
Fundamenta Informaticae 92 (2009) 279–299 279

DOI 10.3233/FI-2009-75

IOS Press

Towards a Formal Semantics for the Process Model of the Taverna
Workbench. Part I

Jacek Sroka∗†

Institute of Informatics, University of Warsaw

Poland

sroka@mimuw.edu.pl

Jan Hidders

Faculty EEMCS, Delft University of Technology

The Netherlands

a.j.h.hidders@tudelft.nl

Abstract. Workflow development and enactment workbenches are becoming a standard tool for
conductingin silico experiments. Their main advantages are easy to operate userinterfaces, special-
ized and expressive graphical workflow specification languages and integration with a huge number
of bioinformatic services. A popular example of such a workbench is Taverna, which has many ad-
ditional useful features like service discovery, storing intermediate results and tracking data prove-
nance.

We discuss a detailed formal semantics for Scufl - the workflowdefinition language of the Taverna
workbench. It has several interesting features that are notmet in other models including dynamic and
transparent type coercion and implicit iteration, controledges, failure mechanisms, and incoming-
links strategies. We study these features and investigate their usefulness separately as well as in
combination, and discuss alternatives.

The formal definition of such a detailed semantics not only allows to exactly understand what is be-
ing done in a given experiment, but is also the first step toward automatic correctness verification and
allows the creation of auxiliary tools that would detect potential errors and suggest possible solutions
to workflow creators, the same way as Integrated DevelopmentEnvironments aid modern program-
mers. A formal semantics is also essential for work on enactment optimization and in designing the
means to effectively query workflow repositories.

∗Supported by Polish government grant no. N206 007 32/0809
†Address for correspondence: Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

280 J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I

This paper is the first of two. It defines, explains and discusses fundamental notions for describing
Scufl graphs and their semantics. Then, in the second part, weuse these notions to define the
semantics and show that our definition can be used to prove properties of Scufl graphs.

Keywords: formal semantics, Scufl, workflows, Taverna workbench

1. Introduction

Taverna [9] is an easy to operate workbench for workflow development and enactment. It allows users
to graphically construct workflows from libraries of available components and is intended for use in
bioinformatics data analysis experiments. The most important virtues of Taverna are that it is very
easy to use, has a specialized and expressive graphical specification language and integrates many data
analysis tools. In [10] it is stated that the number of such tools exceeds 1000. It also includes additional
useful features like service discovery, storing intermediate results and tracking of data provenance. The
workbench is being constantly developed, but it is already considered stable and has been used in real
life research, e.g., [13, 8].

The main motivation behind Taverna is to separate users fromthe implementation details of the
communication with the services that they want to use. This is similar to the idea of hiding the details
of data storage access in the database management system. Taverna handles communication with the
service and its execution. Users are freed of those details and can focus on what is really important
for them, which is analyzing the data. The conceptual language that is used to define the data analysis
experiments, which we describe in Section 1.4, is intuitiveand comprehensible for bioinformaticians,
who often have no programming experience. Workflows are specified in a graphical notation specially
designed for this purpose, which is calledSimple conceptual unified flow language(Scufl).

The main concepts of the Scufl syntax and semantics were already presented in [14]. Yet, several
Scufl features which are arguably important and unique amongscientific workflow specification lan-
guages, like control edges used to synchronize services with side effects, dynamic and transparent type
coercion and implicit iteration, failure mechanisms, and incoming-links strategies are described at a very
high abstraction level or in a highly simplified manner. We give alternative and more detailed definitions
of the semantics of Scufl as it is implemented in Taverna 1.7.1. While doing so we pay special attention
to the aforementioned features, inspect their usefulness separately as well as in combination and discuss
alternatives.

This paper is the first of two. It defines, explains and discusses fundamental notions for describing
Scufl graphs and their semantics. Then, in the second part, weuse these notions to define the semantics
and show that our definition can be used to prove properties ofScufl graphs. To account for side effects
the semantics is defined as a transition system. Finally, thesecond part also includes a more elaborate
comparison with the work in [14].

1.1. Why formal semantics

We start with motivating why a precise formulation of a formal semantics for languages such as Scufl is
crucial.

Scufl includes high level features and mechanisms, like implicit iteration, that make the construction
of real life workflows simpler and allow the programmer to focus on the problem being solved. At the

J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I281

same time the workflows look less complex and can be used in research papers to convey the main idea
of an in silico experiment that was conducted. Yet, distributed data-processing experiments are complex
in nature and a highly expressive definition language that hides much of the complexity of the workflow
behind implicit semantics is not the silver bullet. When problems appear, e.g., while debugging, it is
important to exactly understand what computation is being done. And even when the specification of the
workflow is successfully finished, it’s merit has to be effectively and objectively assessed by reviewers.
For this a precise and formal semantics is needed.

It’s also obvious that thein silico experiments that are being conducted become more and more com-
plex and sooner or later automatic verification procedures,similar to those used for verifying complex
business transactions, will have to be developed. For such verification the existence of formal semantics
is a necessary first step as well as for the creation of auxiliary tools that would detect potential errors and
suggest possible solutions to workflow creators, the same way as Integrated Development Environments
aid modern programmers.

Another domain for which the formal semantics is fundamental is enactment optimization. As with
database queries the programmer could only specify what hasto be done and the determination of the
most effective execution strategy would be left to the workflow engine. In addition, with workflows
being applied more and more frequently, and being shared in Internet repositories [6], their querying is
becoming an interesting scientific problem [4, 2]. A successful workflow query language should take
into account the semantics and not just the syntax, i.e., compare what the workflows do and not only how
they are defined.

Finally, we argue that the very act of formulating a formal semantics is useful because it forces us
to do a complete and thorough analysis of the behavior of Taverna. The formulation of an elegant and
natural formal semantics is a good litmus test for checking if the current behavior is consistent and well
chosen. Such a test is not unimportant for large, complex andrelatively rapidly evolving systems such
as Taverna. In addition, as is shown in this paper later on, itmay provide inspiration for other interesting
alternative semantics. Therefore the formulation of a formal semantics can help in the future design and
development of Taverna.

1.2. Scufl type system

As the Taverna authors notice “the problem of data typing in life sciences is simply too hard to attack”.
There is only one basic type that describes binary data with an attached MIME annotation and we will
denote this basic type asM. The MIME annotation is used to determine how a basic type data value is
going to be presented to the user, e.g., whether a text, a picture, or its binary representation is going to
be displayed. The set of MIME values is denoted asVM. For our examples we will usually assume it
contains at least the natural numbers and strings.

In Taverna we meet in practice only one collection type, namely, ordered lists, even though the
documentation suggests that Scufl was designed to support other collection types such as partial orders,
trees, bags and sets. Although the user documentation mentions only homogeneous lists, the workbench
does not prevent the use of heterogeneous lists, i.e., listscontaining elements of different types such as
[1, [2], 3, [[4]]]. Heterogeneous lists can be obtained from homogeneous onesduring the computation. For
example, it is possible to specify in a Taverna workflow that an input is computed from different outputs
of different processors by combining them into a single list. Therefore we define the set of complex
values such that it includes heterogeneous lists.

282 J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I

Theset of complex values, denoted asVtav , is defined as the smallest set such that (1)VM ⊆ Vtav

and (2) ifx1, . . . , xn ∈ Vtav, then the list[x1, . . . , xn] is in Vtav . The values of these list types will be
denoted as[1, 2, 3] and [[1, 2], [3, 4], 5], the empty list is denoted as[], and the concatenation of lists is
denoted with+, so [1, 2] + [1, 5] + [] = [1, 2, 1, 5]. Note, that this notion of complex value does not
include tuples or records.

Although heterogeneous lists can appear in Taverna, they usually cause processors to fail and other-
wise are not always processed coherently, e.g., applying the flatten operation to the list[[x], [[y]]], where
x andy are some basic values, results in[[x], [y]] while flattening of[[[x]], [y]] results in[[x], y]. It is
however quite possible to give an intuitive semantics for Scufl that allows heterogeneous values every-
where and deals with them consistently. Therefore, we will in the formal part of this paper, for the sake of
simplicity and consistency, assume that heterogeneous values are allowed everywhere. If heterogeneous
values never appear, then the semantics defined in this papercorresponds to the observed behavior of
Taverna.

The consistent behavior for the heterogeneous values is owed to the coherent generalization of se-
mantics of product strategies expressions (see Section 2.4) and implicit iteration mechanism (see Sec-
tion 2.2). Despite this we usually limit the presentation tohomogeneous values only and discuss in the
second part of this paper the strategies for adapting the semantics such that the heterogeneous values are
consistently avoided.

Although Taverna does as little typing as possible it still has a notion ofcomplex type, which is
defined by the following syntax:

τ ::= M | [τ]

Examples of such types areM, [M], [[M]], et cetera. The set of all complex types is denoted asTtav .
The semantics of these types are defined with induction on their syntactic structure such that:

• [[M]] = VM, and

• [[[τ]]] = [[τ]] ∪ L([[τ]]) whereL(V) denotes the set of finite lists overV .

Note, that the given type semantics is more liberal than usual and explicitly allow heterogeneous lists.
So not only[[1], [2]] ∈ [[[[M]]]] but also[1, [2]] ∈ [[[[M]]]] since1 ∈ [[M]] ⇒ 1 ∈ [[[M]]]. Effectively the
type only restricts the maximum nesting depth of the complexvalues in its semantics.

Further motivation for the liberal list type semantics is given by the fact that if the nesting depth of
a certain value is lower than expected there is always an intuitive interpretation of that value as a more
deeply nested one, namely by nesting it in singleton lists. For example, if a certain processor expects on
a certain input port a list of protein identifiers and it receives a value that is an unnested single protein
identifier, then it can interpret this as a singleton list containing this protein. This principle can be applied
to every type, i.e., a value of typeτ can always be interpreted as a value of type[τ] by assuming it is
packed in a singleton list. This is reflected in the type semantics by the fact that[[τ]] ⊆ [[[τ]]]. The idea
that types are given a semantics that is related to a coercionmechanism can be found in other work such
as [1].

Consistently with the given type semantics and the described type coercion we define a subtyping
relation, denoted by⊑, over complex types such thatτ ⊑ σ iff the nesting depth ofτ is less than or equal
to the nesting depth ofσ, i.e., eitherτ = M, or τ = [τ ′] andσ = [σ′], whereτ ′ ⊑ σ′. For example,

J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I283

M ⊑ [M], and[M] ⊑ [[[M]]], but [[M]] 6⊑ [M]. Clearly, this notion of subtyping is consistent with
the given semantics, i.e., for all complex typesτ andσ it holds thatτ ⊑ σ iff [[τ]] ⊆ [[σ]].

Since there is only one basic type, viz.M, it is not hard to see that⊑ defines a linear order over
the complex types. So we can define a functionmax : P(Ttav) → Ttav, such thatmax(T) is the least
common upper bound ofT , i.e., the smallest complex typeσ such that for all typesτ ∈ T it holds thatτ ⊑
σ. This means, for example, thatmax(∅) = M, max({M, [M]}) = [M], andmax({[M], [[[M]]]}) =
[[[M]]].

1.3. Scufl global components

Here we list the Scufl components that are common to all workflows. We postulate a countably infinite
setPL of port labelsthat contains all names that can be given to input and output ports of processors
as well as to workflow inputs and outputs. The Taverna workbench comes with a huge library of built-
in bioinformatics operations, which are mainly external service intermediaries, i.e., programs that call
external services. We call this extensible collection of operations theTaverna servicesand model it by a
set of service names calledTS which can contain an arbitrary number of names.

The interface of a service is defined by tuple types that give the input type and the output type.
These tuple types are defined as partial functionsσ : PL → Ttav that map a finite subsetdom(σ) ⊆
PL, called thedomainof σ, to complex types. We will denote tuple types{(l1, τ1), . . . , (ln, τn)} as
〈 l1 : τ1, . . . , ln : τn 〉. The set of all tuple types is denoted asTtup and the set of all tuple values as
Vtup. The semantics of a tuple typeσ = 〈 l1 : τ1, . . . , ln : τn 〉, denoted as[[σ]], is defined as the set all
functionst : dom(σ) → Vtav such that for eachli ∈ dom(σ) it holds thatt(li) ∈ [[τi]]. Such a function
{(l1, x1), . . . , (ln, xn)} will be denoted as〈 l1 = x1, . . . , ln = xn 〉. For later use we define a notation
for the projection of a tuple typeσ on a set of labelsL asσ|L such thatσ|L = {(l, τ) ∈ σ | l ∈ L} and
its counterpart for tuple values ast|L = {(l, v) ∈ t | l ∈ L}.

To define the interface of the Taverna services we postulate the functionstypei : TS → Ttup and
typeo : TS → Ttup that give the input type and output type, respectively, of each service as a tuple
type. In addition we define the functionsI : TS → P(PL) andO : TS → P(PL) such that for
every service names ∈ TS I(s) gives the set of input port labels andO(s) the set of output port
labels, i.e.,I(s) = dom(typei(s)) and O(s) = dom(typeo(s)). For example, the interface for the
string concatenation operation “Concatenatetwo strings” ∈ TS is defined as follows (we abbreviate
“Concatenatetwo strings” to “c t s”):

I(“c t s”) = {string1, string2}

typei(“c t s”) = 〈 string1 : M, string2 : M〉

O(“c t s”) = {output}

typeo(“c t s”) = 〈 output : M〉

The semantics of a service is defined by a non-deterministic function that maps a tuple of the input
type of the service to one of possibly many tuples of the output type. There are several reasons why the
result might not be functionally dependent on the input. Oneof them is that the services can have an
internal state which influences its result. Also the servicecan use randomized approximation algorithms,
which is often the case in bioinformatics. Finally, the service can be based on a database which is
constantly updated. So it seems inappropriate to model services with deterministic functions in the

284 J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I

description of Taverna’s semantics. Therefore we associate with each labels ∈ TS a relationF [s] ⊆
[[typei(s)]]× [[typeo(s)]] such that for each tuplet ∈ [[typei(s)]] there is at least one tuplet′ ∈ [[typeo(s)]]
such that(t, t′) ∈ F [s]. It should be noted at this point that the current implementation of Taverna does
not check if a service call returns a tuple with fields of the correct type, but we chose not to model this in
the presented formal semantics.

1.4. Scufl syntax

We start with a brief informal introduction to the Scufl syntax. A small example of a Scufl workflow
graph is given in Fig. 1 (a). A set of workflow inputs is indicated by a dotted rectangle with a small trian-
gle pointing upwards, which in this case contains one input labeledpin. The graph also contains a set of
workflow outputs indicated by a dotted rectangle with a smalltriangle pointing downwards, here contain-
ing two outputs labeledppout andpout. Furthermore, the graph contains several so-called processors
which represent operations from the Taverna services and which are labeled “GetNucleotideFASTA”,
“Merge String list to string”, “emma”, “showalign” and “prettyplot”. For each processor, depending on
the view settings, the input ports are listed in the top row, as is done here, or in the left column, as in some
of the following examples. Similarly, the output ports are listed in the bottom row or in the right column.
For example, the processor with label “emma” has one input port labeledsequence data direct and one
output port labeledoutseq.

The Scufl workflow graph defines a simple yet often needed experiment. If apin input port is initiated
with a list of nucleotide sequence identifiers, then the “GetNucleotideFASTA” processor implicitly
iterates on this list and with the use of an external service that searches the GenBank database [3] returns
FASTA formatted nucleotide sequences that correspond to the identifiers. The next processor merges
the list of those sequences into one long string, on which the“emma” processor, which is a wrapper
for the ClustalW operation of the EMBOSS [11] package, performs a sequence alignment. The final
two processors, “showalign” and “prettyplot” are used to present the output respectively in a textual and
graphical manner.

As can be noticed, the graphical representation of the Scufl graph communicates well the main intent
of the experiment. In the following examples we introduce other important features of the language and
then we proceed with formal definitions and discussions of these features.

The second example is abstract and is presented in Fig. 1 (b).The graph has three branches that
independently process their own input values. All the computed values, i.e., the results of “foo1”, “foo2”
and “foo3” processors, are directed to theout workflow output. Although it is not visible in the graphical
representation of the Scufl graph, for theout workflow output anincoming-links strategyis specified. It
determines how the value for a port is obtained in case of multiple data edges ending in it. This strategy
can be eithermergeor select-first, wheremergewaits for values to arrive from all incoming data edges
and packs them into a list whileselect-firstselects the first value that arrives and ignores the others.
Example use cases for the different incoming-links strategies in this abstract Scufl workflow graph would
be:

• for the merge strategy — obtaining nucleotide sequences from a number of databases and packing
them together into a list for further processing, e.g., alignment,

• for the select-first strategy — requesting the same computation with different services and contin-
uing the processing with the result that arrives the quickest.

J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I285

Figure 1. Taverna’s visualisation of Scufl workflow graph examples

286 J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I

An extra feature of the select-first strategy is that the workflow is less error prone. In Taverna processors
can fail, for example if no connection can be made with them over the Internet. Here the workflow
finishes properly if at least one of the used tools, i.e., “foo1”, “foo2” or “foo3”, finishes with success.

The third example is taken from the myExperiment workflow repository [6]. It is presented in
Fig. 1 (c) and is incorporated as a building block into several Scufl workflow graphs defining real-life
in silico experiments that are also published in the repository. First, it shows that in the Scufl work-
flow graphs there are two kinds of edges. Thedata edges, indicated by solid edges with an arrow head,
represent data flow by connecting workflow inputs or output ports of processors with input ports of
processors or workflow outputs. Thecontrol edgesindicated by gray edges ending with a circle repre-
sent additional control flow. They connect two processors specifying that one can execute only when
the other has successfully finished. Second, the example presents how a combination of failing pro-
cessors, control edges and ports with many incoming edges and the select-first strategy specified can
be used to model conditional behavior. The Scufl workflow graph returns a sequence in a FASTA for-
mat that corresponds to a sequence or sequence entry identifier provided as an input. If a sequence
identifier, in database:identifier format, e.g. uniprot:wap rat, is provided as the input, then
the “Fail if sequence” processor succeeds but the “Failif identifier” fails and thus the “fetchData” pro-
cessor uses the EBI’s WSDbfetch web service (seehttp://www.ebi.ac.uk/Tools/webservices/

services/dbfetch) to retrieve the sequence in FASTA format. Otherwise the “Fail if sequence” pro-
cessor fails but the “Failif identifier” succeeds and the sequence is passed through the Soaplab [7, 12]
“seqret” service to force it into a FASTA format. Both conditional branches are joined with theSequence
workflow output for which the select-first strategy is specified.

The last example of this informal introduction to Taverna syntax is presented in Fig. 2. We start with
the analysis of the top Scufl graph which may seem incomplete because thenin2 has no incoming data
edges. For that port a default value is specified, but that again is not visible in the graphical representation.

Another thing that the diagram does not show are theproduct strategiesassociated with all proces-
sors. Such strategies are needed because of the implicit iteration semantics of Scufl that was illustrated
by the first processor in Fig. 1 (a). In general the implicit iteration strategy states that if a processor
receives a value that is nested deeper than expected, it williterate over subvalues of the expected nest-
ing depth and combine the results again in a list. For example, if a processor that computes a function
f : [[〈 a : M〉]] → [[〈 b : M〉]] receives on its port labeleda the value[“foo” , “bar”], then it will compute
the list [f(〈 a = “foo” 〉), f(〈 a = “bar” 〉)]. If a processor computes a function that expects many inputs
such asg : [[〈 a : M, b : M〉]] → [[〈 c : M〉]] and is presented with lists of mime values, then a product
strategy such ascross productor dot productis required to indicate how the input lists are combined into
a single list of tuples that represent the combination of complex values to which the function is applied
during the iteration. If the list on porta is [“foo” , “bar”] and the list on portb is [“x” , “y” , “z”] then the
cross product combines them into[[〈 a = “foo” , b = “x” 〉, 〈 a = “foo” , b = “y” 〉, 〈 a = “foo” , b =
“z” 〉], [〈 a = “bar”, b = “x” 〉, 〈 a = “bar”, b = “y” 〉, 〈 a = “bar”, b = “z” 〉]] and the dot product com-
bines them into[〈 a = “foo” , b = “x” 〉, 〈 a = “bar”, b = “y” 〉]. For an arbitrary number of input ports a
product strategy is defined by an expression in the followingsyntax:

ps ::= ε | PL | (ps ⊗ ps) | (ps ⊙ ps)

in which each label inPL appears at most once. In this expressionε denotes the empty product strategy, a
port label product strategy transforms values into tuples,⊗ represents the cross product1 and⊙ represents
1For lists the cross productL1 ⊗ L2 is not equivalent withL2 ⊗ L1 because the order of the resulting tuples is not the same,

J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I287

Figure 2. An example of a nested Scufl workflow graph

the dot product. The set of all product strategies is denotedas PS and the set of port labels used
in product strategyps is denoted asL(ps), i.e., it is defined such thatL(ε) = ∅, L(a) = {a} and
L(ps1 ⊗ ps2) = L(ps1 ⊙ ps2) = L(ps1) ∪ L(ps2). The result of a product strategyps is always a
possibly nested list of tuples with fieldsL(ps), e.g., ifps = (a ⊗ b) ⊙ c, then this results in a possibly
nested list of tuples of the form〈 a = x, b = y, c = z 〉.

A product strategy could be relevant for our example if the “NestedScufl graph” processor had a
merge strategy specified for itsnin1 input port, but expected only a single value and not a list. A
further explanation of the default value mapping, the incoming-links strategy and the product strategy is
provided in Sections 2.3 and 2.4 respectively.

The final feature presented by the example in Fig. 2 is that Scufl workflow graphs are allowed to be
recursively nested. The nested Scufl graph is represented bya “NestedScufl graph” processor and its
workflow inputs and outputs match the input ports and output ports of the processor. Nesting a part of
a Scufl workflow graph into a processor changes its semantics in two ways. The first is that the nested
Scufl worklfow is not executed until all input ports are ready, and the second is that it will apply the
implicit iteration strategy during its execution.

but in Taverna there is also a difference in how the result is nested, as will be explained later on.

288 J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I

The informal discussion until now was illustrated with a notation that is only one of the ways to
represent Scufl workflow graphs and more elaborate representations are available in Taverna, although
none of them shows all relevant aspects for understanding the complete semantics of the defined Scufl
workflow graph. We follow with a comprehensive formal definition of Scufl workflow graphs — Scufl
graphs for short. Since these can be recursively nested it will be an inductive definition. For this definition
we postulate a countably infinite setP that contains all possible processor identifiers that we canuse in
Scufl graphs.

Definition 1.1. (Scufl graph)
The set of Scufl graphsG is defined as the smallest set such that every Scufl graph composed of Scufl
graphs inG is also inG, where such a Scufl graph is defined as a tuple(I,O, P, πi, πo, Ed, Ec, λ, ils, ps, dv)
such that

• I ⊆ PL is a finite set of labels representing the workflow inputs,

• O ⊆ PL is a finite set of labels representing the workflow outputs,

• P ⊆ P is a finite set of processors disjoint withI andO,

• πi ⊆ P × PL a finite set representing processor input ports,

• πo ⊆ P × PL a finite set representing processor output ports,

• Ed ⊆ (I × πi) ∪ (πo × πi) ∪ (πo × O) is a set of data edges,

• Ec ⊆ P × P is a set of control edges,

• λ : P → (TS∪G) is the processor labeling function, that maps processors toeither a service label
in TS or a nested Scufl graph such that for every processorp ∈ P it holds thatI(λ(p)) = {l |
(p, l) ∈ πi} andO(λ(p)) = {l | (p, l) ∈ πo},

• ils : (πi∪O) → {first,merge} gives the incoming-links strategy for every input port of a processor
and the workflow outputs,

• ps : P → PS gives the product strategy for every processorp ∈ P such thatL(ps(p)) = {l |
(p, l) ∈ πi},

• dv : πi → Vtav ∪ {⊥} gives a default value2 for each input port, where⊥ represents the lack of
default value and is only allowed if the port has at least one incoming data edge, i.e., ifdv((p, l)) =
⊥, then there is a data edge(x, (p, l)) ∈ Ed for somex,

• there are no cycles in thedependency graphwhich is defined as a directed graph overP such that
there is an edge(p1, p2) iff there is a control edge(p1, p2) ∈ Ec or there is a data edge of the form
((p1, l1), (p2, l2)) ∈ Ed,

where theI andO functions for labels inTS are generalized for Scufl graphs such that for a Scufl graph
g we letI(g) andO(g) denote theI andO component ofg, respectively.

There can be no cycles in the dependency graph because it is a fundamental assumption in the seman-
tics of Scufl that each processor starts executing only once.An interesting question is if these semantics

2In Taverna 1.7.1, the version that was investigated for thispaper, only strings were allowed as default values.

J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I289

can be adapted such that cycles can have a meaningful and intuitive semantics, but this is not investi-
gated in this paper. An interesting case for allowing such cycles is made in [5] which attempts to show
the Turing completeness of Scufl, but does not take into account that they are not allowed.

The restriction that a default value must be specified for input ports that have no arriving data edges
is more strict than in the real Taverna 1.7.1, where basic processors are allowed to have input ports with
neither an incoming data edge nor a data value. This is an often used feature since basic processors
can wrap a service with many optional arguments and flags. However, for the sake of simplicity of
presentation we will assume that this is represented in the formal syntax by a basic processor that has
exactly the set of input ports that are provided and has the semantics that the real basic processor has for
that particular set of input ports.

Next to generalizingI we also extend the functiontypei to Scufl graphs, i.e.,typei : (TS ∪ G) →
Ttup. The main purpose of this type is to allow a processor, that islabeled byλ with a Scufl graph, to
determine what type it actually expects, and use that to see if for a given complex value it will do an
implicit iteration or pass it on to the nested Scufl graph. Recall that if a processor receives a value that is
nested deeper than expected, then it will identify the subvalues of the expected nesting depth and iterate
over those, i.e., pass them on one by one to the nested Scufl graph.

Informally, the input type of each workflow input is computedby taking the maximum of the types
of processor input ports in the nested Scufl graph to which it is connected. So, for example, if the
workflow input is connected to two processor input ports thatexpect[[M]] and [M], then the Scufl
graph is assumed to expect the type[[M]] on this input port. The justification for taking the maximum
is that this way the processor that contains the nested Scufl graph only starts implicit iteration if it is
really necessary, i.e., none of the nested processors to which the value is passed on can deal with it
without iteration. For example, assume that the workflow input is connected to a service with input type
〈 genes : [M] 〉 that expects a list of genes encoded as DNA strands and selects the shortest one. Also
assume that another service with input type〈 gen : M〉 is also connected to this workflow input. Then,
if the Scufl graph is given a list of genes, the implicit iteration is only needed for the second service and
not the whole Scufl graph. This way the first service can find theshortest gene in the whole input list and
not in every singleton list resulting from implicit iteration on the workflow input.

Formally, following the induction ofG, the input type of a Scufl graphg = (I,O, P, πi, πo, Ed, Ec, λ,
ils, ps, dv) with I = {l1, . . . , ln}, is defined astypei(g) = 〈 l1 : τ1, . . . , ln : τn 〉, whereτi =
max({σ(l′) | (li, (p, l′)) ∈ Ed, σ = typei(λ(p))}). Note, that this is well defined since the domain
of typei(λ(p)) is I(λ(p)), which by the definition of Scufl graph is equal to{l′ | (p, l′) ∈ πi}.

1.5. Hierarchically nested Scufl graphs

The Scufl graph definition is an inductive definition that builds larger Scufl graphs by using smaller ones
as labels of its processors, i.e., as nested Scufl graphs. It allows us to define notions and prove theorems
with induction on the structure of a Scufl graph. Over the set of all Scufl graphsG we can definethe
nesting graphthat indicates which Scufl graph is nested in which Scufl graphas follows.

Definition 1.2. (The nesting graph)
The nesting graphis the directed edge-labeled graphN = (G, E) whereG is the set of nodes and the set
of edgesE ⊆ G × P × G is defined such that(g, p, g′) ∈ E iff λ(p) = g′ with λ the labeling function of
g andp a processor ing.

290 J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I

It is easy to see that, sinceG is required in its definition to be minimal, there are no directed cycles in
N . Theset of subgraphs of a Scufl graphg, denoted asGg, is defined as the set of nodes reachable inN
from g, includingg itself. Thenesting graph for a particular Scufl graphg is denoted asNg and defined
as subgraph ofN induced byGg.

It is allowed that the same Scufl graph is reused as a label of more than one processor in a certain
Scufl graph definition, either within the same subgraph or in different subgraphs. However, the definition
of a state of a Scufl graph can be simplified if such reuse is not allowed and therefore we introduce the
notion ofhierarchically nested Scufl graphs.

Definition 1.3. (Hierarchically nested Scufl graphs)
A Scufl graphg is said to behierarchically nestediff Ng is a tree.

Observe that ifg is a hierarchically nested Scufl graph then all Scufl graphs inGg are also necessarily
hierarchically nested.

If a Scufl graph is not hierarchical then it can be made so by replacing each occurrence of a certain
Scufl graph with a different but isomorphic Scufl graph. For example, if processorsp1 andp2 are both
labeled with a Scufl graphg, i.e.,λ1(p1) = λ2(p2), whereλ1 andλ2 are the processor labeling function of
the subgraphs in whichp1 andp2 appear respectively, then we redefineλ1 andλ2 such thatλ1(p1) = g1

andλ2(p2) = g2, whereg1 andg2 are different but isomorphic copies ofg that do not appear as subgraphs
themselves. If we start with a certain Scufl graph and repeat this for every two different processors in
subgraphs that are labeled with the same Scufl graph, then we will obtain an equivalent hierarchically
nested Scufl graph.

In the remainder of this paper, where we describe the semantics of Scufl graphs, we will do this only
for hierarchically nested Scufl graphs, and therefore, whenwe refer to a Scufl graph, we always mean a
hierarchically nested Scufl graph. The semantics of other Scufl graphs is then defined as the semantics
of the corresponding hierarchically nested Scufl graphs. The reason for this is that in a hierarchically
nested Scufl graph we can describe the total state as a mappingof each Scufl graph that it contains to
its particular state. The exponential blow-up that can be caused by making a Scufl graph hierarchical,
is in some sense unavoidable, because it is linked to the potentially exponential number of Scufl graph
instances for which a state has to be described.

2. Processor execution

2.1. An overview of processor execution

A successful execution of a processor is a complex event bestexplained by dividing it into several steps.
We give here an informal overview of those steps and discuss the first two of them in the rest of this
section in further detail by defining the functions that compute them. Then, in the second part of this
paper, using those functions and additional prerequisitesdefined in Section 2.2, we discuss the execution
of a Scufl graph as a whole, look into all the steps together, and explore all possible scenarios including
the possibility of processor failure.

We now proceed with the informal description of the steps of asuccessful execution of a processor:

J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I291

Computing the values in the input ports In the first step an input value for each input port is computed
from the values that were sent to it through the incoming dataedges. This is done by combining
these values into a single complex value according to the incoming-links strategy. The select-first
strategy simply takes the first value that arrives and ignores the others, and the merge strategy
creates a list containing all the arrived values.

Combining the input port values into the processor input value Next, aprocessor input valueis com-
puted, which is a single tuple that can be processed by the service that the processor represents, or
a possibly nested list of such tuples. If for every input portof the processor the value computed
in the previous step is of the type expected by the processor,i.e., is not overly nested, then the
processor input value is a tuple labeled by input port labelsand holding the input port values. For
example, if the input ports are labeleda and b and their computed input port valuesva andvb

are of the expected type, then the processor input value is〈 a : va, b : vb 〉. If any of the values
computed in the preceding steps is too deeply nested, then the values of the different input ports
must be combined into a single nested value, i.e., a list of tuples over which the processor can
iterate. For example, assume thatva is a list of mime values andvb is a list of lists, while the
processor expects typesM and[M], respectively. The computation of the processor input value
can then be thought of as consisting of two steps. First, the values that were computed for the input
ports are transformed into values where the subvalues of thetype that is expected are identified by
packing them in singleton tuples. Continuing the last example, the value for the input port labeled
a would be transformed to a list of tuples of type〈 a : M〉 and the value for the input port labeled
b would be transformed to a list of tuples of type〈 b : [M] 〉. Second, the product strategy of the
processor describes which combinations of the identified tuples are taken and how they are nested
in the result. For example, a strategy consisting of a singlecross product will combine all tuples
in the first value with all tuples in the second, resulting in adoubly nested list of tuples of type
〈 a : M, b : [M] 〉.

Performing the execution or the iteration If the value computed in the preceding step is a tuple, the
processor is executed once, producing one result tuple withvalues for every output port. If the
processor input value is a list, it is iterated over by executing the processor for each tuple in it.
The result for each output port contains a list of values fromresult tuples of subsequent iteration
steps that is structured accordingly to the nesting structure of the processor input list. Following
the previous example, if the processor has two output ports labeledc andd, and is associated with
a Taverna service with output type〈 c : [M], d : M〉, then the iteration will produce a list of lists
with elements of type[M] for port labeledc, and a list of lists with elements of typeM for port
labeledd.

Copying the computed output port values When the normal execution or iteration has finished the
values computed in the processor output ports are copied to all processor input ports and workflow
outputs to which they are connected.

2.2. Extended complex value construction and deconstruction

As explained in the informal description of the semantics ofprocessor execution in Section 2.1, we can
describe the execution of a processor after the processor input value has been computed as a process that

292 J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I

takes a possibly nested list of tuples, iterates over all tuples by executing the processor and while doing
so constructs for each output port a value by inserting, at the position of the original tuple, the value that
was computed for that output port by the iteration step.

SinceVtup includes tuples, but not lists of tuples, we define an extended complex value setVext as
the smallest set such that (1)Vtup ⊆ Vext and (2) if x1, . . . , xn ∈ Vext then the list[x1, . . . , xn] is in
Vext.

In order to identify the position of tuples and other subvalues in an extended complex value we
introduce the notion of subvalue index. By asubvalueof an extended complex valuev we meanv itself,
any element ofv, any element of element ofv, and so on, up to the tuples. For example, ifv = [[a, b], [c]],
wherea, b andc are tuples, then all subvalues ofv are:v, [a, b], [c], a, b andc.

Definition 2.1. (Subvalue index)
A subvalue index, or simply index, is a list of positive natural numbers. Such indices are denoted by a
list of numbers separated by slashes, e.g.,2/3/8 and1/1, and the empty list is denoted asǫ. The set of
all complex value indices is denoted asI.

The numbers in an index are listed from most significant on theleft, to the least significant on the right.
Following the last example, the subsequent indexes of the mentioned subvalues ofv are:ǫ, 1, 2, 1/1, 1/2
and2/1.

Formally, the subvalue indicated by an index is defined by thefunction get : Vext × I → (Vext ∪
⊥) such thatget(v, ǫ) = v, andget(v, i/α) = get(vi, α) if v = [v1, . . . , vn] and 1 ≤ i ≤ n, and
get(v, i/α) = ⊥ otherwise. For example, ifv = [[a, b], [c]], thenget(v, 2/1) = c andget(v, 2/2) = ⊥.

We assume that complex value indices are ordered according to the lexicographical ordering, i.e., the
smallest binary relation� overI such that for everyi, j ∈ N andα, β ∈ I it holds that (1)ǫ � α, (2) if
i ≤ j, theni/α � j/β and (3) ifα � β, theni/α � i/β. As usual this defines a linear order overI.

In order to be able to iterate over all tuples in an extended complex value we define a function that
retrieves the index of the first tuple and a function to jump tothe index of the next tuple. The first function
is first : Vext → (I ∪ ⊥) which is defined such thatfirst(v) = α whereα is the smallest index such that
get(v, α) ∈ Vtup, andfirst(v) = ⊥ if there is no suchα. The second function isnext : Vext×I → (I∪⊥)
and is defined such thatnext(v, α) = β if β is the smallest index larger thanα such thatget(v, β) ∈ Vtup,
andnext(v, α) = ⊥ if such aβ does not exist.

Finally, we define a functionput(v, α,w) that inserts into the complex valuev at positionα the
complex valuew, which can be used to construct complex values. For example,put([x, [y]], 2/1, z) =
[x, [z]] and put([], ǫ, z) = z. If the positionα does not yet exist inv then it is extended minimally
with empty lists to create it. For example,put([], 1/1/1, x) = [[[x]]] and put([], 2/1, x) = [[], [x]].
Formally, this functionput : Vtav × I × Vtav → Vtav is defined such that (1)put(v, ǫ, w) = w,
(2) put(v, i/α,w) = put([], i/α,w) if v ∈ VM, (3) put([], 1/α,w) = [put([], α,w)], (4) put([v] +
v′, 1/α,w) = [put(v, α,w)]+ v′ , (5) put([], i/α,w) = [[]]+ put([], (i− 1)/α,w) if i > 1, (6) put([v]+
v′, i/α,w) = [v] + put(v′, (i − 1)/α,w) if i > 1.

2.3. Incoming-links strategy semantics

Here we define the semantics of incoming-links strategy expressions which are used to indicate how to
compute the value for a processor input port or workflow output by composing it from values provided
from multiple incoming data edges. The computation is done incrementally, that is, a temporary result

J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I293

is extended each time a new value arrives from one of the data edges that did not already supply a value.
The lack of a previous temporary value at the start of the process is represented by⊥.

The select-first incoming-links strategy picks the first value to arrive and ignores all the others. This
is the default behavior of processor input ports and workflowoutputs. The function[[first]] : ((Vtav ∪
{⊥})×Vtav) → Vtav takes as the first argument the current temporary result and as the second the value
provided by the next data edge. As a result the new temporary result is returned. Formally:

[[first]](t, v) =

{

v if t = ⊥

t otherwise

The merge incoming-links strategy combines all incoming values as elements of a list. It was added
to Taverna 1.3.1 to prevent the need for creation of user defined n-argument processors that compose their
arguments into a list. As with select-first, the merge function [[merge]] : ((Vtav \ [[M]]∪{⊥})×Vtav) →
Vtav has two arguments, yet now the temporary value is never of type M since it is a list of values
provided so far. Formally:

[[merge]](t, v) =

{

[v] if t = ⊥

t + [v] otherwise

Strictly speaking this is not a merge, but we stick to the Taverna terminology.

2.4. Product strategy semantics

Here we define the semantics of product strategy expressionsps ∈ PS. The product strategy expressions
are used to transform values fromVtav, that are provided on individual input ports of a given processor
p, to extended complex values that contain tuples of typetypei(λ(p)), i.e., lists of tuples ready to be
iterated upon byp.

The values provided on a processors’ input ports have to be combined into a processor input value
that is either a single tuple which can be processed by the service that the processor represents or a nested
list of such tuples. This is done in two steps. The first step transforms each of the values provided on
every input port into a single unary tuple or a list of unary tuples. The tuples’ field is labeled with the
same label as the respective input port and they contain values of the type that is expected on that port.
The second step combines such preprocessed values for processors with multiple input ports into a single
n-ary tuple or a nested list of those.

We now describe the first step in more detail. Its purpose is toidentify the subvalues that are of
a nesting depth acceptable by the processor. For example, ifthe value on the input port with labela
is [[1, 2], [], [3]] and the processor expects a value of type[M] on it, then the value is transformed to
[〈 a = [1, 2] 〉, 〈 a = [] 〉, 〈 a = [3] 〉]. If this is the only input port, then the processor will iterate over the
three values[1, 2], [] and[3]. If, on the other hand, a value of typeM is expected, then it is transformed
to [[〈 a = 1 〉, 〈 a = 2 〉], [], [〈 a = 3 〉]] and the processor will iterate over the three values1, 2 and3. This
is formalized by the packing functionpackl:τ : Vtav → Vext that identifies nested values of typeτ and
packs them into tuples of type〈 l : τ 〉. Formally, it is defined as follows:

packl:τ (x) =

{

〈 l = x 〉 if x ∈ [[τ]]

[packl:τ (x1), . . . , packl:τ (xn)] if x = [x1, . . . , xn] 6∈ [[τ]]

294 J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I

This function is well defined for everyx ∈ Vtav, which can be shown with induction on the structure ofx
and using the fact thatVM ⊆ [[τ]] for anyτ ∈ Ttav. It is possible that a value of typeτ contains a nested
value that is also of typeτ . For example, ifτ = [[M]] andx = [[[1]]], then there are inx three nested
values of typeτ , namely1, [1] and[[1]]. In that case the nested value with the largest nesting depthis
chosen and sopacka:τ (x) = [〈 a = [[1]] 〉]. For a more elaborate example consider:

packa:[M]([[1], [[2], 3], 4])

= [packa:[M]([1]), packa:[M]([[2], 3]), packa:[M](4)]

= [〈 a = [1] 〉, [packa:[M]([2]), packa:[M](3)], 〈 a = 4 〉]

= [〈 a = [1] 〉, [〈 a = [2] 〉, 〈 a = 3 〉], 〈 a = 4 〉]

Note, that the values3 and4 are in[[[M]]] and therefore also packed in a tuple.
We now proceed to the second step where we deal with the case ofprocessors with multiple input

ports. There the extended complex values computed by the packing function have to be combined. For
this the cross and dot product strategy expressions are usedto represent the× — cross and· — dot
product functions3. An intuition of how they work on flat lists has already been given in Section 1.4.

For higher level lists the dot product used in Taverna fully flattens its arguments, operates on the flat
lists and structures the result according to the structure of the argument with the highest nesting depth.
For example, ifa, b, c, d ande are tuples, then[a, b] · [[c], [d, e]] = [[a ∪ c], [b ∪ d]], where the union of
tuple values is a well defined tuple since in product strategyexpressions each label fromPL appears at
most once. In the case where both arguments have the same nesting depth the structuring occurs with
respect to the left one. For the formal definition of the dot product we define three auxiliary notions.

The first is the functionflat∗ that flattens values inVext, i.e., recursively nested lists of tuples, to lists
of tuples, e.g, ifx1, x2 andx3 are tuples, thenflat∗([[[x1]], [[x2], [x3]]]) = [x1, x2, x3]. Formally, it is
defined such that:

flat∗(x) =











[] if x = []

[x] if x ∈ Vtup

flat∗(x1) + . . . + flat∗(xn) if x = [x1, . . . , xn]

The second notion is that ofthe tuple nesting depthof a valuex in Vext, denoted astnd(x), which
can be informally described as the maximum nesting depth of tuples inx. It is formally defined such that
(1) tnd(x) = 0 for x ∈ Vtup, (2) tnd([]) = 1, and (3)tnd([x1, . . . , xn]) = 1 + max1≤i≤n(tnd(xi)).

Finally, areplace : Vext × Vext → Vext partial function is defined which replaces all the subsequent
tuple subvalues in the complex value provided as the first argument with the subsequent elements of
the tuple list provided as the second argument. For example,assuming that everyzi and ti is a tuple,
replace([[z1, z2], [z3]], [t1, t2, t3]) = [[t1, t2], [t3]]. Additionally, if the first argument has more tuples
than the second, the extra ones are ignored, for examplereplace([[z1], [z2, z3], [z4]], [t1, t2]) = [[t1], [t2]].
Similarly, we also ignore its subvalues containing no tuples at all but only if it does not change the
positions of the other subvalues, for examplereplace([[z1, z2], [z3], []], [t1, t2, t3]) = [[t1, t2], [t3]] while
replace([[[z1], [z2]], [[]], [[z3 , z4]]], [t1, t2, t3]) = [[[t1], [t2]], [], [[t3]]]. Formally, if z is a complex value

3The functions× and· should not be confused with⊗ and⊙, which are the corresponding syntactical constructs in product
strategy expressions.

J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I295

such thatflat∗(z) = [z1, . . . , zm] andt = [t1, . . . , tn] wherem ≥ n, thenreplace(z, t) = r wherer
is the smallest complex value such thatflat∗(r) = [r1, . . . , rn] andget(r, αi) = ri for all i = 1 . . . n
andα1, . . . , αn being the respective indexes ofz1, . . . , zn in z. The ordering of the complex values that
we refer to in this definition is given such that: (1) ifa andb are tuples, thena ≤ b iff a = b, and (2)
[a1, . . . , an] ≤ [b1, . . . , bm] iff n ≤ m and for eachi = 1, . . . , n it is true thatai ≤ bi. It is easy to see,
that this indeed defines a partial order.

With these notions we can now define the dot product. Letx andy be complex values such that
flat∗(x) = [x1, . . . , xn] andflat∗(y) = [y1, . . . , ym]. The dot product function· : Vext × Vext → Vext

is defined such thatx · y = replace(zx,y, tx,y) wheretx,y = [x1 ∪ y1, . . . , xmin(n,m) ∪ ymin(n,m)] and
zx,y = y if tnd(x) < tnd(y) andzx,y = x otherwise. It is easy to see thattx,y andzx,y are well defined,
and becausen ≥ min(n,m) ≤ m so is the dot product.

It should be noted that the pruning of the nested lists with notuples by thereplace function is indeed
consistent with how Taverna works, e.g., for tuplesa, b, c, d ande, it holds in Taverna that[[[]], [[a, b]]] ·
[c, d, e] = [[], [[a ∪ c], [b ∪ d]]]. Also note that because of howzx,y is defined it is the tuple nesting depth
of the arguments that decides which of the two arguments willdetermine the nesting structure of the
result, as indeed is the case in Taverna. An interesting alternative might be to always let the left argument
determine the nesting structure. That way the user can control this by simply changing the order in the
product strategy expression.

The generalization of the dot product in Taverna is not the only possible generalization and may
sometimes lead to unexpected results. To illustrate this wepropose here an alternative where the dot
product is generalized recursively. For example, ifx = [x1, x2] andy = [y1, y2, y3], thenx ·r y =
[x1 ·r y1, x2 ·r y2]. If x = [x1, x2] andy is a tuple, thenx ·r y = [x1 ·r y], and if bothx andy are tuples,
thenx ·r y = x ∪ y. Formally, we define the recursive dot product function·r : Vext × Vext → Vext as
follows:

k ·r l =































[] if flat∗(k) = [] or flat∗(l) = []

[k1 ·r l] if k = [k1, . . . , kn] andl ∈ Vtup

[k ·r l1] if k ∈ Vtup andl = [l1, . . . , lm]

[k1 ·r l1, . . . , kmin(n,m) ·r lmin(n,m)] if k = [k1, . . . , kn] andl = [l1, . . . , lm]

k ∪ l if k ∈ Vtup andl ∈ Vtup

To motivate the alternative definition let us analyze the example from Fig. 3 where the initial value with
an university department identifier, e.g., “informatics”,is used by two services, of which one produces a

Figure 3. Recursive dot product motivation example

296 J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I

list of positions available in this department and other a list of scientists applying for work there. The list
of positions is sorted by their appeal and the scientists aresorted according to their achievements. A third
service is used to hire a scientist for a position. To deal with the values of higher types it uses the dot
product strategy. This way the best positions are assigned to the best scientists and the hiring occurs while
both positions and scientists are still available. Observenow that if this Scufl graph is executed with a
list of departments identifiers, e.g.,[“physics”, “bioinformatics”, “informatics”] and the implicit iteration
over “get positions” and “getapplying scientists” returnedp = [[pp1, pp2], [pb1, pb2, pb3], [pi1, pi2]] and
s = [[sp1, sp2, sp3], [sb1], [si1, si2]] respectively, then the dot product of Taverna intermixes position and
scientists from different departments, i.e., the worst physicistsp3 will be hired on the best bioinformatics
positionpb1 and the best informaticiansi1 will be hired on the worst bioinformatics positionpb3. Even
if it is the case that informaticians and especially physicists do well as bioinformaticians, the informatics
department becomes undermanned and does not get the best people. Clearly the recursive dot product
does not intermix the values, so scientists will only be hired by the departments they applied to and
the departments will be able to hire all the scientists that applied to them as long as they have enough
positions.

���������������������������������������

���

�

� � �
� �� ������ ��� ������ ��� ������

	
��	

Figure 4. Cross product for higher list types

To understand the cross product of Taverna for higher list types it is convenient to think of the
nested lists as ordered trees with the leafs labeled with tuple values. A tree interpretation of values
x = [a, b, c] and y = [[d, e], [f]], wherea, b, c, d, e and f are tuples, is given in Fig. 4. The cross
product ofx andy is then obtained by replacing each of the leaf tuplestx in x by a copy of they tree
that in turn has its every leaf tuple valuety replaced bytx ∪ ty (see Fig. 4). This in our case results in
[[[a ∪ d, a ∪ e], [a ∪ f]], [[b ∪ d, b ∪ e], [b ∪ f]], [[c ∪ d, c ∪ e], [c ∪ f]]]. Formally, we define the cross
product functionVext × Vext → Vext as follows:

k × l =























[] if flat∗(k) = [] or flat∗(l) = []

[k1 × l, . . . , kn × l] if k = [k1, . . . , kn] andl 6= []

[k × l1, . . . , k × lm] if k ∈ Vtup andl = [l1, . . . , lm]

k ∪ l if k ∈ Vtup andl ∈ Vtup

Observe that the cross product of Taverna for flat lists is nota natural version of the Cartesian product
for lists. Although all the combinations of the argument’s tuples are returned, the nesting structure of
the result is deeper, i.e., ifx = [x1, . . . , xn] andy = [y1, . . . , ym], thenx × y = [[x1 ∪ y1, . . . , x1 ∪
ym], . . . , [xn ∪ y1, . . . , xn ∪ ym]], while for the Cartesian product one would expect[x1 ∪ y1, . . . , x1 ∪
ym, . . . , xn ∪ y1, . . . , xn ∪ ym]. A natural generalization of the usual Cartesian product for lists can be

J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I297

obtained by defining it recursively for higher order lists asfollows:

k ×r l =



















































[] if flat∗(k) = [] or flat∗(l) = []

[k1 ×r l, . . . , kn ×r l] if k = [k1, . . . , kn] andl ∈ Vtup

[k ×r l1, . . . , k ×r lm] if k ∈ Vtup andl = [l1, . . . , lm]

[k1 ×r l1, . . . , k1 ×r lm,

. . . ,

kn ×r l1, . . . , kn ×r lm]

if k = [k1, . . . , kn] andl = [l1, . . . , lm]

k ∪ l if k ∈ Vtup andl ∈ Vtup

Notice that when empty lists don’t appear, the nesting depthof the result value for the cross product
is the sum of the nesting depths of the arguments and for the generalized Cartesian product it is the
maximum. We want to stress that the summing of nesting depthsof the arguments in the cross product
used in Taverna may be sometimes unexpected for the user. Forexample, when a Scufl graph with one
input port of typeM and one output port typeM is initiated with a list of lists of mime elements, then
most users would expect for it to result also with such a list.Yet, if at the start of this Scufl graph a
preprocessing of the input value takes place by a binary operation for which a cross product is specified
and both input ports are connected to the workflow input, thenthe result will be a four times nested list of
mime elements. Even more interesting is the observation that this will not be the case when such a Scufl
graph is nested. Then, a full implicit iteration will occur for the processor representing the nested Scufl
graph, i.e., the nested Scufl graph is executed on values of the expected type and the implicit iteration
mechanism collects the results into a list of the same structure as the one that was iterated over.

Besides the different nesting of result values, the cross product of Taverna and the generalized
Cartesian product order the leaf elements differently, e.g., if a, b, c andd are tuples,x = [[a, b]], and
y = [[c], [d]], thenflat∗(x×y) = [a∪c, a∪d, b∪c, b∪d], while flat∗(x×r y) = [a∪c, b∪c, a∪d, b∪d].

Both operations, the cross product and the recursively generalized Cartesian product, may be useful
to the user and it is not obvious how to simulate one with the other.

Given the definitions of the cross and dot product we can now define the semantics of a product
strategyps for a processor in a certain Scufl graph. Letτ be the input tuple type of the processor and
ps a product strategy such thatL(ps) = dom(τ). Then we define for each such product strategyps and
typeτ a function[[ps]]τ : (L(ps) → Vtav) → Vext that maps a tuple of complex values containing a field
for each port label inps to an extended complex value which the processor can executeon or iterate over.
Formally, we define this function as follows:

[[ε]]τ (t) = 〈〉

[[l]]τ (t) = packl:τ(l)(t(l))

[[(ps1 ⊗ ps2)]]
τ (t) = [[ps1]]

τ (t|L(ps1)) × [[ps2]]
τ (t|L(ps2))

[[(ps1 ⊙ ps2)]]
τ (t) = [[ps1]]

τ (t|L(ps1)) · [[ps2]]
τ (t|L(ps2)).

All versions of cross and dot products defined here are binaryexpressions. They can be easily
generalized for more arguments thanks to the observation thatx× (y× z) = (x×y)× z andx · (y · z) =
(x · y) · z regardless of which, original or recursive, definition is chosen. In fact, it is the generalized
versions which are offered in Taverna. Note also, that for higher level lists usuallyx× y 6= y × x, so the
order of port labels in the product strategy expression is important.

298 J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I

3. Conclusion

In this paper we have presented a formal definition of the syntax of Scufl, the workflow specification
language of the Taverna environment, and the fundamental notions that underly the semantics of Scufl.
The syntax of Scufl is based on hierarchically nested graphs where nodes describe the processors that
perform some computation or call a service, and the edges indicate data flow or control flow between
processors. One of the fundamental concepts for the semantics that is discussed are the incoming links
strategies that can be specified to deal with the case where multiple incoming values might have to be
combined for the same input port. Another presented fundamental concept is the product strategy that is
specified to deal with the case where one or more input ports receive values of an incorrect type. These
two concepts are at the heart of the semantics of Scufl and set it apart from other workflow languages.

In the follow-up paper we present the full formal semantics of Sculf graphs based on the notions
presented here. To take into account that these graphs defineprocesses and not just computations we
describe their semantics in terms of a transition system, i.e., we describe the possible states of a Scufl
graph and all the transitions between these states. We also show that these formal semantics are effective
in the sense that they can be used to prove certain propertiesof Scufl graphs. Finally, we compare this
work to earlier work on the syntax and semantics of Taverna [14].

References

[1] Balsters, H., Fokkinga, M. M.: Subtyping can have a simple semantics,Theor. Comput. Sci., 87(1), 1991,
81–96, ISSN 0304-3975.

[2] Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: QueryingBusiness Processes.,VLDB (U. Dayal, K.-Y.
Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, Y.-K. Kim, Eds.), ACM, 2006,
ISBN 1-59593-385-9.

[3] Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Wheeler, D. L.: GenBank,Nucleic Acids Res,
36(Database issue), January 2008, ISSN 1362-4962.

[4] Christophides, V., Hull, R., Kumar, A.: Querying and Splicing of XML Workflows, CooplS ’01: Proceedings
of the 9th International Conference on Cooperative Information Systems, Springer-Verlag, London, UK,
2001, ISBN 3-540-42524-1.

[5] Glatard, T., Montagnat, J.: Implementation of Turing Machines with the Scufl Data-Flow Language,CC-
GRID, IEEE Computer Society, 2008.

[6] Goble, C. A., De Roure, D. C.: myExperiment: social networking for workflow-using e-scientists,WORKS
’07: Proceedings of the 2nd workshop on Workflows in support of large-scale science, ACM Press, New
York, NY, USA, 2007, ISBN 978-1-59593-715-5.

[7] Kandaswamy, G., Fang, L., Huang, Y., Shirasuna, S., Marru, S., Gannon, D.: Building web services for
scientific grid applications,IBM Journal of Research and Development, 50(2/3), 2006, 249–260, ISSN
0018-8646.

[8] Li, P., Hayward, K., Jennings, C., Owen, K., Oinn, T., Stevens, R., Pearce, S., Wipat, A.:Proceedings of the
UK e-Science All Hands Meeting 2004, Nottingham, UK, September 2004.

[9] Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, M., Carver, T., Wipat, A., Li, P.: Taverna: A tool for
the composition and enactment of bioinformatics workflows,Bioinformatics, 2004.

J. Sroka and J. Hidders / Towards a Formal Semantics for the Process Model of the Taverna Workbench. Part I299

[10] Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., Ferris, J., Glover, K., Goble, C., Goderis, A., Hull, D.,
Marvin, D., Li, P., Lord, P., Pocock, M. R., Senger, M., Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in
creating a workflow environment for the life sciences: Research Articles,Concurr. Comput. : Pract. Exper.,
18(10), 2006, 1067–1100, ISSN 1532-0626.

[11] Rice, P., Longden, I., Bleasby, A.: EMBOSS: The European Molecular Biology Open Software Suite (2000),
Trends in Genetics, 16(6), 2000, 276–277.

[12] Rice, P. M., Bleasby, A. J., Haider, S. A., Ison, J. C., McGlinchey, S., Uludag, M.: EMBRACE: Bioinformat-
ics Data and Analysis Tool Services for e-Science,e-science, 0, 2006, 146.

[13] Stevens, R., Tipney, H., Wroe, C., Oinn, T., Senger, M.,Goble, C., Lord, P., Brass, A., Tassabehji, M.:
Exploring Williams-Beuren Syndrome usingmyGrid, Proceedings of 12th International Conference on In-
telligent Systems in Molecular Biology, 2004.

[14] Turi, D., Missier, P., Goble, C., De Roure, D., Oinn, T.:Taverna Workflows: Syntax and Semantics,e-Science
and Grid Computing, IEEE International Conference on, 2007.

