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Nested Relational Calculus
● established formalism for querying over 

complex objects [1]

● complex objects are arbitrarily nested 
collections and tuples

● collections can be sets, multi-sets and lists

● set-based model: sets {} and tuples 〈〉

● typed query language

– extensible repertoire of base types
● Boolean, String, Number
● FASTA sequence file
● XML, based on a DTD or XML Schema

– complex types: nested sets and tuples

NRC core operations
● constant value of a base type — “John”, true, 89

● variable of any type, either base type or complex — $patient

● tuple construction — 〈 name: “John”, condition: true, age: 89 〉

● tuple projection — $patient.name

● empty set construction — ∅

● singleton set construction — {$patient}

● set union — $patientList = $healthy ∪ $diseased

● flattening of a nested set 

– $patientList = flatten( {$healthy, $diseased})

● iteration over a set

–  for $patient in $patientList return $patient.name

● named program definition — pBLAST: FASTA → {AccessionNr}

– external programs, used as a “black box”

– internal programs, help with top-down design

● equality test for base types — $patient.name = “John”

● emptiness test for sets — $patientList = ∅

● conditional

– if $p.condition then $diseased ∪ {$p} else $healthy ∪ {$p} 

● core operations can be combined into programs

Workflow example – description
● 3D signal maps from LC-MS analysis of blood 

samples

● two groups: diseased and normal

● extracting clusters corresponding to peptides

● choosing classifiers, defined by a feature 
selection method 

– t-statistic, correlation

● and a classification algorithm

– Decision Trees (DT), Random Forest (RF), Support 
Vector Machine (SVM)

● k-fold cross validation to obtain the following 
performance statistics for each classifier

– sensitivity, specificity

Workflow example – data types
● base types

String, Number, Boolean, Sample

● complex types

– input type

PatSample = 〈 id: String, sample: Sample, diseased: Boolean 〉

– output type

FSelCAlg = 〈 tstat: {CAlg}, corr: {Calg} 〉

with CAlg = 〈 dt: PStats, rf: PStats, svm: PStats 〉

and PStats = 〈 sensitivity: Number, specificity: Number 〉

– auxiliary types
TestTrain = 〈 test: PepClusters, train: PepClusters 〉

PepClusters = { 〈 clustermass: Number, patlist: PatList 〉 }

PatList = { 〈 patid: String, diseased: Boolean, intensity: Number 〉 }  

Problems
● workflows execute as a mix of automated 

scripts and manual intervention

– difficult to maintain
● results are stored in ad-hoc ways, e.g. files, 

Excel sheets

– difficult to manage

Existing solutions
● workflow execution engines

– Kepler [2], Taverna [3]
● not based on a formal data model, or too 

complicated and not data oriented 

Context
● bioinformatics workflows

– network of data centered processing steps
● processing steps involve

– large amounts of complex data
● sequence files, BLAST reports
● XML data

– a variety of tools
● EMBOSS suite, BioPerl scripts
● webservices, Mascot searches

Our contribution
● using Nested Relational Calculus [1] for 

modeling  data oriented workflows

● many bioinformatics workflows can be modeled 
in NRC

● advantages of using NRC

– puts data oriented workflows on a firm 
foundation

– formalism is already well understood
● natural approach

– BioKleisli [4] is also based on NRC

Graphical representation
● dataflow language based on Petri nets and 

Nested Relational Calculus  [6]

● typing system and core operations from NRC

● top-down, hierarchical design of the data flow
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Workflow example – NRC programs
● top-down design of the workflow

– after processing and clustering of raw patient data, 
k-fold cross validation is performed

define dataflow($s: {PatSample}): FSelCAlg as

  kfoldCrossValidation(

    clusterPatData( 

      for $i in $s return processPat($i)))

● some internal programs

– the set of peptide clusters is divided k times into a 
training set and a test set by internal program 
selectSets and external program kSubsets 

   these pairs are passed to internal programs tstatistic 
and correlation, then a tuple is constructed from 
their results

define kfoldCrossValidation($pc: PepClusters): FSelCAlg as

  〈 tstat: tstatictic(selectSets(kSubsets($pc))),

     corr: correlation(selectSets(kSubsets($pc))) 〉

– for each pair of training set and test set, external 
programs corresponding to chosen classifiers with
t-statistic as feature selection method are invoked, 
then a tuple is constructed from received results 

define tstatistic($tt: {TestTrain}): {Calg} as

  for $i in $tt return

    〈 dt: tstatisticDT($i.train, $i.test),

      rf: tstatisticRF($i.train, $i.test),

      svm: tstatisticSVM($i.train, $i.test) 〉
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