first is the functiorflat® that flattens values .., i.€., recursively nested lists of tuples, to lists
of tuples, e.qg, ifry, x2 andxs are tuples, theflat™([[[xz1]], [[x2], [x3]]]) = [%1,x2,x3]. Formally, it is
defined such that:

[ if 2 = ]
flat"(xz) = <[] if 2 € Vi
flat(z1) + ... + flat™(x,) if = [z1,..., 2]

The second notion is that diie tuple nesting deptbf a valuex in V,,;, denoted asnd(x), which
can be informally described as the maximum nesting depthpdés inx. Itis formally defined such that
(1) tnd(x) = 0for z € Vyp, (2)tnd([]) = 1, and (B)tnd([z1, ..., z,]) = 1 + mazi<i<n(tnd(z;)).

Finally, areplace : V..t X Vear — Ve partial function is defined which replaces all the subsetjuen
tuple subvalues in the complex value provided as the firsiraemt with the subsequent elements of
the tuple list provided as the second argument. For exarapljming that every; andt; is a tuple,
replace([[z1, 22|, [23]], [t1, t2, t3]) = [[t1,t2], [t3]]. Additionally, if the first argument has more tuples
than the second, the extra ones are ignored, for exareybece([[21], [22, 23], [24]], [t1, t2]) = [[t1], [t2]]-
Similarly, we also ignore its subvalues containing no tapi all but only if it does not change the
positions of the other subvalues, for examgplace([[21, 22|, [23], []], [t1, t2, t3]) = [[t1, t2], [t3]] while
replace([[[z1], [22]], [[]] [[23, z4]l]; [t1, t2, t3]) = [[[t1], [t2]], [], [[ts]]]. Formally, if z is a complex value

3The functionsx and- should not be confused with and®, which are the corresponding syntactical constructs inlycb
strategy expressions.



J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part 1295

such thafflat*(z) = [z1,...,2,] @andt = [t1,...,t,] wherem > n, thenreplace(z,t) = r wherer

is the smallest complex value such thiat*(r) = [ry,...,r,] andget(r,a;) = r; foralli = 1...n
andag, .. ., a, being the respective indexesgf, .. . , z, in z. The ordering of the complex values that
we refer to in this definition is given such that: (1)ifandb are tuples, thema < b iff a = b, and (2)
[a1,...,an] < [b1,...,bn]iff n < mandforeach = 1,... nitis true thata; < b;. Itis easy to see,
that this indeed defines a partial order.

With these notions we can now define the dot product. sLanhdy be complex values such that
flat*(x) = [z1,...,z,] andflat*(y) = [y1,...,ym]. The dot product function : Ve,: X Verr — Veat
is defined such that - y = replace(zz y, tz,y) Wheret, , = [1 Uy, ..., Tmin(n,m) Y Ymin(n,m)] @nd
zzy =y if tnd(z) < tnd(y) andz, , = x otherwise. Itis easy to see that, andz, , are well defined,
and because > min(n, m) < m so is the dot product.

It should be noted that the pruning of the nested lists witkuptes by theeplace function is indeed
consistent with how Taverna works, e.g., for tupies, ¢, d ande, it holds in Taverna thdf[]], [[a, b]]] -
[e,d,e] = [[],[[a Ud],[bUd]]]. Also note that because of haw , is defined it is the tuple nesting depth
of the arguments that decides which of the two argumentsdeiérmine the nesting structure of the
result, as indeed is the case in Taverna. An interestinghalige might be to always let the left argument
determine the nesting structure. That way the user canatdhts by simply changing the order in the
product strategy expression.

The generalization of the dot product in Taverna is not thig possible generalization and may
sometimes lead to unexpected results. To illustrate thipnwpose here an alternative where the dot
product is generalized recursively. For exampley i [z1,22] andy = [y1,y2,ys3], thenz - y =
[®1 r Y1, 22 - y2]. If z = [21,22] andy is a tuple, therx -, y = [z; - y], and if bothx andy are tuples,
thenz -. y = 2 U y. Formally, we define the recursive dot product function Ve,: X Vept — Vest @S
follows:

I if flat*(k) =[] orflat*(l) =[]
(k1 ] if k= [ki,... Kk, andl € Vi
kol = [k 1] if k€ Vipandl = [I1,..., 1]
k1 2 1y Kmin(nm) v bminnm] k= [k1,. .. ko] @andl = [, ... 1y
kUl if £ € Vyp andl € Vi,

To motivate the alternative definition let us analyze themgxda from Fig. 3 where the initial value with
an university department identifier, e.g., “informatics’used by two services, of which one produces a

Frrrrrar s ra A - Waordlow Outputs
- Warkflow Inputs f get_pasitions :

. hire :
A - | department | positions : v

i~ position :
: - | get_applying_scientists — empna EMp_Numbers :
: department ' scientist : :

department scientists

Figure 3. Recursive dot product motivation example



296 J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part |

list of positions available in this department and othestdf scientists applying for work there. The list
of positions is sorted by their appeal and the scientistsanted according to their achievements. A third
service is used to hire a scientist for a position. To deah Wit values of higher types it uses the dot
product strategy. This way the best positions are assignin tbest scientists and the hiring occurs while
both positions and scientists are still available. Obseoxe that if this Scufl graph is executed with a
list of departments identifiers, e.g‘physics”, “bioinformatics”, “informatics”] and the implicit iteration
over “getpositions” and “getapplying scientists” returneg@ = [[pp1, pp2], [pb1, pbe, pbs], [pi1, pis]] and

s = [[sp1, sp2, sps], [sb1], [si1, siz]] respectively, then the dot product of Taverna intermixestjpm and
scientists from different departments, i.e., the worstsptigt sps will be hired on the best bioinformatics
positionpb; and the best informaticiasi; will be hired on the worst bioinformatics positigmhs;. Even

if it is the case that informaticians and especially phygsgcdo well as bioinformaticians, the informatics
department becomes undermanned and does not get the bpk. petearly the recursive dot product
does not intermix the values, so scientists will only be dhiby the departments they applied to and
the departments will be able to hire all the scientists tipgliad to them as long as they have enough
positions.

©d e [ aud ave aUf bud bue bUf cUd cue cUf

Figure 4. Cross product for higher list types

To understand the cross product of Taverna for higher ligsegyit is convenient to think of the
nested lists as ordered trees with the leafs labeled witle tugdues. A tree interpretation of values
x = [a,b,c] andy = [[d,¢],[f]], wherea,b,c,d,e and f are tuples, is given in Fig. 4. The cross
product ofz andy is then obtained by replacing each of the leaf tuples = by a copy of they tree
that in turn has its every leaf tuple valugreplaced by, U ¢, (see Fig. 4). This in our case results in
[[aUd,aUe],[aU f]],[[bUd,bUe],[bU f]],[[cUd,cUel[cU f]]]. Formally, we define the cross
product functionV,,; X Vezt — Vesr @s follows:

[ if flat*(k) = [] orflat*(l) = ]
(k1 X 1, ... ky x 1] ifk=1[ky,... k) andl # ||
B xl,....kxly] ifkeVyp,andl =[l,..., 0]
kUl if k& € Vip andl € Vi,

kxl =

Observe that the cross product of Taverna for flat lists immattural version of the Cartesian product
for lists. Although all the combinations of the argumentiples are returned, the nesting structure of
the result is deeper, i.e., if = [x1,...,z,] @andy = [y1,...,Ym), thenz x y = [[z1 Uy1,..., 21 U
Ymls -y [Tn Uyt, ..., 2y Uypl], while for the Cartesian product one would expeGtU vy, ..., z1 U
Ymy -+ Tn UY1, ..., 2, Uyny]. Anatural generalization of the usual Cartesian producligts can be



J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part 1297

obtained by defining it recursively for higher order listfa@lfws:

(1] if flat* (k) = [] or flat*({) = []

(k1 X by ook X0 ] if k= [ki,..., k,) andl € Vi

[k xp Uy k Xp ] if k€ Vipandl = [l1,...,10,]
kx,.l = [ ki Xplyyeoo k1 X0 by,

. if k=[ki,...,k,Jandl = [l1,..., 1]

Epn Xpliy .ok X Uy
kUl if k€ Vip andl € Vi,

Notice that when empty lists don't appear, the nesting depthe result value for the cross product
is the sum of the nesting depths of the arguments and for thergkized Cartesian product it is the
maximum. We want to stress that the summing of nesting degfttie arguments in the cross product
used in Taverna may be sometimes unexpected for the useex&mple, when a Scufl graph with one
input port of typeM and one output port typ@1 is initiated with a list of lists of mime elements, then
most users would expect for it to result also with such a tt, if at the start of this Scufl graph a
preprocessing of the input value takes place by a binaryatiparfor which a cross product is specified
and both input ports are connected to the workflow input, themesult will be a four times nested list of
mime elements. Even more interesting is the observatidrttitsawill not be the case when such a Scufl
graph is nested. Then, a full implicit iteration will occurfthe processor representing the nested Scufl
graph, i.e., the nested Scufl graph is executed on valueseaxpected type and the implicit iteration
mechanism collects the results into a list of the same sres the one that was iterated over.

Besides the different nesting of result values, the crosslymt of Taverna and the generalized
Cartesian product order the leaf elements differently,, &g, b, c andd are tuples,z = [[a, b]], and
y = [[c], [d]], thenflat*(z X y) = [aUc,aUd, bUc,bUd], whileflat*(z X, y) = [aUc, bUc, aUd, bUd].

Both operations, the cross product and the recursivelyrgéned Cartesian product, may be useful
to the user and it is not obvious how to simulate one with theiot

Given the definitions of the cross and dot product we can ndimel¢he semantics of a product
strategyps for a processor in a certain Scufl graph. kebe the input tuple type of the processor and
ps a product strategy such thdfps) = dom(7). Then we define for each such product strategwnd
typer a function[ps]” : (L(ps) — Viaw) — Vest that maps a tuple of complex values containing a field
for each port label ips to an extended complex value which the processor can executeiterate over.
Formally, we define this function as follows:

[el"(®) = O
[17(@) = packy ) (t(1))
[(ps1 @ ps2)]"(t) = [psi]” (tlepsy)) * [Ps2]” (tlipsz)
[(ps1 ©ps2)]"(t) = [psi]” (tleipsy)) - [ps2]” (Elzpss))-
All versions of cross and dot products defined here are bieapressions. They can be easily
generalized for more arguments thanks to the observatan th (y x z) = (x x y) x zandz - (y - 2) =
(z - y) - z regardless of which, original or recursive, definition isén. In fact, it is the generalized

versions which are offered in Taverna. Note also, that fghér level lists usually: x y # y x z, so the
order of port labels in the product strategy expression pgirant.



298 J. Sroka and J. Hidders / Towards a Formal Semantics for tloe®ss Model of the Taverna Workbench. Part |

3. Conclusion

In this paper we have presented a formal definition of theasynf Scufl, the workflow specification
language of the Taverna environment, and the fundamentiminsathat underly the semantics of Scufl.
The syntax of Scufl is based on hierarchically nested grapgterevnodes describe the processors that
perform some computation or call a service, and the edgeésaieddata flow or control flow between
processors. One of the fundamental concepts for the sergdhtit is discussed are the incoming links
strategies that can be specified to deal with the case whédtglmincoming values might have to be
combined for the same input port. Another presented fundtaheoncept is the product strategy that is
specified to deal with the case where one or more input partsve values of an incorrect type. These
two concepts are at the heart of the semantics of Scufl antegrit from other workflow languages.

In the follow-up paper we present the full formal semantitSoulf graphs based on the notions
presented here. To take into account that these graphs gefinesses and not just computations we
describe their semantics in terms of a transition systesmn,we describe the possible states of a Scufl
graph and all the transitions between these states. Welalsothat these formal semantics are effective
in the sense that they can be used to prove certain propeftiesufl graphs. Finally, we compare this
work to earlier work on the syntax and semantics of Taverdd [1

References

[1] Balsters, H., Fokkinga, M. M.: Subtyping can have a siempémantics,Theor. Comput. Sgi87(1), 1991,
81-96, ISSN 0304-3975.

[2] Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: QueryirBusiness ProcessesVLDB (U. Dayal, K.-Y.
Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S.Gha, Y.-K. Kim, Eds.), ACM, 2006,
ISBN 1-59593-385-9.

[3] Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Os$tdl, Wheeler, D. L.: GenBankyucleic Acids Res
36(Database issue), January 2008, ISSN 1362-4962.

[4] Christophides, V., Hull, R., Kumar, A.: Querying and Bpig of XML Workflows, CooplS '01: Proceedings
of the 9th International Conference on Cooperative Infdiiora SystemsSpringer-Verlag, London, UK,
2001, ISBN 3-540-42524-1.

[5] Glatard, T., Montagnat, J.: Implementation of Turing &hnes with the Scufl Data-Flow Languag€C-
GRID, IEEE Computer Society, 2008.

[6] Goble, C. A., De Roure, D. C.: myExperiment: social netking for workflow-using e-scientistsVORKS
'07: Proceedings of the 2nd workshop on Workflows in suppblamge-scale scienceACM Press, New
York, NY, USA, 2007, ISBN 978-1-59593-715-5.

[7] Kandaswamy, G., Fang, L., Huang, Y., Shirasuna, S., Ma®., Gannon, D.: Building web services for
scientific grid applications,IBM Journal of Research and Developmeb®(2/3), 2006, 249-260, ISSN
0018-8646.

[8] Li, P., Hayward, K., Jennings, C., Owen, K., Oinn, T.,\#&es, R., Pearce, S., Wipat, ARroceedings of the
UK e-Science All Hands Meeting 20MMottingham, UK, September 2004.

[9] Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, Narver, T., Wipat, A., Li, P.: Taverna: A tool for
the composition and enactment of bioinformatics workfloBinformatics 2004.



J. Sroka and J. Hidders / Towards a Formal Semantics for tlee®ss Model of the Taverna Workbench. Part 1299

[10] Qinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., F&s, J., Glover, K., Goble, C., Goderis, A., Hull, D.,
Marvin, D., Li, P., Lord, P., Pocock, M. R., Senger, M., SteseR., Wipat, A., Wroe, C.: Taverna: lessons in
creating a workflow environment for the life sciences: Rededrticles, Concurr. Comput. : Pract. Exper.
18(10), 2006, 10671100, ISSN 1532-0626.

[11] Rice, P., Longden, I., Bleashy, A.: EMBOSS: The Europklecular Biology Open Software Suite (2000),
Trends in Geneticdl6(6), 2000, 276-277.

[12] Rice, P. M., Bleasby, A. J., Haider, S. A., Ison, J. C. Gfiachey, S., Uludag, M.: EMBRACE: Bioinformat-
ics Data and Analysis Tool Services for e-Scieneescience0, 2006, 146.

[13] Stevens, R., Tipney, H., Wroe, C., Oinn, T., Senger, Globle, C., Lord, P., Brass, A., Tassabehji, M.:
Exploring Williams-Beuren Syndrome usifty Grid, Proceedings of 12th International Conference on In-
telligent Systems in Molecular Biolog3004.

[14] Turi, D., Missier, P., Goble, C., De Roure, D., Oinn, Taverna Workflows: Syntax and SemantiesScience
and Grid Computing, IEEE International Conference @007.



