Concept Approximation by Rough sets and layered learning

Hung Son Nguyen

Institute of Mathematics, Warsaw University son@mimuw.edu.pl

February 23, 2006

Hung Son Nguyen (UW)

ABR approach to RS & DM

February 23, 2006 1 / 15

1 Concept Approximation with Layered learning

- General idea
- Applications

∃ 9 \ < C</p>

<ロ> (日) (日) (日) (日) (日)

1 Concept Approximation with Layered learning

- General idea
- Applications

Hung Son Nguyen (UW)

ABR approach to RS & DM

February 23, 2006 3 / 15

3

996

<ロ> (日) (日) (日) (日) (日)

Why the concept approximation problem is hard?

- Learnability of the target concept: some concepts are too complex and cannot be approximated directly from feature value vectors.
 - PAC algorithms;
 - Effective learnability of some concept spaces;
 - VC dimension, ...

• **Time and space complexity:** Many problems related to optimal approximation are NP-hard.

ABR approach to RS & DM

February 23, 2006 5 / 15

3

590

<ロ> (日) (日) (日) (日) (日)

ABR approach to RS & DM

February 23, 2006 5 / 15

イロト イヨト イヨト

$$w_{yes} = \sum_{\mathbf{r} \in \mathbf{R}_{yes}} strength(\mathbf{r}) \qquad w_{no} = \sum_{\mathbf{r} \in \mathbf{R}_{no}} strength(\mathbf{r})$$

$$\mu_C(x) = \begin{cases} \text{undetermined} & \text{if } \max(w_{yes}, w_{no}) < \omega \\ 0 & \text{if } w_{no} - w_{yes} \ge \theta \text{ and } w_{no} > \omega \\ 1 & \text{if } w_{yes} - w_{no} \ge \theta \text{ and } w_{yes} > \omega \\ \frac{\theta + (w_{yes} - w_{no})}{2\theta} & \text{in other cases} \end{cases}$$

Hung Son Nguyen (UW)

ABR approach to RS & DM

February 23, 2006 5 / 15

3

590

<ロ> (日) (日) (日) (日) (日)

ABR approach to RS & DM

Given:

- U: the set of examples;
- A: the set of attributes;
- *H*: concept decomposition diagram;
- $D = dec_{C_1}, dec_{C_2}, \dots dec_C$

- ∢ /⊐ ►

Sac

Given:

- U: the set of examples;
- A: the set of attributes;
- *H*: concept decomposition diagram;
- $D = dec_{C_1}, dec_{C_2}, \dots dec_C$

Goal: For each concept C in the hierarchy:

- construct a decision system \mathbb{S}_C ;
- induce a rough approximation of C, i.e., a rough membership functions for C: $[\mu_{C^+}(x), \mu_{C^-}(x)]$

Given:

- U: the set of examples;
- A: the set of attributes;
- *H*: concept decomposition diagram;
- $D = dec_{C_1}, dec_{C_2}, \dots dec_C$

< □ > < ---->

- **Goal:** For each concept C in the hierarchy:
 - construct a decision system \mathbb{S}_C ;
 - induce a rough approximation of C, i.e., a rough membership functions for $C \colon [\mu_{C^+}(x), \mu_{C^-}(x)]$

System control: The system can be tuned by

- uncertainty parameters: θ ;
- learning parameters for each level.

$$\mathbb{S}_{C} = (U, A_{C}, dec_{C})$$
, where

$$A_C = \{a_{C_1}, ..., a_{C_n}\}$$

- is a collection of rough approximations of subconcepts $C_1, ..., C_n$:
 - either $a_{C_i} = [\mu_{j^+}, \mu_{j^-}];$ • or $a_{C_j} = [w_{yes}^{C_j}, w_{no}^{C_j}]$;

Layered learning algorithm

- 1: for l := 0 to max_level do
- 2: for (any concept C_k at the level l in H) do
- 3: **if** l = 0 **then**

4:
$$\mathbb{S}_{C_k} := (U, A_k, dec_{C_k});$$

5: **else**

$$A_k := \bigcup_{i \in I} O_{k_i};$$

7:
$$\mathbb{S}_{C_k} := (U, A_k, dec_{C_k})$$

- 8: end if
- 9: generate the rule set $RULES(\mathbb{S}_{C_k})$ for decision table \mathbb{S}_{C_k} ;
- 10: generate the output vector $O_k = \{w_{yes}^{C_k}, w_{no}^{C_k}\}$,
- 11: end for
- 12: end for

・ロト ・ 一 ・ ・ ミト ・ ミト ・ シック

Example: Nursery data set

- Creator: Vladislav Rajkovic et al. (13 experts)
- Donors: Marko Bohanec (marko.bohanec@ijs.si)
 Blaz Zupan (blaz.zupan@ijs.si)

- Date: June, 1997
- Number of Instances: 12960 (instances completely cover the attribute space)
- Number of Attributes: 8

Image: A match a ma

Attributes

NURSERY	not_recom, recommend, very_recom, priority, spec_prior
. EMPLOY	Employment of parents and child's nursery
parents	usual, pretentious, great_pret
has_nurs	proper, less_proper, improper, critical, very_crit
. STRUCT_FINAN	Family structure and financial standings
STRUCTURE	Family structure
form	complete, completed, incomplete, foster
children	1, 2, 3, more
housing	convenient, less_conv, critical
finance	convenient, inconv
. SOC_HEALTH	Social and health picture of the family
social	non-prob, slightly_prob, problematic
health	recommended, priority, not_recom

< ∃ >

3

Sac

Method:

- Use clustering algorithm to approximate intermediate concepts;
- Use rule based algorithm (RSES system) to approximate the target concept;

→ Ξ →

Image: A marked and A marked

Method:

- Use clustering algorithm to approximate intermediate concepts;
- Use rule based algorithm (RSES system) to approximate the target concept;

	0,	e ,
	original attributes only	using intermediate concepts
Accuracy	83.4	99.9%
Coverage	85.3%	100%
Nr of rules	634	42 (for the target concept)
		92 (for intermediate concepts)

Results: (60% – training, 40% – testing)

イロト 人間ト イヨト イヨト

• Applications

∃ 9 \ < C</p>

イロト イヨト イヨト イヨト

Sunspots Recognition and Classification

イロト イポト イヨト イヨト

= 990

Sunspots Recognition and Classification

Hung Son Nguyen (UW)

ABR approach to RS & DM

February 23, 2006 12 / 15

Road Situation Simulator

Hung Son Nguyen (UW)

February 23, 2006

13 / 15

Road Situation Simulator

February 23, 2006 13 / 15

Road Situation Simulator

イロト イポト イヨト イヨト

- Universe = set of vectors s(c, t), where
 - c is a car;
 - t is a time instant;
- **Concept** = "Dangerous situation on the road";
- Evaluation measures:
 - True positive rate;
 - Coverage rate;
 - Computation time;
 - Rule sizes;

Differential Calculus to Function Approximation

- ill-defined data: limited number of objects and large number of attributes;
- prediction of a real decision variable based on nominal attributes;
- the need for the knowledge about the real mechanisms behind the data;

No.	Combination	B-1	1-4	4-6	6-E	PΒ	ΡE	Binding affinity
1	A2B2C2D2a2b2	1	1	1	1	1	1	4.52526247
2	A1B2C1D1a2b2	-1	1	-1	-1	1	1	4.818066119
3	A1B2C2D1a2b2	-1	1	1	-1	1	1	5.036009902
			•••	•••				
39	A1B1C1D1a1b1	-1	-1	-1	-1	-1	-1	8.963821581
40	A1B1C1D1a2b1	-1	-1	-1	-1	1	-1	8.998482244

Input							
1. A decision table							
S	a_1	a_2		dec			
u_1	1	-1		4.23			
u_2	1	1		4.31			
u_n	-1	1		8.92			

2. Domain knowledge

-2

590

<ロ> (日) (日) (日) (日) (日)

Our proposition

Input

1. A decision table						
S	a_1	a_2		dec		
u_1	1	-1		4.23		
u_2	1	1		4.31		
u_n	-1	1		8.92		

2. Domain knowledge

First level

• Create comparing table

	a_1	a_2	 change
u_1, u_2	$1 \rightarrow 1$	$-1 \rightarrow 1$	 ~
u_1, u_3			

• Learn the preference relation, i.e., decision rules of form

$$a_2: -1 \to 1 \land a_6 = 1... \implies change = \searrow$$

イロト イポト イヨト イヨト

3

Our proposition

Input

1. A decision table						
S	a_1	a_2		dec		
u_1	1	-1		4.23		
u_2	1	1		4.31		
u_n	-1	1		8.92		

2. Domain knowledge

First level

• Create comparing table

	a_1	a_2	 change
u_1, u_2	$1 \rightarrow 1$	$-1 \rightarrow 1$	 7
u_1, u_3			 \searrow

• Learn the preference relation, i.e., decision rules of form

$$a_2: -1 \rightarrow 1 \land a_6 = 1... \implies change = \searrow$$

Second level

- Ranking prediction;
- Decision value prediction;
- Experiment design,