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Abstract

In this paper we propose DFL� a formal, graphical work�ow language for data�ows,
i.e., work�ows where large amounts of complex data are manipulated, and the struc-
ture of the manipulated data is re�ected in the structure of the work�ow. It is a
common extension of (1) Petri nets, which are responsible for the organization of
the processing tasks, and (2) nested relational calculus, which is a database query
language over complex objects, and is responsible for handling collections of data
items (in particular, for iteration) and for the typing system. We demonstrate that
data�ows constructed in a hierarchical manner, according to a set of re�nement rules
we propose, are semi-sound , i.e., initiated with a single token (which may represent
a complex scienti�c data collection) in the input node, terminate with a single token
in the output node (which represents the output data collection). In particular they
never leave any �debris data� behind and an output is always eventually computed
regardless of how the computation proceeds.
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1 Introduction

In this paper we are concerned with the creation of a formal language to de-
�ne data�ows � DFL (a DataFlow Language). Data�ows are often met in
practice, e.g., in silico experiments in bioinformatics and systems processing
data collected in physics, astronomy or other sciences. Their common feature
is that large amounts of structured data are analyzed by a software system
organized into a kind of network, through which the data �ows and is pro-
cessed. Nodes in the network represent external computations like web-service
or local program calls.

There are well-developed formalisms for work�ows that are based on Petri
nets [1]. However, we claim that for data�ows these should be extended with
data manipulation aspects to describe work�ows that manipulate structured
complex values and where the structure of this data is re�ected in the structure
of the work�ow. For this purpose we adopt the data model from the nested
relational calculus, which is a well-known and well-understood formalism in
the domain of database theory.

Consequently, in a data�ow, tokens (which are generally assumed to be atomic
in work�ows) are typed and transport complex data values. Therefore, apart
from classical places and transitions, we need transitions which perform oper-
ations on such data values. Of course, the operations are those of the nested
relational calculus.

The resulting language can be given a graphical syntax, thus allowing one to
draw rather than to write programs. This seems very important for a language
designed for users that are not professional computer scientists.

Next, we can give a formal semantics for data�ows. This is crucial, since we
believe that formal, and yet executable, descriptions of all computational pro-
cesses in the sciences should be published along with their domain-speci�c
conclusions. Used for that purpose, data�ows can be precisely analyzed and
understood, which is important for: (i) debugging by the authors, (ii) e�ec-
tive and objective assessment of their merit by the reviewers, and (iii) clear
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understanding by the readers, once published.

Moreover, the formal semantics makes it possible to perform formal analysis
of the behavior of programs, including (automated) optimization and veri�ca-
tion.

We demonstrate the potential of the formal methods by proving the following
theorem, presented here in an informal manner.

Theorem. Data�ow constructed hierarchically, i.e., according to a certain set
of re�nement rules we propose, is semi-sound, i.e., initiated in the input node
with a single token representing a scienti�c data collection, terminate with a
single token in the output node. In particular it never leaves any �debris data�
behind and the output is always eventually computed, regardless of how the
computation proceeds.

We would like to emphasize that the above theorem is quite general � it
applies uniformly to a very wide class of data�ows. Yet, not every meaning-
ful data�ow can be constructed hierarchically. However, we believe that the
prevailing majority of those met in practice are indeed hierarchical.

Our idea of extending classical Petri nets is not new in general. Colored Petri
nets [11] permit tokens to be colored (with �nitely many colors), and thus to-
kens carry some information. In the nets-within-nets paradigm [20] individual
tokens have Petri net structure themselves. This way they can represent ob-
jects with their own, proper dynamics. Finally, self-modifying nets [19] assume
standard tokens, but permit the transitions to consume and produce them in
quantities functionally dependent on the occupancies of the places.

To compare, our approach assumes tokens to represent complex data values,
which are however static. The transitions are allowed to perform operations on
the tokens' contents. Edges can be annotated with conditions and pass only
tokens which values satisfy those conditions. There is also a special unnest/nest
annotation. When unnest is applied to an output edge of a transition, the
output token with a set value is transformed into a set of tokens, one for each
element of the set. When nest is applied to an input edge of a transition, the
set of tokens is grouped back into a single �composite� token.

Also the introduction of complex value manipulation into Petri nets was al-
ready proposed by others. Oberweis and Sander [13] proposed a formalism
called NR/T-nets where places represent nested relations in a database schema
and transitions represent operations that can be applied to the database. Al-
though somewhat similar, the purpose of that formalism, i.e., representing
the database schema and possible operations on it, is very di�erent from the
one presented here. For example, the structure of the Petri net in NR/T-nets
does not re�ect the work�ow, but only which relations are involved in which
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operations. In our DFL formalism, we can easily integrate external functions
and tools as special transitions and use them at arbitrary levels of the data
structures. The latter is an important feature for describing and managing
data�ows as found in scienti�c settings. Therefore we claim that, together
with other di�erences, this makes DFL a better formalism for representing
data�ows.

An initial version of DFL and the set of re�nement rules was presented in [10].
This paper extends that work by giving more elaborate proofs and explaining
the semantics of the language in more detail.

1.1 Nested relational calculus

The nested relational calculus (NRC) [5] is a query language allowing one to
describe functional programs using collection types, e.g., lists, bags, sets, etc.
The most important feature of the language is the possibility to iterate over a
collection. NRC assumes a set of base types which can be combined to form
nested record and collection types. The only collection type we will use are
sets.

Besides standard language constructs enabling manipulation of records and
sets, NRC contains the three constructs sng, map and �atten. For a value
v of a certain type, sng(v) yields the singleton set containing v. Operation
map, applied to a function of type τ → σ, yields a function on sets of type
{τ} → {σ}. Finally, the operation �atten, given a set of sets of type τ , yields
a �attened set of type τ , by taking the union. These three basic operations
are powerful enough for specifying functions by structural recursion over col-
lections [5].

Under its usual semantics the NRC can already be seen as a data�ow descrip-
tion language, but it only describes which computations have to be performed
and not in what order, i.e., it is rather weak in expressing control �ow. For
some data�ows this order can be important because a data�ow can include
calls to external functions, such as Web services, which may have side-e�ects
or are restricted by a certain protocol.

1.2 Petri nets

A classical Petri net [12,17] is a bipartite graph with two types of nodes called
places and transitions. The nodes are connected by directed edges. Only nodes
of di�erent types can be connected. Places are represented by circles and
transitions by rectangles.
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De�nition 1 (Petri net) A Petri net is a triple 〈P, T,E〉 where:

• P is a �nite set of places,
• T is a �nite set of transitions (P ∩ T = ∅),
• E ⊆ (P × T ) ∪ (T × P ) is a set of edges.

A place p is called an input place of a transition t, if there exists an edge from p
to t. A place p is called an output place of a transition t, if there exists an edge
from t to p. Given a Petri net 〈P, T, E〉 we will use the following notations:

•p = {t | 〈t, p〉 ∈ E} p• = {t | 〈p, t〉 ∈ E}
•t = {p | 〈p, t〉 ∈ E} t• = {p | 〈t, p〉 ∈ E}
◦p = {〈t, p〉 | 〈t, p〉 ∈ E} p◦ = {〈p, t〉 | 〈p, t〉 ∈ E}
◦t = {〈p, t〉 | 〈p, t〉 ∈ E} t◦ = {〈t, p〉 | 〈t, p〉 ∈ E}

and their generalizations for sets:

•A =
⋃

x∈A

•x A• =
⋃

x∈A

x•

◦A =
⋃

x∈A

◦x A◦ =
⋃

x∈A

x◦

where A ⊆ P ∪T . Places are stores for tokens, which are depicted as black dots
inside places when describing the run of a Petri net. Edges de�ne the possible
token �ow. The semantics of a Petri net is de�ned as a transition system. A
state is a distribution of tokens over places. It is often referred to as a marking
M ∈ P → (N ∪ {0}). The state of a net changes when a transitions �res. For
a transition t to �re it has to be enabled, that is, each of its input places has
to contain at least one token. If transition t �res, it consumes one token from
each of the places in •t and produces one token on each of the places in t•.

Petri nets are a well-founded process modeling technique. The interest in them
is constantly growing for the last �fteen years. Many theoretical results are
available. One of the better studied classes are work�ow nets, which are used
in work�ow management [1].

De�nition 2 (strongly connected) A Petri net is strongly connected if and
only if for every two nodes n1 and n2 there exists a directed path leading from
n1 to n2.

De�nition 3 (work�ow net) A Petri net PN = 〈P, T,E〉 is a work�ow net
if and only if:

(i) PN has two special places: a source and a sink. The source has no input
edges, i.e., ◦source = ∅, and the sink has no output edges, i.e., sink◦ = ∅.

(ii) If we add to PN a transition t∗ and two edges 〈sink, t∗〉, 〈t∗, source〉, then
the resulting Petri net is strongly connected.
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1.3 How we combine NRC and Petri nets

In this paper we propose a formal, graphical work�ow language for data�ows
� data-centric, scienti�c work�ows. We call the proposed language DFL. From
NRC we inherit the set of basic operators and the type system. This should
make reusing of existing database theory results easy. Data�ows could for
example undergo an optimization process as database queries do. To deal with
the synchronization issues arising from processing of the data by distributed
services we will use a Petri-net based formalism which is a clear and simple
graphical notation and has an abundance of correctness analysis results. We
believe that these techniques can be reused and combined with known results
from database theory for verifying the correctness of data�ows which can be
described in DFL.

The fundamental operation in NRC is the map operation map. In order to
allow a similar kind of iteration in Petri nets we introduce special unnest and
nest edges. Unnest edges are outgoing edges of transitions and nest edges are
incoming edges. Unnest edges can be used if the function associated with the
transition produces a set value. If an outgoing edge is marked as an unnest
edge then, if the transition �res, instead of producing in the associated place
a single token with the set that is the result of the transition, it will produce
a set of tokens, one for each element of the set. Nest edges can be used if the
function associated with the transition requires a set value as a parameter. If
an incoming edge is marked as a nest edge then, if the transition �res, instead
of consuming from the associated place a single token with a set value, it will
consume a set of tokens and combine them into a single set that is used as the
parameter of the function.

A simple example with a nested iteration is given in Fig. 1. If the data�ow is
initiated in the left most place with a token representing a set of sets, it will be
processed by the identity transition id and unnested. Next, the resulting tokens
representing sets that were elements of the input set are unnested themselves
by the second pair of identity transition and unnest edge. Finally, function
f() is applied to each of the elements of the unnested subsets and the result is
twice nested by two subsequent identity transitions with nest edges. To assure
that tokens originating from di�erent sets are not intermixed while nesting
and that nesting appears only when all the necessary tokens have arrived,
each token carries its unnesting history, which is described in subsection 4.1.

The unnest and nest edges allow a straightforward representation of the NRC
map operation in a Petri net formalism and make it possible to re�ect the
structure of the iteration in the structure of the net, which is desired for data-
centric work�ows.
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id id f() id id∗ ∗ ∗ ∗

{{x, y}, {x}}

id id f() id id∗ ∗ ∗ ∗

  {x}{x, y}

id id f() id id∗ ∗ ∗ ∗

x yx

id id f() id id∗ ∗ ∗ ∗

f(x) f(y) f(x)

id id f() id id∗ ∗ ∗ ∗

{f(x), f(y)} {f(x)}

id id f() id id∗ ∗ ∗

{{f(x), f(y)}, {f(x)}}

∗

Figure 1. Nested iteration example

2 The DFL language

We de�ne DFL by starting with Petri nets and adding labels to transitions to
de�ne the computation done by them. Then we associate NRC values with the
tokens to represent the manipulated data. As it is usual with work�ows that
are described by Petri nets we mandate one special input place and one special
output place. If there is external communication, this is modeled by transitions
that correspond to calls to external functions. We use edge labeling to de�ne
how values of the consumed tokens map onto the parameters of operations
represented by transitions. To express conditional behavior we propose edge
annotations indicating conditions that the value associated with a token must
satisfy, so it can be transferred through the annotated edge. We also introduce
a special unnest/nest annotation, to enable explicit iteration over values of a
collection.

A data�ow will be de�ned by an acyclic work�ow net, transition labeling,
edge labeling, and edge annotation. The underlying Petri net will be called a
data�ow net.

De�nition 4 (data�ow net) A DFN = 〈P, T,E, source, sink〉 is a data�ow
net if and only if:

(i) 〈P, T,E〉 is a work�ow net and is acyclic,
(ii) source ∈ P is the source place,
(iii) sink ∈ P is the sink place.
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The restriction to acyclic nets is introduced to keep the presentation of the
main ideas simple. The formalism can be easily extended such that cycles
are allowed. Usually they are used to express iteration over all elements of a
list, but for this type of iteration we will introduce alternatives in the form
of constructs for unnesting and nesting values. Obviously this does not cover
all types of iteration, but we conjecture that it is su�cient for the purpose of
scienti�c data�ows. In addition, an advantages of the restriction is that the
termination is always guaranteed, but note that termination does not ensure
correct termination, i.e., termination with only one token left which is in the
sink and contains the output value.

2.1 The type system

Data�ows are strongly typed, which here means that each transition consumes
and produces tokens with values of a well determined type. The type of the
value of a token is called the token type. We will identify a type and the set of
objects of that type. The type system is similar to that of NRC. We assume a
�nite but user-extensible set of basic types which might for example be given
by:

b ::= boolean | integer | string | XML

where the type boolean contains the boolean values true and false, integer
contains all integer numbers, string contains all strings and XML contains all
well-formed XML documents. Although this set can be arbitrarily chosen we
will require that it at least contains the boolean type. Assuming that the non-
terminal l denotes the set of �eld labels, from these basic types we can build
complex types as de�ned by:

τ ::= b | 〈l : τ, ..., l : τ〉 | {τ}

The type 〈l1 : τ1, ..., ln : τn〉, where li are distinct labels, is the type of all
records having exactly �elds l1, ..., ln of types τ1, ..., τn respectively (records
with no �elds are also included). Finally {τ} is the type of all �nite sets of
elements of type τ . For later use we de�ne CT to be the set of all complex
types and CV the set of all possible complex values.

NRC can be also de�ned on other collection types such as lists or bags. More-
over they are included in existing scienti�c work�ow systems, for example
Taverna [15] supports lists. However, after a careful analysis of various use
cases in bioinformatics and examples distributed with existing scienti�c work-
�ow systems we have concluded that sets are su�cient.
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2.2 Edge naming function

Data�ows are not only models used to reason about data-processing exper-
iments but are meant to be executed and produce computation results. In
particular, when a transition has several input edges, we need a way to distin-
guish those, so as to know how the tokens map onto the operation arguments.
This is solved by edge labeling. Only edges leading from places to transi-
tions are labeled. This labeling is determined by an edge naming function
EN : ◦T → EL (note that ◦T = P◦), where EL is some countably in�nite
set of edge label names, e.g., all strings over a certain non-empty alphabet.
The function EN is injective when restricted to incoming edges of a certain
transition, i.e., there cannot be two distinct incoming edges with the same
edge label for the same transition.

2.3 Transition naming function

To specify the desired operations and functions we also label the transitions.
The transition labeling is de�ned by a transition naming function TN : T →
TL, where TL is a set of transition labels. Each transition label determines
the number and possible labeling of input edges as well as the types of tokens
that the transition consumes and produces when it �res. For this purpose the
input typing and output typing functions are used: IT : TL → CT maps
each transition label to the input type which must be a tuple type, and OT :
TL → CT maps each transition label to the output type. Note that these two
functions are at the global level in the sense that they are the same for every
data�ow and therefore not part of the data�ow itself. This is similar to the
signatures of system functions which are not part of a speci�c program. For
detailed speci�cation of transition labels see section 3.

2.4 Edge annotation function

To introduce conditional behavior we annotate edges with conditions. If an
edge is annotated with a condition, then it can only transport tokens that
satisfy the condition. Conditions are visualized on diagrams in UML [14] fash-
ion, i.e., in square brackets. Only edges leading from places to transitions
are annotated with conditions. There are four possible condition annotations:
�=true�, �=false�, �=∅�, � 6=∅�. Their meaning is self-explanatory. For detailed
speci�cation see section 4.

There is another annotation �∗� used to indicate a special unnest/nest branch.
On diagrams it is visualized by addition of the symbol �∗� in the middle of the
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edge. This annotation can occur on edges leading from transitions to places
as well as on edges from places to transitions. When an edge leading from a
transition to a place is annotated in such manner, it means that a set value
produced by this transition is unnested. That is, instead of inserting a token
with a set value into the destination place, a set of tokens representing each
element in the set value gets inserted. Such edges will be called unnest edges.
When an edge leading from a place to a transition is annotated in such manner,
it means that in order to �re the destination transition a set of tokens that
originated from unnesting of some set value will be used. That is, a set of
tokens that originated from unnesting of some set value will be consumed and
a set of their values will be an input data for the destination transition. Such
edges will be called nest edges. The precise semantics and explanation of the
mechanism that is used to make sure that all the tokens that originated from
unnesting of some set value are already there is described in section 4.

The annotations are de�ned by an edge annotation function:

EA : (◦T → {�=true�, �=false� , �=∅� , � 6=∅� , �∗�, ε}) ∪ (◦P → {�∗�, ε}),

where ε indicates the absence of an annotation.

2.5 Place type function

With each place in a data�ow net we associate a speci�c type that restricts
the allowed values for tokens in that place. This is represented by a place type
function PT : P → CT .

2.6 Data�ow

The data�ow net with edge naming, transition naming, edge annotation and
place typing functions speci�es a data�ow.

De�nition 5 (data�ow) A data�ow is a �ve-tuple 〈DFN, EN, TN, EA, PT 〉
where:

• DFN = 〈P, T, E, source, sink〉 is a data�ow net,
• EN : ◦T → EL is an edge naming function such that for each transition t
the partial function EN |◦t is injective,

• TN : T → TL is a transition naming function,
• EA : (◦T → {�=true�, �=false�, �=∅�, � 6=∅�, �∗�, ε}) ∪ (◦P → {�∗�, ε}) is
an edge annotation function,

• PT : P → CT is a place type function.
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In order to ensure that the di�erent labelings and annotations in a data�ow
are consistent, we introduce the notion of legality. Informally, a data�ow is
legal, if for each transition t: (1) the input edge labels and the types of their
corresponding places, with the nest edges taken into account, de�ne the input
type of t; (2) if any of the input edges of t are annotated with conditions, then
the annotations are consistent with the types of the associated input places;
(3) if an output edge of t is not an unnest edge, then the type of the connected
place is equal the output type of t, but if an output edge of t is an unnest
edge, then the output type of t is a set type and the type of the connected
place is equal to the element type of this set type.

De�nition 6 (legal) A data�ow 〈DFN, EN, TN, EA, PT 〉 is legal if and
only if each transition t ∈ T satis�es the following:

(1) if {〈p1, t〉, ..., 〈pn, t〉} = ◦t and for 1 ≤ i ≤ n we have

li = EN(〈pi, t〉) and τi =

PT (pi) if EA(〈pi, t〉) 6= �∗�
{PT (pi)} if EA(〈pi, t〉) = �∗�

then IT (TN(t)) = 〈l1 : τ1, ..., ln : τn〉,
(2) for each 〈p, t〉 ∈ ◦t:

• if EA(〈p, t〉) ∈ {�=true�, �=false�}, then PT (p) = boolean, and
• if EA(〈p, t〉) ∈ {�=∅�, � 6=∅�}, then PT (p) is a set type,

(3) for each 〈t, p〉 ∈ t◦:
• if EA(〈t, p〉) 6= �∗�, then OT (TN(t)) = PT (p), and
• if EA(〈t, p〉) = �∗�, then OT (TN(t)) = {PT (p)}.

Henceforth, data�ows will always be assumed to be legal. Legality is an easy
syntactic check.

An example data�ow representing an if u = v then f(x) else g(x) expression
is shown in Fig. 2. Although the transition labels and a precise execution
semantics are de�ned in the next two sections, the example is self-explanatory.
First, three copies of the input tuple of type 〈u : b, v : b, x : τ〉 are made. Then,
each copy is projected on another �eld, basic values u and v are compared,
and a choice of upper or lower data�ow branch is made on the basis of the
boolean comparison result. The boolean value is disposed in a projection and
depending on the branch that was chosen either f(x) or g(x) is computed.

id

π[u]

π[v]

π[x]

=
〈⋅,⋅〉

             [=false]

〈⋅,⋅〉

            [=true]

π[x]

π[x]

g()

f()

Figure 2. If-then-else example
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3 Transition labels

Since it is impossible to gather all scienti�c analysis tools that one may want to
use and data repositories that one may want to query, DFL de�nes only a core
label subset that is su�cient to express typical operations on the values from
our type system. Similarly to NRC, DFL can be extended with new extension
transition labels. Such extension labels will usually represent computations
done by external services. Examples from the domain of bioinformatics include:
sequence similarity searches with BLAST [2], queries to the Swiss-Prot [4]
protein knowledgebase, or local enactments of the tools from the EMBOSS [18]
package.

3.1 Core transition labels

The core transition labels are based on the NRC operator set and are shown
in Table 1. A transition label is de�ned as a combination of the basic symbol,
from the �rst column, and a list of parameters which consists of types and
edge labels, from the second column. The values of the input type function
IT and the output type function OT are given by the last two columns. For
example, a concrete instance of the tuple constructor label, i.e., a constructor
label with concrete parameter values, would be tl′ = 〈·, ·〉a,bool,b,int where the
parameters are indicated in subscript and for which the functions IT and OT
are de�ned such that IT (tl′) = OT (tl′) = 〈a : bool, b : int〉. Another example
would be tl′′ = π[b]a,b,bool,c,int, where IT (tl′′) = 〈a : 〈b : bool, c : int〉〉 and
OT (tl′′) = bool.

Table 1
Core transition labels

Sym. Parameters Operation name Input type Output type

∅ l, τ1, τ2 empty-set constr. 〈l : τ1〉 {τ2}

{·} l, τ singleton-set constr. 〈l : τ〉 {τ}

∪ l1, l2, τ set union 〈l1 : {τ}, l2 : {τ}〉 {τ}

ϕ l, τ �atten 〈l : {{τ}}〉 {τ}

× l1, τ1, l2, τ2 Cartesian product 〈l1 : {τ1}, l2 : {τ2}〉 {〈l1 : τ1, l2 : τ2〉}

= l1, l2, b atomic-value equal. 〈l1 : b, l2 : b〉 boolean

〈〉 l, τ empty tuple constr. 〈l : τ〉 〈〉

〈·, ·〉 l1, τ1, ..., ln, τn tuple constr. 〈l1 : τ1, ..., ln : τn〉 〈l1 : τ1, ..., ln : τn〉

π[li] l, l1, τ1, ..., ln, τn �eld projection 〈l : 〈l1 : τ1, ..., ln : τn〉〉 τi

id l, τ identity 〈l : τ〉 τ

Moreover, for every transition label tl, there exists an associated function
Φtl : IT (tl) → OT (tl) which represents a computation that is performed
when the transition �res. For the core transition label subset all functions are
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deterministic and correspond to those given in NRC de�nition [5].

To keep this presentation simple we will omit edge names and label parameters
on diagrams, if it does not introduce ambiguity.

3.2 Extension transition labels

Next to the set of core transition labels, the set of transition labels TL also con-
tains user-de�ned transition labels. As for core transition labels the functions
IT and OT must be de�ned for each of them, as well as an associated func-
tion Φtl : IT (tl) → OT (tl) which can represent a possibly non-deterministic
computation that is performed when the transition �res.

To give a concrete example, a bioinformatician may de�ne a getSWPrByAC
extension transition label, for which IT (getSWPrByAC) = 〈ac : string〉 and
OT (getSWPrByAC) = XML. The ΦgetSWPrByAC function would represent
a call to a Swiss-Prot knowledgebase and return an XML formatted entry for
a given primary accession number.

4 Transition system semantics

The semantics of a data�ow 〈DFN, EN, TN, EA, PT 〉 is de�ned as a tran-
sition system (see subsection 4.2). Each place contains zero or more tokens,
which represent data values. Formally a token is a pair k = 〈v, h〉, where
v ∈ CV is the transported value and h ∈ H is this value's unnesting history.
This unnesting history is de�ned in subsection 4.1. The set of all possible to-
kens is then K = CV × H. By the type of a token we mean the type of its
value, i.e., 〈v, h〉 : τ if and only if v : τ .

The state of a data�ow, also called marking, is the distribution M : (P×K) →
(N∪{0}) of tokens over places, where M(p, k) = n means that place p contains
n copies of the token k. Distributions are legal as markings only if the token
types match the types of places their are in, i.e., for all places p ∈ P and
tokens k ∈ K such that M(p, k) > 0 we must have k : PT (p).

Transitions are the active components in a data�ow. They can change the state
by �ring, i.e., consuming tokens from their input places and producing tokens
in their output places. In distinction to classical work�ow nets, transitions may
produce/consume an arbitrary number of tokens in/from a place. This is the
case when an edge connecting such a place with the transition is annotated
with �∗�, i.e., is an unnest/nest edge. A transition that can �re in a given
state will be called enabled. Firing of a transition t represents a computation

13



step determined by the function ΦTN(t) associated with its transition label.
Tokens consumed from input places determine the computation's input value
with respect to the de�nitions in Table 1.

4.1 Token unnesting history

Every time a transition with an unnest edge �res, a set of tokens is produced.
Each token corresponds to an element of the set value that was produced as
a result of a computation carried out by that transition. The history of each
of the tokens is extended with a pair that contains the unnested set and an
element of that set to which the given token corresponds. The full history is
taken into account when it is being determined whether a transition with nest
edge can �re, that is if tokens representing all of the elements of the set that
is being nested are already there to be consumed. If it is the case, then a set
of tokens will be consumed and the set of their values will be used to compute
the result.

id

+10

id

(a)

id

+10

id

(c)

{1, 2, 3}; () 

1;  (〈{1, 2, 3}, 1〉)
3;  (〈{1, 2, 3}, 3〉)

id

+10

id

(d)

12;  (〈{1, 2, 3}, 2〉)
13;  (〈{1, 2, 3}, 3〉)

11;  (〈{1, 2, 3}, 1〉)

id

+10

id

(e)

{11, 12, 13};  ()

1;  (〈{1, 2, 3}, 1〉)
∗ ∗ ∗ ∗

∗∗∗∗

id

+10

id

(b)

2;  (〈{1, 2, 3}, 2〉)
3;  (〈{1, 2, 3}, 3〉)

12;  (〈{1, 2, 3}, 2〉)

∗

∗

Figure 3. An illustration of the unnest/nest edges and the unnesting history

This is illustrated in Fig. 3 where in (a) in the top place we see a single token
with value {1, 2, 3} and an empty history. When the upper id transition �res,
a token for each element of the output value {1, 2, 3} is produced as shown in
(b). The history is extended at the end with a pair that contains, �rst, the set
that was unnested and, second, the element for which this particular token was
produced. As is shown in (b), (c) and (d) transitions without any unnest or
nest edge will produce tokens with histories identical to that of the consumed
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input tokens. Once all the tokens that belong to the same unnesting group
have arrived in the input place of the bottom id transition, as is shown in (d),
it can �re and combine them into a single set-valued token as is shown in (e).
A transition can verify if all the tokens that belong to the same unnesting
group have arrived by looking at their histories. Note that where the �ring of
a transition with an unnest edge adds a pair to the history, �ring a transition
with a nest edge removes a pair from the history.

(b) (d)

∪ ∪

{1, 2, 3}; (〈{1,2,3},{1,2,3}〉) 

1; (〈{1,2,3},1〉) 
2; (〈{1,2,3},2〉) 
3; (〈{1,2,3},3〉) 

(c)

∪
{1, 2, 3}; (〈∅,∅〉) 

id
∅; (〈∅,∅〉) 

...

id

...

id

...

(a)

∪

id

∅; () 

...
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Figure 4. An illustration of the unnesting history and iteration over empty sets

The second example (see Fig. 4) presents what happens when one transition
has unnest/nest edges as well as normal edges. The initial state is presented
in (a). As shown in (b), after �ring transition id, the token representing an
empty set has been consumed. Since id has an unnest edge, the result of its
computation � an empty set � has been unnested and zero tokens have been
inserted into the right output place. Yet the left output place is connected by
a normal edge and a token has been produced there. Because unnesting has
been performed on the �∗� annotated edges, its history has been extended with
a pair consisting of twice the unnested set. After some additional processing
this token transports a set of three numbers {1, 2, 3} as can be observed in
(c). Now the set union transition can �re. Although one of its input places is
empty, it is enabled because it is connected by a nest edge and the examination
of the history of the token from the other input place that was connected by
a normal edge shows that tokens representing elements of an empty set are to
be expected there (so no tokens need to be consumed). When the set union
transition �res, a set of {1, 2, 3} will be produced as a result of the union of
{1, 2, 3} with an empty set. As is shown in (d) another unnest can be performed
and this time tokens are inserted to both output places.

In the case of transitions with many input edges tokens consumed from distinct
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(a)

v1; h1

(b)

∗

v3; h3v2; h2
x1; (〈{v1,v2},v1〉)
x2; (〈{v1,v2},v2〉)

x3; (〈{v1,v2},{v1,v2}〉)
x4; (〈{v1},{v1}〉)

Figure 5. An illustration of how history a�ects transitions with many input places

input places must either have the same history or must represent the same
set. This way the history of the tokens produced by such a transition can be
unambiguously determined, tokens representing elements of di�erent sets do
not interfere with each other in the body of the iteration and at the same time
the order of execution is free of any unnecessary restrictions. This is illustrated
on the third example (see Fig. 5). The transition in (a) can �re only if h1 = h3

or h2 = h3. Otherwise it is not enabled even though some tokens are in both
of its input places. The transition in (b) can �re consuming tokens with values
x1 and x2 from the left input place and x3 from the right input place since
they represent the same sets. A token with value x4 cannot be consumed in
this state, because there is no token representing the element of set {v1} in
the left input place.

Since sets can be unnested and nested several times, the history is a sequence
of pairs, where each pair contains the unnesting information of one unnesting
step. Therefore we formally de�ne the set of all histories H as the set of
all sequences of pairs 〈s, x〉, where s ∈ CV is a set and x ∈ s or x = s.
To manipulate histories we will use the following notation for extending a
sequence with an element (a1, a2, ..., an)⊕ an+1 := (a1, a2, ..., an, an+1).

The fourth and �nal example presents why the whole history and not only
its last element is taken into account while nesting. The data�ow in Fig. 6
unnest the input set of type {〈v : {integer}, b : boolean〉} and processes each
of its pair values based on the boolean element. For pairs with a true value,
every element of the associated set of integers is increased by one, while for
pairs with a false value, the elements are decreased by one. In (a) the initial
state with the input value is presented. In (b) the input value has been already
unnested and, similarly as with the If-then-else example from subsection 2.6,
the paired elements have been separated to make the trueness based test. The
〈·, ·〉 ◦ π[v] transitions are used to dispose of the boolean value by creating
a pair and projecting the boolean value out. Although in this example it is
not important, since both pairs contained the same set {1, 2}, the transitions
labeled 〈·, ·〉 ◦ π[v] would not consume values with di�erent histories thus
retaining the original pairing. In (c) the integer sets have been unnested and
their values have been increased in the upper branch and decreased in the
lower branch. The processed values are gathered in one place and are ready to
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3; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: true〉〉, 〈{1, 2}, 2〉 )

0; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: false〉〉, 〈{1, 2}, 1〉 )

2; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: true〉〉, 〈{1, 2}, 1〉 )

1; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: false〉〉, 〈{1, 2}, 2〉 )

Figure 6. An illustration of a nested iteration

be nested back. Observe that inspecting the last element of the history during
nesting is not enough and the whole history has to be taken into account to
prevent intermixing of the values processed by the lower and the upper branch.

It should be noted that our approach does not enforce iterating over elements
of a set in any particular order and the transition semantics is local, yet it is
always possible to determine if a given transition can �re and even in the case
of a nested iteration over nested sets, tokens representing elements of di�erent
sets will not become intermixed.

4.2 Semantics of transitions

We de�ne the semantics as a transition system, where the states are the dis-
tributions of tokens over places and state changes are caused by �ring enabled
transitions. A transition is enabled in a given state, if from each of its input
places it can consume tokens with matching histories � an arbitrary num-
ber from places connected by nest edges or one if it is not the case. Those
tokens/sets of tokens represent values that will become arguments for the
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function represented by the enabled transition. The choice of such tokens and
the function arguments determined by it are called an enabling con�guration.

The following shortcut will be used, since tokens can only �ow along a condition-
annotated edge, if the value of the token satis�es the condition:

〈v, h〉 y e
def
= (EA(e) = ε) ∨ (EA(e) = �∗�) ∨

(EA(e) = �=true� ∧ v = true) ∨
(EA(e) = �=false� ∧ v = false) ∨
(EA(e) = �=∅� ∧ v =∅) ∨
(EA(e) = � 6=∅� ∧ v 6= ∅)

De�nition 7 (enabling con�guration) Given a transition t in marking M ,
an enabling con�guration is a function EC : •t → 2K such that:

(i) for all places p ∈ •t and for all tokens k ∈ EC(p) it holds that M(p, k) ≥ 1
and k y 〈p, t〉,

(ii) at least one token is in the range of EC, i.e.,
⋃

p∈•t EC(p) 6= ∅, and
(iii) there is a history h such that:

- if t has at least one nest edge, then there exists a set S = {x1, ..., xm} ∈
CV such that for all places p ∈ •t it holds that

EC(p) =

{〈vp,1, h⊕ 〈S, x1〉〉, ..., 〈vp,m, h⊕ 〈S, xm〉〉} if EA(〈p, t〉) = �∗�
{〈vp, h⊕ 〈S, S〉〉} if EA(〈p, t〉) 6= �∗�

for some complex values vp,1, ..., vp,m and vp,
- if t has no nest edge, then for all places p ∈ •t it holds that EC(p) =
{〈vp, h〉} for some complex value vp.

Note that since the range of the enabling con�guration contains at least one
token, it holds that if such an EC exists, then h is uniquely determined, so we
denote it as hEC.

Moreover, given such an EC we de�ne the enabling con�guration value func-
tion ECVEC : •t → CV , which with a place p associates the value represented
by the tokens pointed by EC(p), i.e., for all places p ∈ •t it holds that

ECVEC(p) =

{vp,1, ..., vp,m} if EA(〈p, t〉) = �∗�
vp if EA(〈p, t〉) 6= �∗�.

A transition for which an enabling con�guration exists can �re and it is called
enabled. In a given state many enabling con�gurations can exist for one tran-
sition. For example, if t has two input places connected by normal edges, one
of its input place contains two tokens, the other contains three tokens and all
the tokens have the same history, then there exist six enabling con�gurations
for t in this state.
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De�nition 8 (enabled transition) Transition t is enabled in a given mark-
ing M if and only if there exists an enabling con�guration for t in M .

When a transition �res, it consumes tokens according to some enabling con-
�guration EC and the transition's associated function is being computed with
the arguments pointed by ECVEC .

4.2.1 State transition (�ring a transition)

For each t ∈ T it holds that M1
t−→ M2 if and only if there exists an enabling

con�guration EC for t in marking M1 such that

(1) for all places p ∈ •t it holds that:
(a) M2(p, k) = M1(p, k)− 1 if k ∈ EC(p), and
(b) M2(p, k) = M1(p, k) if k /∈ EC(p)

(2) if t has no unnest edges, then for all places p ∈ t• it holds that,
if vres is the result of ΦTN(t)(〈l1 : v1, ..., ln : vn〉), in case when ΦTN(t) is
a deterministic function, or one of its possible results, when it is non-
deterministic, where {〈l1, v1〉, ..., 〈ln, vn〉} = {〈EN(〈p′, t〉), ECVEC(p′)〉 |
p′ ∈ •t} then:
(a) M2(p, 〈vres, hEC〉) = M1(p, 〈vres, hEC〉) + 1, and
(b) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) if 〈v′, h′〉 6= 〈vres, hEC〉

(3) if t has at least one unnest edge, then for all places p ∈ t• it holds that,
if vres is the result of ΦTN(t)(〈l1 : v1, ..., ln : vn〉), in case when ΦTN(t) is
a deterministic function, or one of its possible results, when it is non-
deterministic, where {〈l1, v1〉, ..., 〈ln, vn〉} = {〈EN(〈p′, t〉), ECVEC(p′)〉 |
p′ ∈ •t} then:
(a) M2(p, 〈vres, hEC ⊕ 〈vres, vres〉〉) = M1(p, 〈vres, hEC ⊕ 〈vres, vres〉) + 1 if

EA(〈t, p〉) 6= �∗�, and
(b) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) if EA(〈t, p〉) 6= �∗� and

〈v′, h′〉 6= 〈vres, hEC ⊕ 〈vres, vres〉〉
(c) M2(p, 〈v, hEC ⊕ 〈vres, v〉〉) = M1(p, 〈v, hEC ⊕ 〈vres, v〉) + 1 if

EA(〈t, p〉) = �∗� and v ∈ vres, and
(d) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) if EA(〈t, p〉) = �∗� and

〈v′, h′〉 6= 〈v, hEC ⊕ 〈vres, v〉〉 for all v ∈ vres

(4) for all places p 6∈ •t ∪ t• it holds that M2(p, k) = M1(p, k) for all tokens
k ∈ K

It should be noted that for a given state M1, a transition t and two not equal

states M2 and M3 it can hold that M1
t−→ M2 and M1

t−→ M3. This is because
in M1 there can be more than one enabling con�guration for t. It can also
be the case that the function represented by t is not a deterministic one and
transitions to M2 and M3 are possible for the same enabling con�guration,
because two di�erent output values can be produced.
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We adopt the following Petri net notations:

• M1 −→ M2: there is a transition t such that M1
t−→ M2

• M1
θ−→ Mn: the �ring sequence θ = t1t2...tn−1 leads from state M1 to state

Mn, i.e., ∃M2,M3,...,Mn−1M1
t1−→ M2

t2−→ M3
t3−→ ...

tn−1−−→ Mn

• M1
∗−→ Mn: M1 = Mn or there is a �ring sequence θ = t1t2...tn−1 such that

M1
θ−→ Mn

A state Mn is called reachable from M1 if and only if M1
∗−→ Mn.

Although the semantics of a data�ow is presented as a transition system, as
in classical Petri nets, two or more enabled transitions may �re concurrently,
if there are enough input tokens for both of them.

5 A bioinformatics data�ow example

In this section we present a data�ow based on a part of a real bioinformatics
example [8]. The data�ow is shown in Fig. 7. The goal of this data�ow is to
�nd di�erences in peptide content of two samples of cerebrospinal �uid (a pep-
tide is an amino acid polymer). One sample belongs to a diseased person and
the other to a healthy one. A mass spectrometry wet-lab experiment has pro-
vided data about observed polymers in each sample. A peptide-identi�cation
algorithm was invoked to identify the sequences of those polymers, providing
an amino-acid sequence and a con�dence score for each identi�ed polymer.

The data�ow starts with a tuple containing two sets of data from the identi�-
cation algorithm, one obtained from the �healthy� sample and the other from
the �diseased� sample: complex input type 〈 healthy : PepList , diseased :
PepList 〉 with complex type PepList = { 〈 peptide : String, score :
Number 〉 }. Each data set contains tuples consisting of an identi�ed peptide,
represented by the basic type String, and the associated con�dence score,
represented by the basic type Number. The data�ow transforms this input
into a set of tuples containing the identi�ed peptide, a singleton containing
the con�dence score from the �healthy� data set or an empty set if the identi-
�ed peptide was absent in the �healthy� data set, and similarly, the con�dence
score from the �diseased� data set. The complex output type is the following:
{ 〈 peptide : String, healthy : {Number }, diseased : {Number } 〉 }.

The global structure of the data�ow can be described as follows. In the �rst
part up to and including the �rst transition labeled × it computes the Carte-
sian product of two sets. The �rst set is computed in the left branch, which
consists again of two sub-branches, and is the union of all mentioned peptides
in the initial tuple. The second set is computed in the right branch and is

20



 id 

⟨ healthy: PepList,
    diseased: PepList ⟩

  ×  

            lists
  

  ∪  

 

   *

   *

π[diseased]
    * 

π[healthy]

       *

        diseased

⟨ peptide: String,
   score:Number ⟩

   *

π[peptide]

    *

π[peptide]

String

{String}

{⋅}

⟨ peptide: String,
   lists: ⟨ healthy: PepList,
              diseased: PepList ⟩ ⟩

{ ⟨ healthy: PepList,
      diseased: PepList ⟩ }

⟨⋅,⋅⟩

   *

             healthy

      *

peptide    

  × 

   *

      h

  × 

   *

       d

   *

peptide

    *

peptide

π[peptide] π[peptide] π[lists] π[peptide] π[lists]

String

π[healthy] π[diseased]{⋅}{⋅}

{String} PepList

⟨ peptide: String,
   d: ⟨ peptide: String,
          score: Number ⟩ ⟩

score_h score_d

φ
   *

φ
   *

{Number}

{Number}

{ ⟨ peptide: String,
      healthy: {Number},
      diseased: {Number} ⟩ }

⟨ healthy: PepList,
   diseased: PepList  ⟩

PepList{String}

 id 

⟨  peptide: String,
    healthy: {Number},
    diseased: {Number} ⟩

      peptide

 id  id 

{String}

Figure 7. Finding di�erences in peptide content of two samples
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the singleton set containing the initial tuple. In the second part of the work-
�ow, between the �rst Cartesian product and the �nal place, the work�ow
iterates over the result of the �rst part and processes the tuples in the Carte-
sian product in parallel in three branches, where the rightmost two branches
themselves consist of two sub-branches, and combines their results into a single
tuple with a tuple constructor. The �rst branch simply projects on the peptide
in tuple. The second and third branch compute the scores of this peptide in
the �healthy� peptide list and the �diseased� peptide list, respectively. They
do so by computing the Cartesian product of the peptide and the relevant
peptide list, iterating over the result and applying to each tuple the function
score_h (or score_d) which compares the �rst peptide with the peptide in the
nested tuple and if they are equal returns a singleton set with the score or an
empty set otherwise. Note that the transitions labeled score_h and score_d

could have been decomposed further and replaced with data�ows, but are rep-
resented here by single transitions for brevity. Finally the data�ow collects all
the tuples consisting of the peptide and its scores in the �healthy� and the
�diseased� peptide list, into a single set.

6 Hierarchical data�ows

Our extension of work�ow nets allows the reuse of various technical and theo-
retical results that are known about them. This is what we intend to demon-
strate here by discussing a way of constructing work�ows that guarantees that
they always satisfy certain correctness criteria. A well-known technique for this
is the use of re�nement rules that allow the step-wise generation of Petri nets
by replacing a transition or place with a slightly bigger net. Such re�nement
rules were studied by Berthelot in [3] and Murata in [12] as reduction rules
that preserve liveness and boundedness properties of Petri nets. They are used
by van der Aalst in [21], by Reijers in [16] and by Chrzastowski-Wachtel et
al. in [7] to generate work�ow nets. We show that the same principles can be
applied to our extended notion of work�ow net, and can be adapted to deal
with the new problem of data-dependent control �ow.

DFL is developed to model data-centric work�ows and in particular scienti�c
data-processing experiments. The data to be processed should be placed in the
data�ow's source and after the processing, the result should appear in its sink.
A special notation is introduced to distinguish between two state families.

De�nition 9 (input state) Given data�ow D = 〈DFN, EN, TN, EA, PT 〉
with DFN = 〈P, T, E, source, sink〉 and value v : PT (source) we de�ne the
input state inputDv as a marking such that:

• inputDv (source, 〈v, ()〉) = 1, and
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• for all places p ∈ P and tokens k ∈ K such that 〈p, k〉 6= 〈source, 〈v, ()〉〉 it
holds that inputDv (p, k) = 0.

De�nition 10 (output state) Given data�ow D = 〈DFN, EN, TN, EA, PT 〉
with DFN = 〈P, T,E, source, sink〉 and value v : PT (sink) we de�ne the
output state outputDv as a marking such that:

• outputDv (sink, 〈v, ()〉) = 1, and
• for all places p ∈ P and tokens k ∈ K such that 〈p, k〉 6= 〈sink, 〈v, ()〉〉 it
holds that outputDv (p, k) = 0.

Starting with one token in the source and executing the data�ow need not
always produce a result in the form of a single token in the sink place. For
some data�ows the computation may halt in a state in which none of the
transitions is enabled, yet the sink is empty. For other data�ows the result
token may be produced, but there still may be tokens left in other places.
Furthermore, for some data�ows reaching a state in which there are no tokens
at all is possible.

t1 t2 t2

t3

t1

t3

(a) (d)

t1

t2

(c)(b)

t1

t2 t3
∗ ∗

∗

Figure 8. Data�ows that may not �nish properly

Examples of data�ows for which starting with one token does not always
produce a result in the form of a single token in the sink place are shown in
Fig. 8. For the data�ow (a) the token from the source can be consumed by
a transition t1 or t2, but not by both of them at the same time. Transition
t3 will not become enabled then, because one of its input places will stay
empty. The (b) case presents an opposite scenario. Transition t1 produces two
output tokens and after either t2 or t3 consumes one of them and produces a
computation result, the second token is still there and another computation
result can be produced. In the (c) case t2 will never become enabled, since
the tokens with history appropriate for nesting will never be produced by t1.
Similarly in case (d) if t2 gets the source token, t3 will not become enabled,
because only t1 can produce a token with the required history. But for (d) it
may even be not enough, when the t1 consumes the source token. If the source
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token carried an empty set, then in the resulting state all places would be
empty.

Similar problems were also studied in the context of procedures modeled
by classical work�ow nets. The procedures without such problems are called
sound [1]. A work�ow net is considered to be sound if an only if:

(1) if a token is inserted into the sink, then there are no other tokens left,
(2) the computation can always be completed, that is, if one starts with a

single token in the source and regardless of how the computation proceeds
at start, it is always possible to reach a state with the only token in the
sink place, and

(3) every transition can be �red, if one starts with a single token in the
source.

This classical notion of soundness can be directly applied to data�ows such as
(a) and (b) in Fig. 8 where the control �ow does not depend upon the data, but
in data�ows such as (c) and (d) where the control �ow may depend upon the
values and the unnesting histories associated with a token the notion needs to
be adapted. Here tokens carry values, so there are many possible input states
from which a computation can be started � one for each possible value for
the �rst token. It is natural to require that each transition becomes enabled
in some input state, but not in all.

De�nition 11 (soundness) A data�ow D = 〈DFN, EN, TN, EA, PT 〉 with
DFN = 〈P, T,E, source, sink〉 is sound if and only if:

(i) for each value v′ : PT (source) and every marking M such that inputDv′
∗−→

M , if for some value v′′ : PT (sink) and history h′′ ∈ H it holds that
M(sink, 〈v′′, h′′〉) > 0, then M = outputDv′′,

(ii) for each value v′ : PT (source) and every marking M such that inputDv′
∗−→

M there exists a value v′′ : PT (sink) such that M
∗−→ outputDv′′, and

(iii) for each transition t ∈ T there exists a value v′ : PT (source) and two

markings M and M ′ such that inputDv′
∗−→ M

t−→ M ′.

Although it seems desirable to require soundness of data�ows, many of the
systems with conditional behavior will not satisfy (iii). The problem is often
not caused by the structure of the net, but by operations associated with
transition labels that are being used. An appearance of a value that activates
some part of the net may be dependent on the value with which the data�ow
is initiated. Checking if the right value can appear would be undecidable as
is determining if an NRC expression returns an empty set. Indeed, it is well
known that NRC can simulate the relational algebra [5]. That is why we
introduce a weaker semi-soundness notion:

De�nition 12 (semi-soundness) A data�ow D = 〈DFN, EN, TN, EA, PT 〉
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with DFN = 〈P, T, E, source, sink〉 is semi-sound if and only if:

(i) for each value v′ : PT (source) and every marking M such that inputDv′
∗−→

M , if for some value v′′ : PT (sink) and history h′′ ∈ H it holds that
M(sink, 〈v′′, h′′〉) > 0, then M = outputDv′′, and

(ii) for each value v′ : PT (source) and every marking M such that inputDv′
∗−→

M there exists a value v′′ : PT (sink) such that M
∗−→ outputDv′′.

6.1 Re�nement rules

In this section we introduce re�nement rules for generating what may be con-
sidered a well-structured data�ow. As we will show later, all data�ows gener-
ated in this way are semi-sound. By starting from a single place and applying
the rules in a top-down manner we generate blank data�ows � data�ows with-
out edge and transition naming. We call such generated blank data�ows hier-
archical blank data�ows. From these we then obtain data�ows by adding edge
and transition naming functions. These will be called hierarchical data�ows.

De�nition 13 (blank data�ow) A blank data�ow is a tuple 〈DFN, EA〉
where:

• DFN = 〈P, T, E, source, sink〉 is a data�ow net,
• EA : (◦T → {�=true�, �=false�, �=∅�, � 6=∅�, �∗�, ε}) ∪ (◦P → {�∗�, ε}) is
an edge annotation function.

(a) sequential place split (b) sequential transition split

(f) AND-split

          [=Ø]           [≠Ø]

(d) trueness based decision

           [=false]              [=true]

(e) emptiness based decision

(c) iteration split

a

a1

a

a2

a3

a1

a2

a3

a

a

b1

b3b2 b2 b3

b1

b2

b4

b2

b1

b3

b1

b2

b3

b3

b4

b1

b1 b2

b4

∗

∗

Figure 9. Re�nement rules
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The re�nement rules are presented in Fig. 9. Each re�nement replaces a sub-
graph presented on the lefthand side of the rule by the right-hand side one.
The edge annotation for the replaced subgraph and the subgraph that it is
replaced with is exactly as indicated. For each rule we de�ne the concepts of
input nodes, output nodes and body nodes as indicated in Table 2.

Table 2
Input, output and body nodes

Rule a Rule b Rule c Rule d Rule e Rule f

Input nodes a, b1 a, b1 a, b1 a1, b1 a1, b1 a, b1, b2

Output nodes a, b3 a, b3 a, b4 a3, b4 a3, b4 a, b1, b2

Body nodes b2 b2 b2, b3 a2, b2, b3 a2, b2, b3

The right-hand side subgraph is connected to the rest of the blank data�ow
as follows:

• All the incoming edges of the left-hand side input node are reconnected to
all the input nodes of the right-hand side. The annotations are preserved.
A visualization is presented in Fig. 10.

(a) sequential place split (b) sequential transition split

(f) AND-split

          [=Ø]           [≠Ø]

(d) trueness based decision

           [=false]              [=true]

(e) emptiness based decision

(c) iteration split

a

a1

a

a2

a3

a1

a2

a3

a

a

b1

b3b2 b2 b3

b1

b2

b4

b2

b1

b3

b1

b2

b3

b3

b4

b1

b1 b2

b4

∗

∗    [ ]     ∗

    [ ]     ∗

    [ ]     ∗     [ ]     ∗     [ ]     ∗     [ ]     ∗

    [ ]     ∗     [ ]     ∗          ∗

    [ ]     ∗     [ ]     ∗

    [ ]     ∗     [ ]     ∗

    [ ]     ∗

    [ ]     ∗

    [ ]     ∗     [ ]     ∗     [ ]     ∗     [ ]     ∗

    [ ]     ∗     [ ]     ∗     [ ]     ∗

    [ ]     ∗

    [ ]     ∗     [ ]     ∗

    [ ]     ∗

Figure 10. Reconnecting of subgraphs

• For rules d and e all the remaining, i.e., not shown in the rule, outgoing
edges of the input nodes on the left-hand side are reconnected to the input
nodes on the right-hand side. The annotations are preserved. A visualization
is presented in Fig. 11.
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(d) trueness based decision

           [=false]              [=true]

(e) emptiness based decision

a1

a2

a3

b1

b3b2

b4
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  [ ]
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∗  

  [ ]    
  

  
∗  
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∗  
  [ ]    

  

  [ ]
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  [ ]
  

 ∗
  
∗  
  [ ]    

  

  [ ]
  

 ∗
  
∗  
  [ ]    

  

           [=Ø]              [≠Ø]
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b1
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  [ ]
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∗  
  [ ]    

  

Figure 11. Reconnecting of subgraphs � additional edges for rules d and e

• All the outgoing edges of the left-hand side output node are reconnected to
all the output nodes of the right-hand side. The annotations are preserved,
with the exception that for rule f condition annotations are preserved only
for outgoing edges of the node b1 and outgoing edges of node b2 are not
annotated with conditions. A visualization is presented in Fig. 10.

• For rules d and e all the remaining, i.e., not shown in the rule, incoming
edges of the output nodes on the left-hand side are reconnected to the output
nodes on the right-hand side. The annotations are preserved. A visualization
is presented in Fig. 11.

• All the incoming and outgoing edges of the left-hand side body nodes are
reconnected to all the right-hand side body nodes. The annotations are
preserved. A visualization is presented in Fig. 11.

There are certain preconditions that must hold when the rules are applied:

(i) For rule d to be applied, all the transitions in •a1 that are connected
with a1 by a non-annotated edge cannot have any unnest edges, i.e., for
all t ∈ •a1 it holds that: if EA(〈t, a1〉) = ε, then for all p ∈ t• it holds
that EA(〈t, p〉) 6= �∗�.

(ii) For rule d to be applied, all the transitions in •a1 cannot have any other
output places that are connected by an edge annotated in the same way
and on which an emptiness based decision is performed, i.e., for all t ∈ •a1

and for all p ∈ t• it holds that: if p 6= a1 and EA(〈t, a1〉) = EA(〈t, p〉),
then for all t′ ∈ p• it holds that EA(〈p, t′〉) /∈ {�=∅�, � 6=∅�}.

(iii) For rule e to be applied, all the transitions in •a1 cannot have any other
output places that are connected by an edge annotated in the same
way and on which a trueness based decision is performed, i.e., for all
t ∈ •a1 and for all p ∈ t• it holds that: if p 6= a1 and EA(〈t, a1〉) =
EA(〈t, p〉), then it holds that for all t′ ∈ p• it holds that EA(〈p, t′〉) /∈
{�=true�, �=false�}.

(iv) For rule f to be applied, a has to have at least one incoming and one
outgoing edge.

The �rst three preconditions are necessary so that it is always possible to
label the generated blank data�ow such that it becomes a legal data�ow. (i)
deals with a requirement that a token representing set values cannot be used
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to make a trueness based decision (see Fig. 12(i)), while (ii) and (iii) prevent
using tokens with the same values in di�erent kinds of tests (see Fig. 12(ii)
and Fig. 12(iii)). Precondition (iv) guarantees that there is exactly one input
and output place.

a2

a1

a3

 ∗

 ∗

∗

∗

           [=false]              [=true]
b1

b3b2

b4

(i)

           [=false]              [=true]          [=Ø]          [≠Ø]

b2

b1

b4

b3

           [=false]              [=true]

a2

a1

a3

(iii)

         [=Ø]          [≠Ø]            [=false]              [=true]

b2

b1

b4

b3

         [=Ø]          [≠Ø]

a2

a1

a3

(ii)

Figure 12. Preconditions

De�nition 14 (hierarchical blank data�ow) A blank data�ow which is
obtained by starting with a blank data�ow that consists of a single place with
no transitions and performing the transformations presented in Fig. 9 is called
a hierarchical blank data�ow.

De�nition 15 (hierarchical data�ow) A hierarchical data�ow is a legal
data�ow D = 〈DFN, EN, TN, EA, PT 〉 obtained by labeling transitions and
edges in a hierarchical blank data�ow BDF = 〈DFN, EA〉.

The rules and the aim to make data�ows structured as in structured pro-
gramming languages were inspired by the work done on work�ow nets by
Chrz¡stowski-Wachtel et al. [7].

An instance of a computation of a particular data�ow, which starts in some
input state, will be called a run. We will represent it as a pair of two sequences.
The �rst one will contain successive transitions that were �red and the second
one subsequent states including the input state.

De�nition 16 (run) Let D = 〈DFN, EN, TN, EA, PT 〉 be a data�ow with
a data�ow net DFN = 〈P, T,E, source, sink〉. A sequence of transitions
t1, ..., tn ∈ T with a sequence of markings M0, ...,Mn of D, where M0 is an

input state, forms a run if and only if it holds that M0
t1−→ M1

t2−→ ...
tn−→ Mn.

The run will be denoted as M0
t1−→ M1

t2−→ ...
tn−→ Mn. If Mn is an output state

of D, then we will call such a run complete.
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For a run M0
t1−→ M1

t2−→ ...
tn−→ Mn, a place p and history h we de�ne a delta

of tokens in p after �ring a given transition ti+1 in a state Mi:

∆i(p, h) =
∑

v∈CV

Mi+1(p, 〈v, h〉)−
∑

v∈CV

Mi(p, 〈v, h〉)

We will also want to count tokens inserted to a place (since there are no cycles,
during one transition tokens are never inserted to and consumed from a place
at the same time):

∆+
i (p, h) =

∆i(p, h) if ∆i(p, h) > 0

0 otherwise

The number of tokens with a given history h inserted into a place p during

a run M0
t1−→ M1

t2−→ ...
tn−→ Mn will be called a trace of p and de�ned as

Tr(p, h) =
∑n−1

i=0 ∆+
i (p, h).

Lemma 17 For each hierarchical data�ow D = 〈DFN, EN, TN, EA, PT 〉
with a data�ow net DFN = 〈P, T,E, source, sink〉 and for each run M0

t1−→
M1

t2−→ ...
tn−→ Mn of data�ow D, the trace of each place is bounded by 1, i.e.,

it holds that ∀h∈H∀p∈P Tr(p, h) ≤ 1.

Theorem 18 Every hierarchical data�ow is semi-sound.

Proof of Lemma 17 and Theorem 18
We will prove Lemma 17 and Theorem 18 together, by induction on the num-
ber of re�nements applied in the generation of the blank data�ow. During
this proof we will assume that in TL there are labels representing all the NRC
expressions on the available external functions.

For a hierarchical data�ow consisting of only one place, all runs have empty
transition sequence and the state sequence consists of only one state, which
is an input and an output state at the same time. Therefore such data�ow is
semi-sound and the sum in Lemma 17 contains no elements, thus is equal 0.

Let us assume by mathematical induction that for each hierarchical data�ow
Dn = 〈DFNn, ENn, TNn, EAn, PTn〉 with a data�ow net DFNn = 〈Pn, Tn,
En, sourcen, sinkn〉 whose hierarchical blank data�ow was generated in n ≥ 0
re�nements it holds that:

(1) for each run M ′
0

t1−→ M ′
1

t2−→ ...
td−→ M ′

d of Dn every trace of every place is
bounded by 1,

(2) for each value v′ : PTn(sourcen) and marking M ′ such that inputDn
v′

∗−→
M ′, if for some value v′′ : PTn(sinkn) and history h′′ ∈ H it holds that
M ′(sinkn, 〈v′′, h′′〉) > 0, then M ′ = outputDn

v′′ , and
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(3) for each value v′ : PTn(sourcen) and marking M ′ such that inputDn
v′

∗−→ M ′

there exists a value v′′ : PTn(sinkn) such that M ′ ∗−→ outputDn
v′′ .

We will show that if Dn+1 = 〈DFNn+1, ENn+1, TNn+1, EAn+1, PTn+1〉 with a
data�ow net DFNn+1 = 〈Pn+1, Tn+1, En+1, sourcen+1, sinkn+1〉 is an arbitrary
hierarchical data�ow whose hierarchical blank data�ow was generated in n+1
re�nements, then:

(i) for each run M0
t1−→ M1

t2−→ ...
tm−→ Mm of Dn+1 every trace of every place

is bounded by 1,
(ii) for each value v′ : PTn+1(sourcen+1) and each marking M such that

input
Dn+1

v′
∗−→ M , if for some value v′′ : PTn+1(sinkn+1) and history h′′ ∈

H it holds that M(sinkn+1, 〈v′′, h′′〉) > 0, then M = output
Dn+1

v′′ , and
(iii) for each value v′ : PTn+1(sourcen+1) and each marking M such that

input
Dn+1

v′
∗−→ M there exists a value v′′ : PTn+1(sinkn+1) such that M

∗−→
output

Dn+1

v′′ .

Let us consider each possible case for the last, (n+1)th, re�nement applied.

(a) The last applied re�nement was a sequential place split (see Fig. 9a).
Let BDFn = 〈DFNn, EAn〉 with a data�ow net DFNn = 〈Pn, Tn, En,
sourcen, sinkn〉 be a blank hierarchical data�ow generated by the �rst
n re�nements that generated the blank data�ow of Dn+1. Let Dn =
〈DFNn, ENn, TNn, EAn, PTn〉 be a hierarchical data�ow labeled accord-
ingly to the labeling of Dn+1. Since there is no b2 transition in Dn, to keep
Dn legal, the function that it computes is incorporated into the transi-
tions that follow it directly, if there are any, or is omitted otherwise. That
is PTn(a) = PTn+1(b1) and for each t ∈ a• it holds that

TNn(t) =

TNn+1(t)|
ΦTNn+1(b2)

ENn+1(〈b3,t〉) if EA(〈a, t〉) 6= �∗�
TNn+1(t)|

map(ΦTNn+1(b2))

ENn+1(〈b3,t〉) if EA(〈a, t〉) = �∗�

Here tl|fli means the transition label obtained from the transition label tl,
by letting the input from edge li through f �rst 3 . Namely, if IT (tl) = 〈l1 :
τ1, ..., lk : τk〉 and f : τ ′

i → τi, then IT (tl|fli) = 〈l1 : τ1, ..., li : τ ′
i , ..., lk : τk〉,

OT (tl|fli) = OT (tl) and for all values v1, ..., vk of the appropriate types
Φtl|f

li

(〈l1 : v1, ..., lk : vk〉) = Φtl(〈l1 : v1, ..., li : f(vi), ..., lk : vk〉).

For each run M0
t1−→ M1

t2−→ ...
tm−→ Mm of Dn+1 we de�ne a corre-

sponding run M ′
0

t′1−→ M ′
1

t′2−→ ...
t′d−→ M ′

d of Dn. The transitions are �red

3 Note that if two successive sequential place splits would be incorporated into the
following transition over a �∗� annotated edge then the input from that edge would
be preprocessed by map(f) ◦map(g) = map(f ◦ g), where f and g are the removed
b2 transitions.
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in the same order, they consume the same tokens and functions pro-
duce the same results, but all occurrences of b2 are omitted. It is easy

to see that M ′
0

t′1−→ M ′
1

t′2−→ ...
t′d−→ M ′

d is indeed a run of Dn and that
it is unambiguously de�ned. Let us assume that the subsequence of not
omitted transitions have indices i1, ..., id. The markings of Dn are equal
to their counterparts in Dn+1 on all the places that appear in both of
the data�ows (i.e. for every p ∈ Pn ∩ Pn+1 and k ∈ K it holds that
M0(p, k) = M ′

0(p, k) and Mi1(p, k) = M ′
1(p, k), ..., Mid(p, k) = M ′

d(p, k)).
Whereas place a contains all the tokens that in the counterpart marking
are stored in b1 as well as all the tokens that were consumed from b1 in
order to produce the tokens that in the counterpart are stored in b3. This
correspondence in not an injection, though. For each run of Dn there can
be many corresponding runs of Dn+1. This is because there is a choice
when to �re b2, if tokens inserted into a are not immediately consumed.

As for (i), the content of places in M0, Mi1 , ...,Mid is bounded by
the content of places in M ′

0, M
′
1, ...,M

′
d respectively. In the remaining

markings the only di�erence is that some tokens are consumed from b1,
processed by b2 and the result is placed in b3. Thus the traces of places in
markings of Dn+1 are limited by the traces of places in markings of Dn,
for which the induction assumption holds.

As for (ii), we can assume without loss of generality that Mm is the
�rst marking in M0, ...,Mm in which sinkn+1 is not empty. We will �rst
consider the case when sinkn+1 6= b3 and tm 6= b2. In the M ′

d of the
corresponding run sinkn is also not empty (sinkn = sinkn+1). From the
induction assumption in M ′

d there is only one token � the one in sinkn.
Since in Mm there is the same number of tokens, then also in Md there is
only one token � the one in the sinkn+1. In the case where sinkn+1 = b3,
it is only possible for a token to be inserted into sinkn+1 = b3, when there
was a token to be consumed from b1. Yet, when the �rst token is inserted
into b1, there are no other tokens since in the corresponding run a token
is inserted into a, which is a sink there. Since M0, ...,Mm was arbitrarily
chosen, (ii) holds.

As for (iii), let v′ : PTn+1(sourcen+1) and let M be a marking of Dn+1

such that input
Dn+1

v′
∗→ M . By the de�nition of marking reachability there

exists a run M0
t1→ M1

t2→ ...
tm→ Mm, where M0 = input

Dn+1

v′ and Mm =
M . We know that for this run in Dn there exists a corresponding run

M ′
0

t′1→ M ′
1

t′2→ ...
t′d→ M ′

d, where M ′
0 = inputDn

v′ . From the semi-soundness of
Dn it follows that for some v′′ : PTn(sinkn) this corresponding run can be

extended into a complete run M ′
0

t′1→ M ′
1

t′2→ ...
t′d→ M ′

d

t′d+1→ M ′
d+1

t′d+2→ ...
t′d+q→

M ′
d+q, where M ′

d+q = outputDn
v′′ . For it in turn there exists a corresponding

complete run M0
t1→ M1

t2→ ...
tm→ Mm

tm+1→ Mm+1
tm+2→ ...

tm+r→ Mm+r in
Dn+1, which at the beginning is identical to the run of Dn+1 we started
from and in Mm+r place b1 is empty (if b3 = sinkn+1, b1 can be emptied
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by �ring b2). This completes the proof, since we have shown that Mm
∗→

output
Dn+1

v′′′ , for v′′′ =

ΦTNn+1(b2)(v
′′) if a = sinkn

v′′ otherwise.

(b) The last re�nement was a sequential transition split (see Fig. 9b). As
previously, with the �rst n re�nements, we can construct a blank hierar-
chical data�ow and label it accordingly to the labeling of Dn+1. In the re-
sulting data�ow Dn, the label of a represents the composition of functions
ΦTNn+1(b3) and ΦTNn+1(b1). That is ITn(TNn(a)) = ITn+1(TNn+1(b1)),
OTn(TNn(a)) = OTn+1(TNn+1(b3)) and ΦTNn(a) = ΦTNn+1(b3)◦ΦTNn+1(b1).

For each run M0
t1−→ M1

t2−→ ...
tm−→ Mm of Dn+1 we de�ne a corre-

sponding run M ′
0

t′1−→ M ′
1

t′2−→ ...
t′d−→ M ′

d of Dn. The transitions are �red in
the same order, they consume the same tokens and functions produce the
same results, but all occurrences of b1 are omitted and all occurrences of

b3 are replaced with a. It is easy to see that M ′
0

t′1−→ M ′
1

t′2−→ ...
t′d−→ M ′

d is
indeed a run of Dn and that it is unambiguously de�ned. Let us assume
that the subsequence of not omitted (other that b1) transitions have in-
dices i1, ..., id. The markings of Dn are equal to their counterparts in Dn+1

on all the places that appear in both of the data�ows except the ones in
•a = •b1 (i.e. for every p ∈ ((Pn ∩ Pn+1) \ •a) and k ∈ K it holds that
M0(p, k) = M ′

0(p, k) and Mi1(p, k) = M ′
1(p, k), ..., Mid(p, k) = M ′

d(p, k))).
Whereas each place in •a contains all the tokens that in the counterpart
marking are stored in the corresponding place in •b1 as well all the to-
kens that were consumed from that place in order to produce the tokens
that are in the counterpart stored in b2. This correspondence in not an
injection, though. For each run of Dn there can be many corresponding
runs of Dn+1. This is because there is a choice when to �re b3, if tokens
produced by a into a• are not immediately consumed.

The rest of the proof follows the one given for (a).
(c) The last re�nement was an iteration split (see Fig. 9c). As previ-

ously, with the �rst n re�nements, we can construct a blank hierarchical
data�ow and label it accordingly to the labeling of Dn+1. In the result-
ing data�ow Dn, the label of transition a represents a composition of
three functions: ΦTNn+1(b4), a pair function of appropriate type that con-
structs a pair of twice its argument, and a function ΦTNn+1(b1). That is
ITn(TNn(a)) = ITn+1(TNn+1(b1)), OTn(TNn(a)) = OTn+1(TNn+1(b4))
and ΦTNn(a) = ΦTNn+1(b4) ◦ pair ◦ ΦTNn+1(b1). The correspondence of runs
is analogous as in (b). The rest of the proof follows.

(d) The last re�nement was a trueness based decision (see Fig. 9d).
As previously, with the �rst n re�nements, we can construct a blank
hierarchical data�ow and label it accordingly to the labeling of Dn+1.
That is ITn(TNn(a2)) = ITn+1(TNn+1(b2)) = ITn+1(TNn+1(b3)) and
OTn(TNn(a2)) = OTn+1(TNn+1(b2)) = OTn+1(TNn+1(b3)), and for the
edge names ENn(〈a1, a2〉) = ENn+1(〈b1, b2〉) = ENn+1(〈b1, b3〉). Assume
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ITn+1(TNn+1(b2)) = 〈l1 : τ1, ..., lk : τk, ENn(〈a1, a2〉) : PT (a1)〉. TNn(a2)
represents a function computing if-then-else expression that results in
evaluating of either of ΦTNn+1(b2) or ΦTNn+1(b3). Which means that for
every values v1, ..., vk of appropriate types and every v : PT (a1) the re-
sult of function ΦTNn(a2)(〈l1 : v1, ..., lk : vk, ENn(〈a1, a2〉) : v〉) equals
ΦTN(b2)(〈l1 : v1, ..., lk : vk, ENn(〈a1, a2〉) : v〉), if v = false, or ΦTN(b3)(〈l1 :
v1, ..., lk : vk, ENn(〈a1, a2〉) : v〉), otherwise.

The correspondence of runs in this case is a bijection. Transitions are
�red in the same order, but all occurrences of b2 and b3 are replaced with
a2 or depending on the consumed token value a2 is replaced by b2 or b3.
The markings are equal to their counterparts in all the place that appear
in both of the data�ows. Whereas a1 contains the same tokens as b1 and
a3 the same tokens as b4.

The rest of the proof follows.
(e) The last re�nement was an emptiness based decision (see Fig. 9e).

The proof follows the one given for (d).
(f) The last re�nement was an AND-split (see Fig. 9f). As previously,

with the �rst n re�nements, we can construct a blank hierarchical data�ow
and label it accordingly to the labeling of Dn+1. Since AND-split was
the last re�nement applied in generation of blank data�ow of Dn+1, we
know that b1• = b2•, •b1 = •b2 and thus PTn+1(b1) = PTn+1(b2). For
every transition tn+1 ∈ b1•, where IT (TNn+1(tn+1)) = 〈l1 : τ1, ..., lk :
τk, ENn+1(〈b1, tn+1〉) : PTn+1(b1), ENn+1(〈b2, tn+1〉) : PTn+1(b2)〉, its cor-
responding transition tn ∈ a• is de�ned as follows:
• IT (TNn(tn)) = 〈l1 : τ1, ..., lk : τk, ENn+1(〈b1, tn+1〉) : PTn+1(b1)〉, that
is ENn(〈a, tn〉) = ENn+1〈b1, tn+1〉,

• OT (TNn(tn)) = OT (TNn+1(tn+1)),
• for all values v1, ..., vk of appropriate types and all v : PTn the func-
tion computed by this transition is de�ned as follows ΦTNn(tn)(〈l1 :
v1, ..., lk : vk, ENn+1(〈b1, tn+1〉) : v〉) = ΦTNn+1(tn+1)(〈l1 : v1, ..., lk :
vk, ENn+1(〈b1, tn+1〉) : v, ENn+1(〈b2, tn+1〉) : v〉).
The observation that in Dn+1 places b1 and b2 get the same tokens

as a gets in Dn completes the proof of Lemma 17.
The correspondence of runs in this case is a bijection. Transitions are

�red in the same order. The markings are equal to their counterparts in
all the place that appear in both of the data�ows. Whereas a contains the
same tokens as b1 and b2, which have to have identical content because,
each of the transitions consuming token from one of those places consumes
a token with identical history from the other one (b1• = b2•) and from
Lemma 17 we know that there is no choice of such tokens, so it must
be exactly the one consumed from the �rst place. The rest of the proof
follows.

2
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7 The bioinformatics data�ow example revisited

We conjecture that in terms of expressible functions hierarchical data�ows are
equivalent to NRC and thus, by following our claim in [9], are su�cient to
describe most data-centric experiments in life sciences such as bioinformatics.
To illustrate this we consider again the data�ow in Fig. 7. Closer inspection
of this data�ow shows that it is not hierarchical. This is because the itera-
tions in the data�ow start with a transition that only has unnesting edges
as outgoing edges. This is in con�ict with the iteration split rule in Fig. 9
which requires that next to the unnest-nest branch there is another branch
that does not unnest and nest. Recall that the reason for this requirement is
that if the function associated with the initial transition produces the empty
set then the transition produces no tokens and the work�ow will probably not
terminate properly. Observe that this is indeed what happens if the work�ow
is presented with an empty �healthy� or �diseased� peptide list since the ∪
transition will never be enabled. The data�ow is therefore strictly speaking
not semi-sound and cannot deal correctly with all possible input values. This
soundness problem can be easily solved by introducing extra branches for the
synchronization of the iterations as is shown in Fig. 13.

The corrected version of the data�ow can be shown to be hierarchical, which is
demonstrated in Fig. 14 where the corresponding blank data�ow, called BDF8

here, is generated from the blank data�ow with only one place, called BDF1.
The gray boxes indicate groups of nodes that were generated by expanding a
single node in the preceding blank data�ow. For example, all nodes in BDF2

where generated from the place in BDF1 by applying the sequential place split
and sequential transition split. For BDF3 a place is split by using theAND-split
and a transition is split by applying iteration split. In the following step BDF4

is generated by applying the sequential place split to two places. Then BDF5

is generated by using the AND-split for two places. Then for constructing
BDF6 some of the places that were just introduced are expanded with the
sequential place split. In the next step BDF7 is constructed by applying the
iteration split to four transitions and the AND-split to two places. Finally, to
construct BDF7 the sequential place split and sequential transition split are
applied several times.

As the preceding example shows, the hierarchical analysis of a data�ow can
sometimes reveal subtle soundness problems. We intend to create a tool in
which it would not only be possible to construct data�ows by re�nement, but
also arbitrarily constructed data�ows could be tested if they are hierarchical.
For the rules proposed by Chrzastowski-Wachtel et al. for plain Petri nets a
similar test is possible in polynomial time [6].
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Figure 13. Finding di�erences in peptide content of two samples (hierarchical)

8 Conclusions and further research

In this paper we have presented DFL � a graphical language for describing
data�ows, i.e., work�ows where large amounts of complex data are manipu-
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Figure 14. The generation of the blank data�ow from Fig. 7

lated and the structure of the manipulated data is re�ected in the structure
of the work�ow. In order to be able to describe both the control �ow and the
data �ow the language is based on Petri nets and the nested relational calcu-
lus and has a formal semantics that is based upon these two formalisms. This
ensures that from the large body of existing research on these we can reuse or
adapt certain results. This is illustrated by taking a well-known technique for
generating sound work�ow nets and using it to generate semi-sound data�ows.

In future research we intend to compare, investigate and extend this formal-
ism in several ways. Since the data�ow nets tend to become quite large for
relatively simple data�ows, we intend to introduce syntactic sugar. We also
want to investigate whether a similar control-�ow semantics can be given for
the textual NRC and see how the two formalisms compare under these se-
mantics. Since existing systems for data-intensive work�ows often lack formal
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semantics, we will investigate if our formalism can be used to provide these. It
is also our intention to add the notions of provenance and run of a data�ow to
the semantics such that these can be queried with a suitable query language
such as the NRC. This can be achieved in a straightforward and intuitive way
by remembering all tokens that passed through a certain place and de�ning
the provenance as a special binary relation over these tokens. Storing all these
tokens makes it not only possible to query the run of a data�ow but also to
reuse intermediate results of previous versions of a data�ow. Another subject
is querying data�ows, where a special language is de�ned to query data�ow
repositories, to �nd for example similar data�ows or data�ows that can be
reused for the current research problem. Since data�ows in our language are
essentially labeled graphs it seems likely that a suitable existing graph-based
query formalism could be employed for this. Finally we will investigate the pos-
sibilities of work�ow optimization by applying known techniques from NRC
research. Since optimization often depends on the changing of the order of
certain operations it will then be important to extend the formalism with a
notion of �color� for extension transitions that indicates whether their relative
order may be changed by the optimizer.
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