
Software Development Plan

Łukasz Bieniasz-Krzywiec
Dariusz Leniowski

Jakub Łącki

30 maja 2007

1

Spis treści
1 Wprowadzenie 4

1.1 Cel . 4
1.2 Zakres . 4
1.3 Definicje . 4
1.4 Załączniki . 4

2 Omówienie projektu 4
2.1 Cel i zakres projektu . 4
2.2 Założenia i zależności . 4
2.3 Ramowy harmonogram . 5
2.4 Produkty projektu . 5
2.5 Procedura zmian w planie projektu . 5

3 Organizacja projektu 5
3.1 Struktura organizacyjna . 5
3.2 Kontakty zewnętrzne . 6
3.3 Role i zadania . 7

4 Zarządzanie projektem 8
4.1 Oszacowania . 8
4.2 Punkty funkcyjne . 8

4.2.1 Nieznormalizowane punkty funkcyjne . 8
4.2.2 Podstawowe cechy systemu . 9
4.2.3 Znormalizowane punkty funkcyjne . 10

4.3 Plan projektu . 10
4.3.1 Plan faz projektu . 10
4.3.2 Cele poszczególnych iteracji . 11
4.3.3 Wydania . 12
4.3.4 Harmonogram projektu . 12
4.3.5 Zasoby . 12
4.3.6 Diagram Gantta (tworzenie dokumentacji) . 14
4.3.7 Diagram podziału pracy (tworzenie dokumentacji) 15
4.3.8 Budżet . 16

4.4 Plany iteracji . 16
4.4.1 Cel . 16
4.4.2 Podział obowiązków . 16
4.4.3 Przypadki użycia . 16
4.4.4 Diagram Gantta (implementacja) . 17
4.4.5 Diagram podziału pracy (implementacja) . 18

4.5 Nadzór i kontrola projektu . 18
4.5.1 Plan zarządzania wymaganiami . 18
4.5.2 Plan zarządzania harmonogramem . 19
4.5.3 Plan pomiarów . 19
4.5.4 Plan kontroli jakości . 19

4.6 Plan zarządzania ryzykiem . 19

2

5 Plany procesów technicznych 20
5.1 Metody, narzędzia i stosowane technologie . 20

6 Plany pomocnicze 20
6.1 Plan zarządzania zmianami . 20
6.2 Plan oceny . 21
6.3 Plan dokumentacji . 21
6.4 Plan zapewnienia jakości . 21

6.4.1 Zapewnienie jakości dokumentacji . 21
6.4.2 Zapewnienie jakości kodu . 21

6.5 Plan rozwiązywania problemów . 21

7 Historia zmian 22

3

1 Wprowadzenie

1.1 Cel
Celem Software Development Plan jest przedstawienie planów rozwoju projektu YapS w postaci, która
przyspieszy wykonanie projektu i ułatwi zarządzanie nim.

1.2 Zakres
Software Development Plan obejmuje najważniejsze czynności i procedury w poszczególnych fazach
budowy aplikacji. Uwzględnia on też strukturę i podział prac w zespole, który pracuje nad systemem.

1.3 Definicje
Definicje używanych terminów i skrótów znajdują się w załączonym słowniku.

1.4 Załączniki
Załączniki:

1. Wizja

2. Przypadki Użycia

3. Plan Testów

4. Słownik

2 Omówienie projektu

2.1 Cel i zakres projektu
Celem projektu YapS jest stworzenie systemu ułatwiającego przeprowadzanie wszelkiego rodzaju te-
stów oraz ankiet i nieodpłatne dostarczenie go szerokiemu gronu odbiorców.

Głównymi zaletami YapS będą jego wsparcie do przeprowadzania egzaminów, bezpieczeństwo, w
tym kontrola dostępu do poszczególnych formularzy, a przede wszystkim łatwość obsługi oraz obróbki
zgromadzonych danych.

2.2 Założenia i zależności
1. YapS jest projektem darmowym,

2. YapS będzie rozpowszechniany na zasadach licencji wolnego oprogramowania,

3. YapS będzie realizowany przez zespół studentów WMIM (szczegóły w rozdziale 3.1),

4. praca nad dokumentacją YapS ma zostać ukończona do 30.06.2007 (szczegóły w rozdziale 4.3.4),

5. dokumentacja YapS jest pisana przy założeniu, że praca nad systemem będzie kontynuowana po
ukończeniu drugiego roku studiów przez członków zespołu.

4

2.3 Ramowy harmonogram
Proces tworzenia YapS zostanie podzielony na 5 faz: Zbieranie wymagań, Planowanie, Tworzenie
Dokumentacji, Implementację, Testowanie i poprawianie oraz Wdrażanie. Pierwsze trzy fazy odbywać
będą wodospadowo. Związane jest to z tym, że każdy produkt tworzony podczas tych trzech faz w
istotny sposób zależał od materiału przerobionego na zajęciach z Inżynierii Oprogramowania.

Począwszy od Implementacji praca zacznie się odbywać iteracyjnie. System zostanie podzielony
na niezależne części (pakiety) i praca nad każdym z nich będzie mogła odbywać się równolegle. W
kolejnych iteracjach poszczególne warstwy systemu coraz bardziej rozwijane.

• Iteracja 1 — wyświetlanie i wypełnianie formularzy.

• Iteracja 2 — tworzenie formularza (podstawowe komponenty); prawa dostępu do formularzy.

• Iteracja 3 — wyszukiwanie; wiadomości systemowe; tworzenie formularza (kolejne kompo-
nenty).

• Iteracja 4 — statystyki; ostateczna lista komponentów, zarządzanie grupami.

2.4 Produkty projektu
produkt data wydania
Wizja 14.03.2007
Przypadki Użycia 21.03.2007
Software Architecture Document 23.05.2007
Software Development Plan 30.05.2007
Plan testów 30.05.2007
YapS DEMO 26.11.2007
YapS ALFA 07.01.2008
YapS BETA 03.03.2008
YapS 1.0 21.04.2008

2.5 Procedura zmian w planie projektu
Zmiany w tym dokumencie powinny zostać zatwierdzone przez większość członków zespołu. W przy-
padku nierozsądzonych kwestii spornych ostateczny głos ma kierownik projektu, a jego decyzje są
ostateczne. Wszystkie dokumenty muszą zostać uaktualnione, a zmiany w nich dokonane uwzględ-
nione w tych dokumentach.

3 Organizacja projektu

3.1 Struktura organizacyjna
W skład zespołu tworzącego YapS wchodzą:

• Jakub Łącki - kierownik zespołu, analityk/programista
(e-mail: J.Lacki@yaps.pl),

5

• Łukasz Bieniasz-Krzywiec -
zastępca kierownika, kontroler jakości, analityk/programista, tester
(e-mail: L.Bieniasz-Krzywiec@yaps.pl),

• Dariusz Leniowski -
specjalista od technologii Ruby On Rails, szef programistów, analityk/programista, tester
(e-mail: D.Leniowski@yaps.pl)

Pozostali pracownicy:

• Adam Czepialski - tester

3.2 Kontakty zewnętrzne
• Jacek Sroka - konsultant, służy wszelką pomocą w każdej sprawie, wie wszystko o tworzeniu

dokumentacji

6

3.3 Role i zadania

Rola i Cel Obszary działalności Odpowiedzialność
Kierownik zespołu
— stworzenie YapS
wraz z kompletną
dokumentacją

• kontrola i podział pracy zespołu

• prowadzenie repozytorium pro-
jektu

• ocena biznesowa

• doprecyzowanie wymagań sta-
wianych systemowi

• przepływ informacji pomiędzy
członkami zespołu

• przebieg prac zgodny z przyję-
tym harmonogramem

Zastępca kierownika
zespołu — dostar-
czenie aplikacji w
terminie

• wybór i testowanie technologii

• zarządzanie budżetem i progra-
mem szkoleń

• odpowiedzialny za komplet do-
kumentacji

• raportuje aktualny stan prac

• kieruje szacowaniem ryzyka

Szef zespołu progra-
mistów — nadzoro-
wanie pracy programi-
stów

• rozdzielanie zadań

• kontrola jakości kodu

• rozwiązywanie problemów
związanych z Ruby On Rails

• integracja składowych syste-
mów

• wykrywanie błędów implemen-
tacji

• zgodność tworzonego projektu
ze specyfikacją

Kontroler jakości —
zaakceptowanie apli-
kacji zgodnej ze spe-
cyfikacją i przyjętymi
standardami

• korekta tworzonych dokumen-
tów

• planowanie, przeprowadzanie i
raportowanie testów

• spójność powstających doku-
mentów

• zgodność tworzonego projektu
ze specyfikacją

analityk / programi-
sta — tworzenie do-
kumentacji, ustalanie i
implementacja funkcji
systemu

• tworzenie komponentów

• rozwój aplikacji

• implementacja i działanie przy-
dzielonej mu części aplikacji

7

4 Zarządzanie projektem

4.1 Oszacowania
YapS jest projektem darmowym realizowanym nieodpłatnie przez członków zespołu. Stan ten może

ulec zmianie w przypadku zdobycia sponsora lub pozyskaniu grantu rozwojowego.
Docelowym terminem ukończenia YapS jest czerwiec 2008 roku.

4.2 Punkty funkcyjne
4.2.1 Nieznormalizowane punkty funkcyjne

ExternalInput
Login/Hasło Low 3
Edytowanie danych użytkownika Average 4
Personalizowanie systemu Low 3
Wysyłanie wiadomości Low 3
Wyszukiwanie formularza Low 3
Tworzenie grupy Low 3
Dodawanie członków do grupy Average 4
Nadawanie/odbieranie grupie dostępu do formularza Average 4
Nadawanie/odbieranie osobie dostępu do formularza Average 4
Utworzenie formularza Low 3
Ustawienie właściwości formularza Average 4
Wstawienie komponentu prostego Average 4
Wstawienie komponentu rozszerzonego High 6
Ustawienie własności komponentu prostego Average 4
Ustawienie własności komponentu rozszerzonego High 6
Podpięcie dodatkowych danych pod komponent rozszerzony Average 4
Pobranie danych do komponentu Average 4
Pobranie danych do komponent rozszerzonego High 6
SUMA 72

ExternalOutput
Powiadomienie o niepoprawnym haśle Low 4
Powiadomienie o zmianie danych użytkownika Low 4
Informowanie o nieprzeczytanych wiadomościach Low 4
Czytanie wiadomości Average 5
Wyświetlenie znalezionych formularzy Low 4
Potwierdzenie utworzenia grupy lub komunikat błędu Low 4
Potwierdzenie dodania osoby do grupy Low 4
Potwierdzenie nadania grupie dostępu Low 4
Potwierdzenie nadania osobie dostępu Low 4
Wyświetlenie ramki formularza Low 4
Wyświetlenie właściwości formularza Average 5
Wyświetlenie komponentu prostego Average 5
Wyświetlenie komponentu rozszerzonego High 7

8

ExternalOutput
Wyświetlenie dodatkowych danych komponentu rozszerzonego Average 5
Odebranie danych od komponentu Average 5
Odebranie danych od komponentu rozszerzonego High 7
Export statystyk Average 5
Export danych egzaminacyjnych Average 5
SUMA 85

ExternalInquiry
Informacje o użytkowniku Low 3
Informacje o grupie Low 3
Informacje o formularzu Low 3
Wybór rodzaju wstawianego komponentu Low 3
Usuwanie formularza Average 4
Usuwanie komponentu Low 3
Usuwanie grupy Low 3
Usuwanie użytkownika Low 3
SUMA 85

Internal Logical File
Baza użytkowników Average 10
Baza grup Average 10
Baza formularzy Average 10
Baza wypełnień formularzy High 15
Baza danych komponentów Low 7
Baza wypełnień komponentów Low 7
Baza wiadomości Low 7
SUMA 66

External Interface Files
System pomocy High 10
Szablony instalacyjne Average 7
SUMA 17

4.2.2 Podstawowe cechy systemu

Data Communications 5
Distribted Data Processing 4
Performance 3
Heavily Used Configuration 2
Transaction Rate 4
Online Data Entry 5
End-User Efficeincy 3
Online Update 0
Complex Processing 1
Reusability 1

9

Installation Ease 3
Operational Ease 2
Multiple Sites 2
Faciliate Change 2
SUMA 37

4.2.3 Znormalizowane punkty funkcyjne∑
punktów = 265∑

stopni skomplikowania = 37

współczynnik = 0.65 + 0.01 ∗ 37 = 1.02

punkty funkcyjne = 265 ∗ współczynnik = 270.3 ' 270

4.3 Plan projektu
4.3.1 Plan faz projektu

Nazwa Harmonogram Czynności

Wymagania

Rozpoczęcie:
21.02.2007

Zakończenie:
07.03.2007 • postawienie i doprecyzowanie wymagań sta-

wianych systemowi

• przygotowanie dokumentu Wizja Systemu

• planowanie przypadków użycia

Planowanie

Rozpoczęcie:
07.03.2007

Zakończenie:
21.03.2007 • podział obowiązków i zakresu odpowiedzial-

ności

10

Nazwa Harmonogram Czynności

Tworzenie
Dokumenta-
cji

Rozpoczęcie:
21.03.2007

Końce iteracji:
1) 30.05.2007
2) 15.06.2007

• wykonanie wszystkich niezbędnych dokumen-
tów (dwie iteracje):

– Przypadki Użycia

– Plan Wykonania Systemu

– Projekt Architektury Systemu

– Plan testów

Implementacja

Rozpoczęcie:
03.11.2006

Końce iteracji:
1) 26.11.2007
2) 07.01.2008
3) 03.03.2008
4) 21.04.2008

• stworzenie wszystkich komponentów systemu
YapS

• testowanie poszczególnych fragmentów

• wyszczególnienie wszystkich komponentów
systemu

Testowanie i
poprawianie
gotowego
systemu

Rozpoczęcie:
02.05.2008

Zakończenie:
03.03.2008 • przygotowanie zestawu automatycznych te-

stów (tam gdzie możliwe)

• sprawdzenie integralności komponentów

• nanoszenie ewentualnych poprawek

Odbiór sys-
temu

Rozpoczęcie:
03.06.2008

Zakończenie:
15.06.2008 • ustalenie dokładnej daty prezentacji systemu

• prezentacja ostatecznej wersji YapS

4.3.2 Cele poszczególnych iteracji

Poniższa tabela obejmuje fazy składające sie z więcej niż jednej iteracji. Opis wyników poszczegól-
nych faz pokrywa się z zawartymi w punkcie 4.3.1.

11

Faza Iteracja Wynik
Tworzenie Dokumentacji 1 Przygotowanie wszystkich dokumen-

tów.
Tworzenie Dokumentacji 2 Poprawienie i skonsolidowanie wszyst-

kich dokumentów.
Implementacja 1 Wersja demonstracyjna (DEMO) sys-

temu
Implementacja 2 Wersja ALFA systemu
Implementacja 3 Wersja BETA systemu
Implementacja 4 Wersja 1.0 systemu

4.3.3 Wydania

wersja data wydania przeznaczenie
DEMO 26.11.2007 pierwsza, demonstracyjna wersja YapS; służy przede wszyst-

kim prezentacji architektury systemu, szaty graficznej oraz
GUI

ALFA 07.01.2008 druga wersja YapS; ukazuje podstawowe funkcjonalności,
czyli te które w dokumencie „Wizja” zostały opatrzone wy-
sokim priorytetem

BETA 03.03.2008 wersja testowa YapS; przedstawia praktycznie pełną funkcjo-
nalność systemu, celem tej wersji jest przetestowanie sys-
temu w praktyce oraz wykrycie i poprawienie błędów

1.0 21.04.2008 wersja finalna, gotowa do publikacji

4.3.4 Harmonogram projektu

Produkt Początek Koniec Osoby zaangażowane
Wizja 21.02.2007 08.03.2007 Zespół twórców
Przypadki Użycia 08.03.2007 21.03.2007 Zespół twórców
Model systemu 21.03.2007 18.04.2007 Zespół twórców
Projekt Architektury Systemu 11.04.2007 23.05.2007 Zespół twórców
Plan Wykonania Systemu 16.05.2007 30.05.2007 Kierownik projektu
Plan Testów 16.05.2007 30.05.2007 Zastępca kierownika projektu
YapS DEMO 01.10.2007 27.11.2007 Zespół twórców
YapS ALFA 27.11.2007 07.01.2008 Zespół twórców
YapS BETA 08.01.2008 03.03.2008 Zespół twórców
YapS 1.0 04.03.2008 21.04.2008 Zespół twórców

4.3.5 Zasoby

Plan zatrudnienia: System YapS od początku do końca będzie wykonany przez zespół w składzie:

• Łukasz Bieniasz-Krzywiec

• Dariusz Leniowski

• Jakub Łącki

12

Plan zatrudniania pracowników: Nie planuje się zatrudniania dodatkowych pracowników.

Plan szkoleń:

• LATEX – 21.02.2007 - 08.03.2007

• SVN – 28.02.200 - 08.03.2007

• UML – 08.03.2007 - 30.04.2007

• Ruby On Rails - 01.09.2007 – 30.09.2007

• Nowe technologie – na bieżąco

13

4.3.6 Diagram Gantta (tworzenie dokumentacji)

14

4.3.7 Diagram podziału pracy (tworzenie dokumentacji)

15

4.3.8 Budżet

YapS jest projektem darmowym, wykonywanym nieodpłatnie. Członkowie zespołu nie ponoszą żad-
nych kosztów w związku z projektem, ich jedynym wkładem jest poświęcony czas i praca. Nie posia-
damy, ani nie planujemy posiadać budżetu dla projektu.

4.4 Plany iteracji
4.4.1 Cel

Celem drugiej iteracji jest dokończenie implementacji podstawowych funkcjonalności systemu, to zna-
czy tworzenia, wyświetlania i wypełniania formularza, a także dodanie częściowej kontroli praw do-
stępu. Po drugiej iteracji wydana zostanie wersja DEMO.

4.4.2 Podział obowiązków

Druga iteracja jest zaplanowana do realizacji od 26.11.2007 do 05.01.2008, według następującego
planu:

• Rozszerzenie Modelu (27.11.2007 - 11.12.2007):

– Obsługa użytkownika — Jakub Łącki

– Obsługa formularza (podstawowa lista komponentów) — Łukasz Bieniasz–Krzywiec

– Kontrola Praw Dostępu — Dariusz Leniowski

– Obsługa Błędów — Dariusz Leniowski

• Obsługa praw dostępu w Asystencie (11.12.2007 - 23.12.2007):

– FasadaPrawDostępu — Dariusz Leniowski

• Rozszerzenie Widoku (11.12.2007 - 23.12.2007):

– UżytkownikWidok — Jakub Łącki

– EdytorFormularzaWidok — Dariusz Leniowski

• Dodanie obsługi rozszerzonego Widoku (27.12.2007 - 07.01.2008):

– EdytorPrezenter — Łukasz Bieniasz-Krzywiec, Dariusz Leniowski

– UżytkownikPrezenter — Jakub Łącki

4.4.3 Przypadki użycia

Następujące przypadki użycia będą rozwijane w tej iteracji:

1. logowanie,

2. tworzenie formularza,

3. wypełnianie formularza.

16

4.4.4 Diagram Gantta (implementacja)

17

4.4.5 Diagram podziału pracy (implementacja)

4.5 Nadzór i kontrola projektu
4.5.1 Plan zarządzania wymaganiami

Wymagania systemu zostały stworzone przez autorów projektu i spisane w Przypadkach Użycia oraz
Wizji. Zakładamy, że nie będą one ulegać poważnym zmianom podczas implementacji projektu. Wąt-
pliwości co do sensowności i pełności wymagań mogą pojawić się podczas testowania systemu pod
kątem funkcjonalności. Powstałe problemy należy rozwiązać, o ile nie zrodzi to ryzyka wykroczenia
poza harmonogram projektu.

18

4.5.2 Plan zarządzania harmonogramem

Za pilnowanie harmonogramu odpowiedzialny jest kierownik zespołu. Harmonogram projektu zo-
stał szczegółowo opisany w rozdziale 4.3.1. Dopuszczamy co najwyżej dwutygodniowe opóźnienie
w stosunku do harmonogramu, jednakże każdy dzień zwłoki będzie się wiązał z wyciągnięciem kon-
sekwencji od osoby odpowiedzialnej za spóźnienie. Rodzaj konsekwencji zostanie ustalony przez
Kontrolera jakości. Jeśli opóźnienie przekroczy jeden tydzień, konieczne będzie zwiększenie zaanga-
żowania uczestników projektu, w celu powrotu do pierwotnego harmonogramu.

4.5.3 Plan pomiarów

W celu ułatwienia zarządzania harmonogramem, kierownik zespołu będzie mierzył postęp pracy nad
YapS, poprzez zliczanie osiągniętych punktów kontrolnych. Punktem takim może być wykonanie ob-
sługi pewnego przypadku użycia, napisanie jakiegoś modułu, a nawet napisanie pojedynczej funkcji.
Punkty kontrolne będą wyznaczane na początku każdej iteracji.

4.5.4 Plan kontroli jakości

Jakość systemu z perspektywy użytkownika, jak i jakość samej implementacji będzie mierzona na
bieżąco poprzez jego testowanie. Więcej informacji na ten temat znaleźć można w "Planie Testów".

4.6 Plan zarządzania ryzykiem
Poniżej przedstawiamy działania jakie należy podjąć w przypadku zajścia sytuacji wyjątkowych. Osta-
teczne decyzje na temat podejmowanych działań podejmuje cały zespół.

Nagła niedyspozycja jednego z twórców projektu Jeśli jeden z autorów YapS nie będzie mógł
przez pewien czas uczestniczyć w projekcie, należy zwiększyć przydział pracy pozostałych członków
zespołu. Zespół składa się jedynie z trzech osób, przez co w przypadku dłuższej niedyspozycji, ko-
nieczne będzie wydłużenie harmonogramu projektu.

Nieoczekiwane pojawienie się konkurencji W przypadku, gdy na rynku pojawi się system o podob-
nych możliwościach do YapS wydany na jednej z licencji open source, konieczne będzie obiektywne
porównanie go z YapS. Jeśli YapS nie będzie miał szans konkurować z tym systemem, należy przerwać
projekt.

Źle dobrana technologia Jeśli okaże się, że technologia wybrana do stworzenia projektu nie spełnia
naszych założeń — jest zbyt mało efektywna lub niewygodna w użyciu do naszych celów, należy
zmienić technologię. Zakładamy przy tym, że odpowiedniość technologii da się stwierdzić już na
wczesnym etapie implementacji. W innym przypadku, konieczne będzie kontynuowanie projektu przy
użyciu obecnej technologii, co może doprowadzić do ograniczenia jakości i funkcjonalności systemu.

Problemy z zasobami W przypadku awarii lub utraty zasobów koniecznych do tworzenia projektu
(komputerów, oprogramowania), rozwiązanie powstałego problemu jest obowiązkiem osoby poszko-
dowanej. Gdyby doszło do takiej sytuacji, osoba poszkodowana może bez konsekwencji opóźnić nieco
wykonanie swoich zadań.

19

Utrata danych Aby zapobiec utracie danych, będą one przechowywane w systemie kontroli wer-
sji SVN. Ponadto, kopie robocze całego repozytorium znajdować się będą na komputerach autorów,
dlatego utrata dużej części danych jest mało prawdopodobna.

5 Plany procesów technicznych

5.1 Metody, narzędzia i stosowane technologie
• modelowanie:

– Rational Unified Process

– Unified Modeling Language

– Violet

– UMLet

– Gantt project

– Visual Paradigm

– LATEX

– LATEX Beamer Class

• kontrola wersji i narzędzia ogólne:

– darcs

– SVN

– Trac

– Ruby

– GNU Make

– VIM — Vi IMproved

• implementacja

– system operacyjny zgodny z POSIX (Debian, Fedora Core i FreeBSD)

– serwer HTTP/HTTPS z obsługą CGI, FCGI oraz TLS 1.0 (Apache 2)

– PostgreSQL

– Ruby on Rails

– ImageMagick

6 Plany pomocnicze

6.1 Plan zarządzania zmianami
Kontrola wersji za pomocą SVN’a będzie zawierała całą dokumentację (pliki .tex, .pdf) oraz imple-
mentację systemu (kod źródłowy).

20

6.2 Plan oceny
Ocenę za dokumentację wystawi prowadzący zajęcia Inżynierii Oprogramowania po oddaniu jej w
terminie (30.05.2007).

Ocenę za realizację projektu wystawi prowadzący zajęcia Zespołowego Projektu Programistycz-
nego w czerwcu przyszłego roku.

6.3 Plan dokumentacji
Cała dokumentacja YapS jest oparta o szablony RUP. W jej skład wejdą:

• Przypadki Użycia

• Plan Wykonania Systemu

• Projekt Architektury Systemu

• Plan testów

6.4 Plan zapewnienia jakości
6.4.1 Zapewnienie jakości dokumentacji

W czasie prac nad projektem Kontroler jakości jest na bieżąco informowany o przebiegu prac. Poje-
dyncze rozdziały trafiają do niego nie później niż na 12 godzin przed terminem oddania dokumentu.
Kontroler jakości sprawdza dokumenty pod względem merytorycznym, zgodności z tematem i spój-
ności z wcześniej wykonanymi. W przypadki odnalezienia drobnych błędów sam dokonuje poprawek.
Jeśli natomiast znalezione usterki okażą się poważne (według uznania Kontrolera jakości) informuje
o nich autora dokumentu, który jest zobowiązany (w ciągu 2 dni roboczych) nanieść odpowiednie
poprawki i przekazać dokument do ponownej kontroli.

Dodatkowo przy dokumencie Plan Architektury Systemu Kontroler jakości otrzymuje dwa razy w
tygodniu raporty z postępu prac i kopię powstającego dokumentu, tak aby mógł na bieżąco sprawdzać
jakość powstającej dokumentacji.

Ponadto Kontroler jakości ustala kary za nie dotrzymanie terminu oddania dokumentu. Osoba
odpowiedzialna za opóźnienie jest zobowiązana zakupić skrzynkę napoju Tymbark do wspólnej puli
wszystkich członków zespołu.

6.4.2 Zapewnienie jakości kodu

Szef programistów ustala terminy spotkań podczas których programiści będą przedstawiali swoje frag-
menty kodu, po czym będzie następowała ich inspekcja. Ewentualne poprawki są nanoszone przez
autorów kodu źródłowego.

6.5 Plan rozwiązywania problemów
Rozwiązania podstawowych problemów są opisane w punkcie 4.5. W razie wystąpienia problemu
nie zawartego w punkcie 4.5 jest on zgłaszany bezpośrednio do kierownika zespołu, który decyduje o
sposobie rozwiązania zaistniałego problemu.

21

7 Historia zmian

0.1 - dostosowanie szablonu do potrzeb projektu YapS
0.2 - rozdzielenie pracy nad dokumentem
0.3 - pierwsze wersje rozdziałów 2 i 6
0.4 - pierwsza wersja rozdziału 1 i podrozdziałów rozdziału 4
0.5 - pierwsza wersja rozdziału 5
0.6 - drugie wersje wszystkich rozdziałów
0.7 - usunięcie indeksu
0.8 - poprawienie błędów
0.9 - wstawienie obrazków
0.10 - przeformatowanie tabelek
0.11 - więcej poprawiania błędów
0.12 - spellchecking
0.13 - dodanie punktów funkcyjnych
0.14 - poprawki rozdziałów
0.15 - drobne korekty -> wersja finalna

22

