
On distributing coalition structure generation

Tomasz Michalak1, Jacek Sroka2, Michael Wooldridge1, and Peter McBurney1

1 Department of Computer Science, University of Liverpool, UK
{tomasz.michalak,mjw,mcburney}@liverpool.ac.uk

2 Institute of Informatics, University of Warsaw, Poland
sroka@mimuw.edu.pl

Abstract. We propose an anytime algorithm for distributed coalition structure
generation (CSG) in a cooperative environment. We build upon [1] and [2]. Fol-
lowing [2] each agent starts with a disjoint fraction of coalition input to calculate.
However, we adapt this distribution so that agents are able to evaluate a num-
ber of key coalition structures using only their local knowledge. Consequently,
agents independently and with little communication perform the input analysis
phase of the [1] algorithm providing the worst case bound from the optimum. In
the subspace search phase we propose a pre-processing method that significantly
reduces the communication load between agents. For instance, for uniformly dis-
tributed coalition values and 26 agents, on average, only 9000 coalitions out of
67 million (i.e. 0.013%) have to be exchanged between agents. Furthermore, we
show that information gathered during this pre-processing makes it possible to
develop a more efficient search procedure. Importantly, this technique may im-
prove the performance of not only the distributed but also the centralised version
of the algorithm.

1 Introduction

An important issue in multi-agent system research is to generate an optimal coalition
structure, i.e. a disjoint and exhaustive division of agents in a system, such that the joint
welfare is maximized. Most of the literature analyzes this problem in the context of
characteristic function games, where the performance of any coalition is not influenced
by other coalitions in the system3. However, even under this assumption, the coalition
structure generation (CSG) problem was proved to be NP-complete [3]. A number of
approaches have been developed that help to circumvent this complexity. Following [4],
the main approaches include:
1. Dynamic programming: Algorithms in this class employ dynamic programming
techniques in order to avoid evaluating every coalition structure. The state-of-the-art
Improved Dynamic Programming (IDP) algorithm of [4] advances the well-known work
of [5] and guarantees that the solution will be found in O(3n) steps (where n is the
number of agents).4 However, this approach does not possess anytime properties, i.e. it
does not output any solution until all the calculations are completed;

3 As argued by [3] or [4] many (but, clearly, not all) real-world multiagent problems can be
modelled using this representation.

4 The terms “coalition structure” and “solution” will be used interchangeably.

2. Heuristics: In this approach the number of coalition structures to be searched is
reduced by imposing some exogenous assumptions. For instance, [6] proposed a greedy
algorithm that focuses only on coalition structures that contain coalitions of particular
sizes;
3. Anytime optimal algorithms: These algorithms initially generate a solution that
is guaranteed to be within a bound from the optimal. This result is then improved by
evaluating more of the search space and establishing progressively better bounds un-
til optimality is reached. Although these algorithms might, in the worst case, end up
searching the entire space (i.e. they are O(nn)), the anytime property has a number of
advantages. Such algorithms deliver an outcome almost instantly and, in general, they
are more robust against failure due to premature termination. The state of the art in this
class is the IP algorithm [1];5

4. Hybrid DP-anytime algorithm: The algorithm of [8], called IDP-IP, combines dy-
namic programming techniques of IDP with the anytime IP algorithm exploiting the
strengths of both approaches and, at the same time, avoiding their main weaknesses.
This makes it the most efficient CSG algorithm reported to date.

Although, all the above approaches are centralised, it might be more efficient to
distributed computations among agents. This not only works towards utilizing all the
resources available to the system, but also helps to avoid the existence of a single point
of failure. To this end, we propose in this paper the first distributed algorithm to solve
the CSG problem. Our approach is build upon the anytime IP algorithm, which has been
shown to be much faster than the IDP algorithms for distributions of coalition values
which have been commonly considered in the literature. Furthermore, as demonstrated
in the later part of the paper, our approach can be easily extended to the hybrid IDP-IP
algorithm. Our main results can be summarized as follows:

1. We adapt the Distributed Coalition Value Calculation algorithm (DCVC hence-
forth) of [2] that is used to calculate the space of coalition values which constitute
an input to the CSG problem. With our refinement agents are able to perform the
first analysis of the system already during input generation. This is done with lit-
tle communication and includes establishing worst case bounds from the optimal
solution;

2. We propose an effective pre-processing method which reduces the communication
overhead between agents. For instance, for uniformly distributed coalition values
and 26 agents, on average, only 9000 coalitions out of 67 million (i.e. 0.013%) have
to be exchanged between agents;

3. We show that this pre-processing method can be used to significantly improve the
anytime search process. For normally distributed coalition values the new method
is approximately 30 times faster. Crucially, this method can be efficiently used both
in distributed and centralized algorithms (like IP or IDP-IP);

4. Distributed numerical simulations for up to 28 agents show that the above develop-
ments make our algorithm to take a very good advantage of distributed computing.

5 Recently, [7] proposed an interesting anytime algorithm, however, this work is still prelimi-
nary.

Fig. 1. Scheme of the IP algorithm

In the next section we analyze the IP algorithm. In Section 3 we present our dis-
tributed approach and in Section 4 we describe the novel coalition structure search
method. Section 5 presents experimental evaluation.

2 Analyzing The IP Algorithm

In our analysis of IP we will pay special attention to the input data needed at every
stage of the calculations. We use A to denote the set of agents, n the number of agents,
v(C) the value of coalition C and v(CS) the value of coalition structure CS. IP is built
upon a novel representation of the search space in which all coalition structures are
partitioned into subspaces based on the sizes of the coalitions they contain. Each sub-
space is related to one integer partition of n denoted by I. For example, given 4 agents,
the possible integer partitions (written in the form of transposed vectors) are I1 = [4],
I2 = [1, 3], I3 = [2, 2], I4 = [1, 1, 2], and I5 = [1, 1, 1, 1]. Each integer partition I
corresponds to a subspace S(I) containing all coalition structures in which the coali-
tion sizes match the parts of this integer partition. For instance, S(I4) represents the
subspace of all coalition structures containing two coalitions of size 1, and one of size
2. Figure 1 presents the main stages of IP:
[IP.1] Input Analysis
Input: Ls; Output: Maxs, Avgs, v(CS∗N) = max{v({C,A\C})}
The input to the IP algorithm are ordered lists, Ls, of values for coalitions of equal size
(see Figure 4 for 6-agent example). IP starts with calculating the maximum and average
values of coalitions in every list, denotedMaxs andAvgs, respectively. Also, all values
of coalition structures of form {C,A\C} are evaluated. CS∗N denotes the best coalition
structure found so far.
[IP.2] Generation of subspaces and bounds
Input: Maxs, Avgs, CS

∗
N ; Output: S(I1), S(I2), ..., S(Iz) ,max{v(CS∗N), LBI}

Information about Maxs and Avgs is used to calculate both upper and lower bounds
on all the subspaces as follows:

UBI :=
∑
s∈I

Maxs and LBI :=
∑
s∈I

Avgs (1)

These bounds are then used to establish worst-case guarantees on the quality of the best
solution found so far, and to prune any subspace that cannot contain a better solution.
In particular, the lower bound for the entire system is max{v(CS∗N), LBI}. All the
promising subspaces are sorted by their upper bounds in a descending order. Denote
the ordered set of them as S→ := {S(I1), S(I2), ..., S(Iz)}.
[IP.3] Subspace search
Input: S(I1) ∈ S→; Ls : s ∈ I1; Output: updated CS∗N or the optimal solution
Since S(I1) is characterized by the highest upper bound, this subspace has the great-
est potential to contain the optimal coalition structure and, in IP, it is searched first.
This stage can be the most computationally expensive since it could ultimately involve
searching all subspaces (if none of them could be pruned). The challenge then lies in
avoiding the computation of invalid or redundant solutions. For example, the coalition
structure {{a1a2}, {a1a3}} is invalid as agent a1 appears in two coalitions. An algo-
rithm performs redundant calculations if, for instance, structure {{a1a2}, {a3a4}} is
searched twice, as {{a1a2}, {a3a4}} and {{a3a4}, {a1a2}}. [9] presents a technique
for cycling through only valid and unique coalition structures within any subspace. A
sample search for n = 6 and subspace [1, 2, 3] is depicted in Figure 2, a). Integers in
lists L1, L2 and L3 denote agents belonging to a coalition. Now, for every coalition of
size s = 1 from list L1,

(
6−1
2

)
= 10 coalitions from list L2 can be added to form a

partial structure. After this, there is only one remaining coalition from list L3 which
completes a coalition structure. In particular, for coalition {a1} from L1, there are 10
coalitions of size 2 which can be added (any one from {a2a3} to {a5a6}). For every
such two coalitions there a is unique coalition from L3 that completes the (proper)
structure. It is easy to check that there are altogether 60 proper coalition structures in
subspace [1, 2, 3]. In an attempt to avoid searching all such valid coalition structures,
[1] proposed a branch-and-bound technique that disregards some unpromising edges
between lists. Its functioning is depicted in Figure 2, b). Let {a1} be the currently con-
sidered coalition. If v({a1})+ Max2+ Max3 ≤ v(CS∗N) then searching all coalition
structures that start with {a1} can be avoided as it is not possible to add to this coali-
tion any two coalitions of size 2 and 3, respectively, so that the value of a coalition
structure improves upon the currently optimal solution CS∗N . This branch-and-bound
technique is used at any moment of constructing a coalition structure. Let {a4a6} be a
coalition added to {a5}. If v({a5})+ v({a4a6})+ Max3 ≤ v(CS∗N) then continuing
to construct the coalition structure can be skipped as in L3 there is no coalition that can
improve upon CS∗N . The process of subspace searching carries on to S(I2), S(I3), ...
until v(CS∗N) exceeds the upper bound of the next promising subspace.

3 Distributing the IP Algorithm

We desire our distributed algorithm, called D-IP, to meet the following requirements: all
processes should be decentralized; communication overhead should be low; redundant
computations should be avoided; computational load should be balanced; and resource

Fig. 2. Searching subspaces and branch and bound in IP

usage should be optimized. The key is to find a good balance between these require-
ments. Figure 3 shows the scheme of D-IP.
[D-IP.1] Distributed input generation and analysis As the DCVC algorithm is dis-
tributed, it constitutes a natural starting point for our distributed approach to the CSG
problem. However, we modify DCVC in such a way that it becomes meaningful in the
CSG context. In particular, agents can do the analysis phase independently and with
little communication.

In the DCVC algorithm, the space of all feasible coalitions is divided into n lists
L1, ..., Ln. Each of them contains values that correspond to coalitions of the same size
ordered lexicographically as proposed in [2] (see Figure 4). Now, from each list Ls

every agent computes a segment of size
⌊|Ls|

n

⌋
where |Ls| denotes a number of coali-

tions in the list. The DCVC includes an easily-implementable procedure that deals with
left-over coalitions that turn up when Ls is not exactly divisible by n.

In the original DCVC algorithm, segments in every list Ls are distributed by as-
signing the top segment to agent a1, the next segment to agent a2, etc. Whereas such a
distribution is natural and intuitive, it adds no value in the CSG context. This is because
agents are usually able to evaluate only a few coalition structures from segments that
are allocated to them. For instance, the first agent always calculates values for coalitions
from the top of every list. These coalitions are made of agents with the highest indices.
Clearly, a1 is not able to evaluate even a single proper solution from such shares. With
this in mind, we adapt DCVC as follows:

(a) The coalition space is divided in such a way that agents are able to evaluate all
coalition structures made of exactly two coalitions, i.e. {C, A\C} (as in centralized
IP); and

(b) Agents evaluate all coalition structures made of a coalition from their share and
singletons, i.e. {C, {j}j∈A\C}.

Regarding (a), for lists of sizes s = 1, ...,
⌊

n
2

⌋
agents are assigned segments of coali-

tions exactly in the same way as in [2]. However, in lists indexed s = n−
⌊

n
2

⌋
, ..., n−1

Fig. 3. Scheme of the D-IP algorithm

we assign segments in a reverse order. Due to this change, each agent is able to calcu-
late values of coalition structures made of (i) a coalition of size s and (ii) a coalition
of size n − s. The example of the distribution for a system of 6 agents is shown in
Figure 4. Now, agent a1 is able to match coalitions of size 1 and 2 with coalitions of
size 6 − 1 = 5 and 6 − 2 = 4 to create coalition structures {{a6}, {a1a2a3a4a5}},
{{a5a6}, {a1a2a3a4}} and {{a4a6}, {a1a2a3a5}}. The middle list L3 is also divided
in such a way that agents are able to construct proper coalition structures. For instance,
a1 calculates coalitions {a4a5a6}, {a3a5a6}, {a1a2a3} and {a1a2a4} and evaluates
{{a1a2a3}, {a4a5a6}} and {{a1a2a4}, {a3a5a6}}.

Regarding (b), agents distribute between themselves values of singletons at the be-
ginning of computations, i.e. just after list L1 has been calculated. Thus, all agents, after
calculating a value of coalitionC are able to evaluate a coalition structure {C, {j}j∈A\C}.
For instance, agent a1, after calculating v({a5a6}), evaluates {{a5a6}, {a1}, {a2}, {a3},
{a4}}.

Our distribution has very interesting anytime properties. As shown by [3], evalua-
tion of all coalition structures of types {C,A\C}, together with the grand coalition and
the coalition structure made only of singletons, guarantees that the highest value found
is not less than 2/n of the optimal solution. Therefore, our adapted DCVC becomes
meaningful in the CSG context and, at the same time, preserves all key features of the
original algorithm: (i) communication is marginal as the entire distribution process is
completely decentralized (only values of singleton coalitions have to be transmitted
between agents); (ii) computational load is balanced and virtually no redundant calcu-
lations are performed.6

6 Computational load is balanced under the assumption that calculation of coalitions of the same
size always takes the same amount of time. The only redundant calculations performed regard

Fig. 4. Adapted DCVC: 6-agent example

Communication Stage 1: To determine promising subspaces, agents calculate UBI

and LBI , as defined in (1), for every S(I). To do this, they need to know Maxs and
Avgs for all s. But since the calculation of input is distributed, each agent knows only
some segments of values within lists. Thus, agents transmit between themselves the
following data: (i) the maximum and average value of any segments as well as left-over
values they computed; and (ii) the best solution found thus far CS∗N (ai).
[D-IP.2] Parallel subspace and bounds generation From data transmitted above, ev-
ery agent is able to independently compute Maxs and Avgs of every list and, conse-
quently, UBI and LBI for every S(I) as well as the system’s lower bound
max{v(CS∗N (ai)), LBI}.
Communication Stage 2 To search any subspace S(Ik) ∈ S→, agents have to ex-
change the coalition values in all lists of sizes s ∈ Ik. Since these lists can be extremely
long, i.e. up to

(
n
bn/2c

)
, we apply pre-processing techniques to determine a priori which

coalitions cannot be in an optimal coalition structure; and hence, do not have to be
exchanged with other agents. We apply the following filter rule:

Definition 1 (FR1) If the value of a coalition C is smaller than the combined value of
single agents who belong to C then this coalition is said to be unpromising.

For instance, if v({a1a2}) < v({a1}) + v({a2}) then, clearly, {a1a2} cannot be a
part of the optimal solution because it is always more efficient to split this coalition. The
effectiveness of FR1 depends on the value of single agents w.r.t. values of coalitions.
Although, for both Normal and Uniform distributions of coalition values this rule will
filter, on average, 50% of all the coalitions, in the worst case, not even one coalition
may be classified as unpromising. Consequently, we propose the second filter rule:

coalition structure made of only singletons. Specifically, every agent calculates this coalition
structure by itself.

Definition 2 (FR2) Coalition C : |C| ∈ Ik for some subspace S(Ik) is said to be
unpromising if

v(C) + UBIk
−Max|C| ≤ v(CS∗N). (2)

The logic behind FR2 in (2) is as follows: instead of using the maximum of a given
list L|C| in computing UBIk

we use the exact value of a given coalition C from list
L|C|. Thus, we obtain the tighter bound on all the coalition structures that belong to
S(Ik) and contain coalition C. If this new bound is smaller than CS∗N then coalition C
cannot improve upon the current result, i.e.C is unpromising in a given subspace S(Ik).
Conceptually, FR2 is similar to the branch-and-bound technique of [1]. However, there
are two important differences. Firstly, FR2 is applied to all coalitions in a subspace
and not only to those encountered during the search process. Secondly, it is applied not
during but before the search of a subspace.

All coalitions which satisfy FR1 or FR2 do not have to be transferred. Both rules
are used to filter lists that belong to subsequently searched subspaces. The key question
is whether any coalition that has been rendered unpromising for one subspace can be
promising in another subspace. For FR1 this is, obviously, not possible as this rule is
independent of a subspace. But FR2 depends on the current subspace S(Ik). Thus, at
first sight, it seems possible that a coalition rendered unpromising in the context of one
subspace might be still promising if it is combined with other types of coalitions from
another subspace. However, against this intuition the following theorem holds.

Theorem 1. Let S(Ik<m) ∈ S→ be the currently most promising subspace and let
s ∈ Ik ∩ Im. If any coalition C from list L|C| such that |C| ∈ Ik, is unpromising in
subspace S(Ik), due to FR2, then it will always be unpromising in subspace S(Im>k)
such that |C| ∈ Im.

Proof 1 Let CS∗N , CS
∗∗
N be the current best solutions before searching Ik and Im>k,

respectively. Clearly, v(CS∗N) ≤ v(CS∗∗N). Suppose coalition C from list L|C|∈Ik
is

unpromising in Ik, i.e. v(C) + UBIk
−Max|C| ≤ v(CS∗N). From the definition of

S→, UBIm ≤ UBIk
. Thus, v(C) + UBIm −Max|C| ≤ v(C) + UBIk

−Max|C| ≤
v(CS∗N) ≤ v(CS∗∗N), which gives FR2 condition (2) for coalition C that holds in
subspace Im. �

Theorem 1 implies that after promising coalitions from a list have been transferred,
no coalition from this list will have to be transferred again.7

D-IP.3 Balancing computational load Considering the search method presented in
Figure 2, it is natural to assume that agents allocate work by dividing among them-
selves the first list of a subspace. For instance, for n = 6 let the subspace to search be
S(Ik = [1, 2, 3]). Referring to segments in Figure 4, agent a1 would be responsible for
calculating all coalition structures that start with coalition {a6}, a2 for coalition struc-
tures starting with {a5}, etc. Since each list is divided into n segments of the same size,
then without branch-and-bound technique each agent would have to search exactly the
same number of coalition structures. However, the division of this list, as in Figure 4,

7 Of course, FR2 can be still applied by individual agents to filter additional coalitions from lists
that have already been transferred.

Fig. 5. Different ways to search {4, 7, 14}.

is no longer reasonable due to the filter rule pre-processing. In particular, we cannot as-
sume that the same number of coalitions will be filtered out from all agents’ segments.
Thus, we calculate the segments again, however, now only for the promising elements
in the first list of every subspace.8 When the search progresses further into the subspace,
branch and bound is going to prune away unpromising search directions (see Figure 2
b), possibly more for some agents than for others. Then, the search process becomes
irregular and another, dynamic load balancing policy has to be applied. We propose the
following easily-implementable technique that turns out to be comparatively effective
in empirical evaluation.
Computational load balancing protocol An agent that has just finished its calcula-
tions sends a signal to another agent with a randomly chosen index. If the second agent
is still in the process of calculation then it answers with a partial coalition structure
that shows the current progress of search in his assignment. Then, this assignment is
split between both agents into two (nearly equal) parts.

4 Improved Space-Search Method

In IP coalition structures are constructed using coalitions of ascending size. However,
this process can be also performed with an another order. For instance, in Figure 2 I
can be defined as [3, 2, 1] or [2, 3, 1], not [1, 2, 3]. If branch and bound (and filtering)
is not used, then the order of the lists in a subspace does not matter, since all the cor-
rect combinations of the coalitions into structures are considered in every case, just in
different order. Yet, if branch and bound is active, the earlier it stops a construction
of a structure the better because more work is saved. This is demonstrated in Figure 2
b). Branch and bound applied in the first list prunes away 10 search direction, whereas
branch and bound applied in the second list prunes only single one. Thus, more prof-
itable are these orders in which branch and bound is more effective for early lists, i.e.,
in which it dismisses higher percent of values from early lists.

Now, FR2 not only reduces communication load but it can be also used to predict
the effectiveness of the branch and bound. This prediction is more accurate for first lists
in a given subspace and less accurate for the last lists. In fact, if the first list of a subspace
is concerned, FR2 and branch and bound dismiss exactly the same coalitions. In other
words, this prediction is perfect. Yet, for the second list all the coalitions filtered out
by FR2 would be also dismissed by branch and bound but branch and bound may be

8 The number of not filtered coalitions in the first list is divided by the number of agents. Left-
over coalitions are then distributed in the same way as in DCVC.

more effective and dismiss some further coalitions. This is because from the first list it
considers a concrete value and not the maximum as FR2 does (compare Figure 2 b) to
formula (2)). Although, following the same reasoning, for the third and later lists such
a prediction is even less accurate, we neglect these differences as being marginal. What
we keep in mind is that FR2 predicts a higher bound on the effectiveness of branch and
bound in a given list. As the order of a subspace we choose such that the percentage
of unpromising coalitions is the highest for the first list, the second highest for the
second list and so on. This ensures that branch and bound is nearly the most effective
as it prunes away the biggest parts of the subspace at very early stages. We call this an
improved order of constructing coalition structures in a given subspace.

The following example demonstrates that the gains from the improved order can
be substantial. Figure 5 is based on simulations results for n = 25 and coalition val-
ues drawn from the normal distribution. Both rules determined that the proportions
of promising coalitions in L4, L7, and L14, are ρ(4) = 0.05, ρ(7) = 0.00021 and
ρ(14) = 0.00009, respectively. Order [4, 7, 14] yields the expected number of about 73
millions edges (Figure 5 a) between L4 and L7. This number is obtained by multiply-
ing the number of promising coalitions in L4, i.e. |L4|ρ(4), by the number of edges
between one coalition in L4 and L7. At the same time, order [14, 7, 4] yields only about
140 thousands edges (Figure 5 b)! Clearly, it is much more efficient to start search from
the promising coalitions in L14 than from these in L4.

5 Experimental Evaluation

In this section, we evaluate the performance of the D-IP algorithm that we implemented
using JADE (Java Agent DEvelopment Framework).9 In this framework, the informa-
tion, the initiative and the resources can be fully distributed between mobile or fixed
terminals. Specifically, 14 Intel Core 2 Duo, 2.0 GHz workstations connected by a 1Gb
Ethernet network were used to simulate a maximum of 28 agents (each agent runs on
one core).

Following, among others [3], [1], we consider two probability distributions of coali-
tion values:

(N) Normal: v(C) = max(0, |C| × p), for p ∈ N(1, 0.1);
(U) Uniform: v(C) = max(0, |C| × p), for p ∈ U(0, 1);

We focus on the main contributions of this paper. The second/fifth column in Figure
6 presents the effectiveness of filter rules as a percentage of coalition input exchanged
by agents. To show the effectiveness of our distributed approach we compare D-IP
(without an improved order) to the potential ideal distributed IP algorithm, i.e. to the
situation when IP would be distributed without cost. In other words, in the third/sixth
column we compare running time of D-IP (without an improved order) to running time
of IP divided by n. Finally, let us denote by IP+ the IP algorithm with added improved
search space method. The forth/seventh column shows the relative performance of IP+
w.r.t. IP.

9 See http://jade.tilab.com.

Fig. 6. Results of numerical simulations

As can be seen, the filter rules significantly reduce the number of coalitions to be
transferred. For the normal distribution this is, on average, less than 1% for n = 26. For
the uniform distribution these results are even better. For instance, for n = 26, from 67
millions of coalitions that would have to be transferred without filter rules only about
9000 are usually determined to be promising! The improved search space method is
the most effective for the normal distribution, when it speeds up IP by a factor of 35.
However, it does not offer much of an improvement for the uniform distribution. This
is because, due to the nature of this distribution, FR1 and FR2 remove nearly the same
proportion of coalitions from every list.10 Consequently, the original ascending order in
IP is nearly optimal. In fact, all orders deliver similar results for the uniform distribution.

Our distributed approach, due to significant reductions in communication load and
computational load balancing policy, is, for the normal distribution, slower than the
ideal distributed IP only by a factor of 3.1. This happens when we do not take into
account the improved space search method. However, if we run the full version of D-IP,
then, for the normal distribution, our algorithm is about 12 times faster than the ideal
distributed IP! Furthermore, for the uniform distribution, the performance of D-IP is
slower than the ideal only by a factor of 2.5. This may be attributed to much lower
communication load. On the other hand, as observed earlier, the improved space search
method cannot enhance the result for this distribution.

6 Conclusions

In this paper we proposed a novel, distributed approach to coalition structure genera-
tion. We build upon both the DCVC algorithm in [2] and the anytime centralized IP
algorithm in [1]. Numerical simulations show that our algorithm significantly limits
transfer load between agents and efficiently takes advantage of the distributed comput-
ing. Importantly, some our ideas can be successfully applied to the centralised version
of the algorithm and may significantly improve its performance.

The sketch of proof of correctness of IP can be found in [1]. Two issues should
be additionally considered w.r.t. our distribution: filter rules and balancing of compu-
tational load. Since filter rules remove only such coalitions that cannot be a part of
an optimal solution they do not affect the outcome of the search process. The same

10 See the discussion in the previous section.

concerns balancing of computational load. As the procedure of splitting the search as-
signment follows the way in which IP constructs coalition structures, no solution to be
checked is omitted.

Our distributed approach can also be extended to the IDP-IP algorithm. In short,
following dynamic programming principle, this algorithm checks for all coalitions of
size m < n, what are their most profitable splits into smaller coalitions. This allows us
to avoid searching many subspaces that contain not optimal splits as the optimal ones
are already known (see [8] for more details). Remaining subspaces are searched in the
same way as in IP. In general, the bigger m the fewer subspaces must be searched. The
challenge to distribute IDP-IP lays in performing the initial splits of coalitions from
Lm. To do this, agents need to know values of all coalitions in lists Lj<m which have
to be transmitted after the input is generated. Thus, in the distributed version of IDP-
IP there is a trade-off between transmission of initial lists of coalitions and number of
subspaces to search later on. Interestingly FR1 can be still applied to reduce number of
transmitted coalitions. Importantly, both the filter rules as well as the improved proce-
dure of searching subspaces can be used in the search phase of the IDP-IP algorithm as
it exactly corresponds to the search in IP.

References

[1] Rahwan, T., Ramchurn, S.D., Giovannucci, A., Dang, V.D., Jennings, N.R.: Anytime optimal
coalition structure generation. In: AAAI-07. (2007) 1184–1190

[2] Rahwan, T., Jennings, N.R.: An algorithm for distributing coalitional value calculations
among cooperative agents. Artificial Intelligence (AIJ) 171(8–9) (2007) 535–567

[3] Sandholm, T.W., Larson, K., Andersson, M., Shehory, O., Tohme, F.: Coalition structure
generation with worst case guarantees. Artificial Intelligence 111(1–2) (1999) 209–238

[4] Rahwan, T., Jennings, N.R.: An improved dynamic programming algorithm for coalition
structure generation. In: AAMAS-08. (2008)

[5] Yeh, D.Y.: A dynamic programming approach to the complete set partitioning problem. BIT
Numerical Mathematics 26(4) (1986) 467–474

[6] Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artificial
Intelligence 101(1–2) (1998) 165–200

[7] Sombattheera, C., Ghose, A.: A best-first anytime algorithm for computing optimal coalition
structures. In: AAMAS ’08. (2008)

[8] Rahwan, T., Jennings, N.R.: Optimal coalition structure generation: Anytime optimization
meets dynamic progamming. In: AAAI-08. (2008)

[9] Rahwan, T., Ramchurn, S.D., Dang, V.D., Jennings, N.R.: Near-optimal anytime coalition
structure generation. In: IJCAI-07. (2007) 2365–2371

