
NRC as a formal model for expressing
bioinformatics workflows

A. Gambin 1, J. Hidders 2, N. Kwasnikowska 3, S. Lasota 1, J. Sroka 1, J. Tyszkiewicz 1, J. Van den Bussche 3

1 Warsaw University, 2 University of Antwerp, 3 Hasselt University

Acknowledments
Special thanks to J. Dutkowski, A. Gambin, B. Kluge, K.
Kowalczyk, J.Tiuryn from Institute of Informatics, Warsaw
University, and M. Dadlez from Institute of Biochemistry and
Biophysics, Polish Academy of Science, for providing their
workflow.

References
[1] P. Buneman et al., “Principles of programming with complex objects
and collection types”, Theoretical Computer Science, 1995, 149:3–48.

[2] I. Attinas et al., “Kepler: An Extensible System for Design and
Execution of Scientific Workflows”, in proc. SSDBM 2004.

[3] T. Oinn et al., “Taverna: a tool for the composition and enactment of
bioinformatics workflows”, Bioinformatics, 2004, 20(17):3045–3054.

[4] S. Davidson et al., “BioKleisli: A Digital Library for Biomedical
Researchers”, J. Digital Libraries, 1997, 1(1):36–53.

[5] A. Tröger et al., “A language for comprehensively supporting the in
vitro experimental process in silico”, in proc. BIBE 2004.

[6] J. Hidders et al., “Petri nets + nested relational calculus = dataflow
language”, submitted to CoopIS 2005.

Nested Relational Calculus
● established formalism for querying over

complex objects [1]

● complex objects are arbitrarily nested
collections and tuples

● collections can be sets, multi-sets and lists

● set-based model: sets {} and tuples 〈〉

● typed query language

– extensible repertoire of base types
● Boolean, String, Number
● FASTA sequence file
● XML, based on a DTD or XML Schema

– complex types: nested sets and tuples

NRC core operations
● constant value of a base type — “John”, true, 89

● variable of any type, either base type or complex — $patient

● tuple construction — 〈 name: “John”, condition: true, age: 89 〉

● tuple projection — $patient.name

● empty set construction — ∅

● singleton set construction — {$patient}

● set union — $patientList = $healthy ∪ $diseased

● flattening of a nested set

– $patientList = flatten({$healthy, $diseased})

● iteration over a set

– for $patient in $patientList return $patient.name

● named program definition — pBLAST: FASTA → {AccessionNr}

– external programs, used as a “black box”

– internal programs, help with top-down design

● equality test for base types — $patient.name = “John”

● emptiness test for sets — $patientList = ∅

● conditional

– if $p.condition then $diseased ∪ {$p} else $healthy ∪ {$p}

● core operations can be combined into programs

Workflow example – description
● 3D signal maps from LC-MS analysis of blood

samples

● two groups: diseased and normal

● extracting clusters corresponding to peptides

● choosing classifiers, defined by a feature
selection method

– t-statistic, correlation

● and a classification algorithm

– Decision Trees (DT), Random Forest (RF), Support
Vector Machine (SVM)

● k-fold cross validation to obtain the following
performance statistics for each classifier

– sensitivity, specificity

Workflow example – data types
● base types

String, Number, Boolean, Sample

● complex types

– input type

PatSample = 〈 id: String, sample: Sample, diseased: Boolean 〉

– output type

FSelCAlg = 〈 tstat: {CAlg}, corr: {Calg} 〉

with CAlg = 〈 dt: PStats, rf: PStats, svm: PStats 〉

and PStats = 〈 sensitivity: Number, specificity: Number 〉

– auxiliary types
TestTrain = 〈 test: PepClusters, train: PepClusters 〉

PepClusters = { 〈 clustermass: Number, patlist: PatList 〉 }

PatList = { 〈 patid: String, diseased: Boolean, intensity: Number 〉 }

Problems
● workflows execute as a mix of automated

scripts and manual intervention

– difficult to maintain
● results are stored in ad-hoc ways, e.g. files,

Excel sheets

– difficult to manage

Existing solutions
● workflow execution engines

– Kepler [2], Taverna [3]
● not based on a formal data model, or too

complicated and not data oriented

Context
● bioinformatics workflows

– network of data centered processing steps
● processing steps involve

– large amounts of complex data
● sequence files, BLAST reports
● XML data

– a variety of tools
● EMBOSS suite, BioPerl scripts
● webservices, Mascot searches

Our contribution
● using Nested Relational Calculus [1] for

modeling data oriented workflows

● many bioinformatics workflows can be modeled
in NRC

● advantages of using NRC

– puts data oriented workflows on a firm
foundation

– formalism is already well understood
● natural approach

– BioKleisli [4] is also based on NRC

Graphical representation
● dataflow language based on Petri nets and

Nested Relational Calculus [6]

● typing system and core operations from NRC

● top-down, hierarchical design of the data flow

 dataflow

clusterPatData

{PatSample}

 ∗

 ∗-1

processPat

PatSample

PatData

{PatData}

 〈⋅,⋅〉

FSelCAlg

tstat

PepClusters

kSubsets kSubsets

selectSets selectSets

tstatistic correlation

 corr

SubSets

{TestTrain}

{CAlg}

 tstatistic
{TestTrain}

 ∗

 ∗-1

{CAlg}

 〈⋅,⋅,⋅〉

CAlg

dt

tstatisticDT

 rf

tstatisticRF

 svm

tstatisticSVM

TestTrain

[train] [test]

train test

[train] [test]

train test

[train] [test]

train test

PepClusters

PerformanceStats

Workflow example – NRC programs
● top-down design of the workflow

– after processing and clustering of raw patient data,
k-fold cross validation is performed

define dataflow($s: {PatSample}): FSelCAlg as

 kfoldCrossValidation(

 clusterPatData(

 for $i in $s return processPat($i)))

● some internal programs

– the set of peptide clusters is divided k times into a
training set and a test set by internal program
selectSets and external program kSubsets

 these pairs are passed to internal programs tstatistic
and correlation, then a tuple is constructed from
their results

define kfoldCrossValidation($pc: PepClusters): FSelCAlg as

 〈 tstat: tstatictic(selectSets(kSubsets($pc))),

 corr: correlation(selectSets(kSubsets($pc))) 〉

– for each pair of training set and test set, external
programs corresponding to chosen classifiers with
t-statistic as feature selection method are invoked,
then a tuple is constructed from received results

define tstatistic($tt: {TestTrain}): {Calg} as

 for $i in $tt return

 〈 dt: tstatisticDT($i.train, $i.test),

 rf: tstatisticRF($i.train, $i.test),

 svm: tstatisticSVM($i.train, $i.test) 〉

NRC as a formal model for expressing
bioinformatics workflows

A. Gambin 1, J. Hidders 2, N. Kwasnikowska 3, S. Lasota 1, J. Sroka 1, J. Tyszkiewicz 1, J. Van den Bussche 3

1 Warsaw University, 2 University of Antwerp, 3 Hasselt University

Acknowledments
Special thanks to J. Dutkowski, A. Gambin, B. Kluge, K.
Kowalczyk, J.Tiuryn from Institute of Informatics, Warsaw
University, and M. Dadlez from Institute of Biochemistry and
Biophysics, Polish Academy of Science, for providing their
workflow.

References
[1] P. Buneman et al., “Principles of programming with complex objects
and collection types”, Theoretical Computer Science, 1995, 149:3–48.

[2] I. Attinas et al., “Kepler: An Extensible System for Design and
Execution of Scientific Workflows”, in proc. SSDBM 2004.

[3] T. Oinn et al., “Taverna: a tool for the composition and enactment of
bioinformatics workflows”, Bioinformatics, 2004, 20(17):3045–3054.

[4] S. Davidson et al., “BioKleisli: A Digital Library for Biomedical
Researchers”, J. Digital Libraries, 1997, 1(1):36–53.

[5] A. Tröger et al., “A language for comprehensively supporting the in
vitro experimental process in silico”, in proc. BIBE 2004.

[6] J. Hidders et al., “Petri nets + nested relational calculus = dataflow
language”, submitted to CoopIS 2005.

Nested Relational Calculus
● established formalism for querying over

complex objects [1]

● complex objects are arbitrarily nested
collections and tuples

● collections can be sets, multi-sets and lists

● set-based model: sets {} and tuples 〈〉

● typed query language

– extensible repertoire of base types
● Boolean, String, Number
● FASTA sequence file
● XML, based on a DTD or XML Schema

– complex types: nested sets and tuples

NRC core operations
● constant value of a base type — “John”, true, 89

● variable of any type, either base type or complex — $patient

● tuple construction — 〈 name: “John”, condition: true, age: 89 〉

● tuple projection — $patient.name

● empty set construction — ∅

● singleton set construction — {$patient}

● set union — $patientList = $healthy ∪ $diseased

● flattening of a nested set

– $patientList = flatten({$healthy, $diseased})

● iteration over a set

– for $patient in $patientList return $patient.name

● named program definition — pBLAST: FASTA → {AccessionNr}

– external programs, used as a “black box”

– internal programs, help with top-down design

● equality test for base types — $patient.name = “John”

● emptiness test for sets — $patientList = ∅

● conditional

– if $p.condition then $diseased ∪ {$p} else $healthy ∪ {$p}

● core operations can be combined into programs

Workflow example – description
● 3D signal maps from LC-MS analysis of blood

samples

● two groups: diseased and normal

● extracting clusters corresponding to peptides

● choosing classifiers, defined by a feature
selection method

– t-statistic, correlation

● and a classification algorithm

– Decision Trees (DT), Random Forest (RF), Support
Vector Machine (SVM)

● k-fold cross validation to obtain the following
performance statistics for each classifier

– sensitivity, specificity

Workflow example – data types
● base types

String, Number, Boolean, Sample

● complex types

– input type

PatSample = 〈 id: String, sample: Sample, diseased: Boolean 〉

– output type

FSelCAlg = 〈 tstat: {CAlg}, corr: {Calg} 〉

with CAlg = 〈 dt: PStats, rf: PStats, svm: PStats 〉

and PStats = 〈 sensitivity: Number, specificity: Number 〉

– auxiliary types
TestTrain = 〈 test: PepClusters, train: PepClusters 〉

PepClusters = { 〈 clustermass: Number, patlist: PatList 〉 }

PatList = { 〈 patid: String, diseased: Boolean, intensity: Number 〉 }

Problems
● workflows execute as a mix of automated

scripts and manual intervention

– difficult to maintain
● results are stored in ad-hoc ways, e.g. files,

Excel sheets

– difficult to manage

Existing solutions
● workflow execution engines

– Kepler [2], Taverna [3]
● not based on a formal data model, or too

complicated and not data oriented

Context
● bioinformatics workflows

– network of data centered processing steps
● processing steps involve

– large amounts of complex data
● sequence files, BLAST reports
● XML data

– a variety of tools
● EMBOSS suite, BioPerl scripts
● webservices, Mascot searches

Our contribution
● using Nested Relational Calculus [1] for

modeling data oriented workflows

● many bioinformatics workflows can be modeled
in NRC

● advantages of using NRC

– puts data oriented workflows on a firm
foundation

– formalism is already well understood
● natural approach

– BioKleisli [4] is also based on NRC

Graphical representation
● dataflow language based on Petri nets and

Nested Relational Calculus [6]

● typing system and core operations from NRC

● top-down, hierarchical design of the data flow

 dataflow

clusterPatData

{PatSample}

 ∗

 ∗-1

processPat

PatSample

PatData

{PatData}

 〈⋅,⋅〉

FSelCAlg

tstat

PepClusters

kSubsets kSubsets

selectSets selectSets

tstatistic correlation

 corr

SubSets

{TestTrain}

{CAlg}

 tstatistic
{TestTrain}

 ∗

 ∗-1

{CAlg}

 〈⋅,⋅,⋅〉

CAlg

dt

tstatisticDT

 rf

tstatisticRF

 svm

tstatisticSVM

TestTrain

[train] [test]

train test

[train] [test]

train test

[train] [test]

train test

PepClusters

PerformanceStats

Workflow example – NRC programs
● top-down design of the workflow

– after processing and clustering of raw patient data,
k-fold cross validation is performed

define dataflow($s: {PatSample}): FSelCAlg as

 kfoldCrossValidation(

 clusterPatData(

 for $i in $s return processPat($i)))

● some internal programs

– the set of peptide clusters is divided k times into a
training set and a test set by internal program
selectSets and external program kSubsets

 these pairs are passed to internal programs tstatistic
and correlation, then a tuple is constructed from
their results

define kfoldCrossValidation($pc: PepClusters): FSelCAlg as

 〈 tstat: tstatictic(selectSets(kSubsets($pc))),

 corr: correlation(selectSets(kSubsets($pc))) 〉

– for each pair of training set and test set, external
programs corresponding to chosen classifiers with
t-statistic as feature selection method are invoked,
then a tuple is constructed from received results

define tstatistic($tt: {TestTrain}): {Calg} as

 for $i in $tt return

 〈 dt: tstatisticDT($i.train, $i.test),

 rf: tstatisticRF($i.train, $i.test),

 svm: tstatisticSVM($i.train, $i.test) 〉

NRC as a formal model for expressing
bioinformatics workflows

A. Gambin 1, J. Hidders 2, N. Kwasnikowska 3, S. Lasota 1, J. Sroka 1, J. Tyszkiewicz 1, J. Van den Bussche 3

1 Warsaw University, 2 University of Antwerp, 3 Hasselt University

Acknowledments
Special thanks to J. Dutkowski, A. Gambin, B. Kluge, K.
Kowalczyk, J.Tiuryn from Institute of Informatics, Warsaw
University, and M. Dadlez from Institute of Biochemistry and
Biophysics, Polish Academy of Science, for providing their
workflow.

References
[1] P. Buneman et al., “Principles of programming with complex objects
and collection types”, Theoretical Computer Science, 1995, 149:3–48.

[2] I. Attinas et al., “Kepler: An Extensible System for Design and
Execution of Scientific Workflows”, in proc. SSDBM 2004.

[3] T. Oinn et al., “Taverna: a tool for the composition and enactment of
bioinformatics workflows”, Bioinformatics, 2004, 20(17):3045–3054.

[4] S. Davidson et al., “BioKleisli: A Digital Library for Biomedical
Researchers”, J. Digital Libraries, 1997, 1(1):36–53.

[5] A. Tröger et al., “A language for comprehensively supporting the in
vitro experimental process in silico”, in proc. BIBE 2004.

[6] J. Hidders et al., “Petri nets + nested relational calculus = dataflow
language”, submitted to CoopIS 2005.

Nested Relational Calculus
● established formalism for querying over

complex objects [1]

● complex objects are arbitrarily nested
collections and tuples

● collections can be sets, multi-sets and lists

● set-based model: sets {} and tuples 〈〉

● typed query language

– extensible repertoire of base types
● Boolean, String, Number
● FASTA sequence file
● XML, based on a DTD or XML Schema

– complex types: nested sets and tuples

NRC core operations
● constant value of a base type — “John”, true, 89

● variable of any type, either base type or complex — $patient

● tuple construction — 〈 name: “John”, condition: true, age: 89 〉

● tuple projection — $patient.name

● empty set construction — ∅

● singleton set construction — {$patient}

● set union — $patientList = $healthy ∪ $diseased

● flattening of a nested set

– $patientList = flatten({$healthy, $diseased})

● iteration over a set

– for $patient in $patientList return $patient.name

● named program definition — pBLAST: FASTA → {AccessionNr}

– external programs, used as a “black box”

– internal programs, help with top-down design

● equality test for base types — $patient.name = “John”

● emptiness test for sets — $patientList = ∅

● conditional

– if $p.condition then $diseased ∪ {$p} else $healthy ∪ {$p}

● core operations can be combined into programs

Workflow example – description
● 3D signal maps from LC-MS analysis of blood

samples

● two groups: diseased and normal

● extracting clusters corresponding to peptides

● choosing classifiers, defined by a feature
selection method

– t-statistic, correlation

● and a classification algorithm

– Decision Trees (DT), Random Forest (RF), Support
Vector Machine (SVM)

● k-fold cross validation to obtain the following
performance statistics for each classifier

– sensitivity, specificity

Workflow example – data types
● base types

String, Number, Boolean, Sample

● complex types

– input type

PatSample = 〈 id: String, sample: Sample, diseased: Boolean 〉

– output type

FSelCAlg = 〈 tstat: {CAlg}, corr: {Calg} 〉

with CAlg = 〈 dt: PStats, rf: PStats, svm: PStats 〉

and PStats = 〈 sensitivity: Number, specificity: Number 〉

– auxiliary types
TestTrain = 〈 test: PepClusters, train: PepClusters 〉

PepClusters = { 〈 clustermass: Number, patlist: PatList 〉 }

PatList = { 〈 patid: String, diseased: Boolean, intensity: Number 〉 }

Problems
● workflows execute as a mix of automated

scripts and manual intervention

– difficult to maintain
● results are stored in ad-hoc ways, e.g. files,

Excel sheets

– difficult to manage

Existing solutions
● workflow execution engines

– Kepler [2], Taverna [3]
● not based on a formal data model, or too

complicated and not data oriented

Context
● bioinformatics workflows

– network of data centered processing steps
● processing steps involve

– large amounts of complex data
● sequence files, BLAST reports
● XML data

– a variety of tools
● EMBOSS suite, BioPerl scripts
● webservices, Mascot searches

Our contribution
● using Nested Relational Calculus [1] for

modeling data oriented workflows

● many bioinformatics workflows can be modeled
in NRC

● advantages of using NRC

– puts data oriented workflows on a firm
foundation

– formalism is already well understood
● natural approach

– BioKleisli [4] is also based on NRC

Graphical representation
● dataflow language based on Petri nets and

Nested Relational Calculus [6]

● typing system and core operations from NRC

● top-down, hierarchical design of the data flow

 dataflow

clusterPatData

{PatSample}

 ∗

 ∗-1

processPat

PatSample

PatData

{PatData}

 〈⋅,⋅〉

FSelCAlg

tstat

PepClusters

kSubsets kSubsets

selectSets selectSets

tstatistic correlation

 corr

SubSets

{TestTrain}

{CAlg}

 tstatistic
{TestTrain}

 ∗

 ∗-1

{CAlg}

 〈⋅,⋅,⋅〉

CAlg

dt

tstatisticDT

 rf

tstatisticRF

 svm

tstatisticSVM

TestTrain

[train] [test]

train test

[train] [test]

train test

[train] [test]

train test

PepClusters

PerformanceStats

Workflow example – NRC programs
● top-down design of the workflow

– after processing and clustering of raw patient data,
k-fold cross validation is performed

define dataflow($s: {PatSample}): FSelCAlg as

 kfoldCrossValidation(

 clusterPatData(

 for $i in $s return processPat($i)))

● some internal programs

– the set of peptide clusters is divided k times into a
training set and a test set by internal program
selectSets and external program kSubsets

 these pairs are passed to internal programs tstatistic
and correlation, then a tuple is constructed from
their results

define kfoldCrossValidation($pc: PepClusters): FSelCAlg as

 〈 tstat: tstatictic(selectSets(kSubsets($pc))),

 corr: correlation(selectSets(kSubsets($pc))) 〉

– for each pair of training set and test set, external
programs corresponding to chosen classifiers with
t-statistic as feature selection method are invoked,
then a tuple is constructed from received results

define tstatistic($tt: {TestTrain}): {Calg} as

 for $i in $tt return

 〈 dt: tstatisticDT($i.train, $i.test),

 rf: tstatisticRF($i.train, $i.test),

 svm: tstatisticSVM($i.train, $i.test) 〉

