Decision tree

Hung Son Nguyen

Institute of Mathematics, Warsaw University

February 15, 2006

Hung Son Nguyen (Institute of Mathematics

Decision tree

February 15, 2006 1 / 34

イロト イポト イヨト イヨト

3

Outline

Conflict measure

- 2 MD-heuristics
- 3 Searching for binary partition of symbolic values
- 4 Searching for cuts on numeric attributes

5 Searching for best cuts

- Divide and Conquer Technique
- Example
- Discernibility measure:

6 Soft cuts and soft DT

Soft Decision Tree

Test functions

- **1** Attribute-based tests: $t_a(u) = a(u)$;
- Value-based tests:

$$t_{a=v}(u) = \begin{cases} 1 & \text{if } a(u) = v \\ 0 & \text{otherwise;} \end{cases}$$

Out-based tests:

$$t_{a>c}(u) = \begin{cases} 1 & \text{if } a(u) > c \\ 0 & \text{otherwise;} \end{cases}$$

Value set based tests:

$$t_{a\in S}(u) = \begin{cases} 1 & \text{if } a(u) \in S \\ 0 & \text{otherwise;} \end{cases}$$

I Hyperplane-based tests:

$$t_{w_1a_1+\ldots+w_ka_k>w_0}(u) = \begin{cases} 1 & \text{if } w_1a_1(u)+\ldots+w_ka_k(u)>w_0\\ 0 & \text{otherwise}; \end{cases}$$

• Determine a collection of test functions;

$$\mathcal{T} = \{t_1, t_2, \dots, t_m\}$$

• Estimation measure for tests;

$$\mathcal{F}: \mathcal{T} \times \mathcal{P}(U) \to \mathbb{R}$$

- Search algorithm: e.g., top-down
- Pruning techniques;

Outline

Conflict measure

2 MD-heuristics

- 3 Searching for binary partition of symbolic values
- 4 Searching for cuts on numeric attributes
- 5 Searching for best cuts
 - Divide and Conquer Technique
 - Example
 - Discernibility measure:
- Soft cuts and soft DT
 Soft Decision Tree

-

Conflict and discernibility measure

• A conflict measure can be defined by

$$conflict(X) = \sum_{i < j} n_i n_j$$

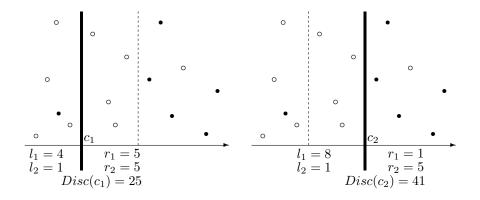
- where $(n_1,...,n_d)$ is the counting table of X, i.e., $n_i = |\{x \in X: dec(x) = i\}|$
- If a test t determines a partition of a set of objects X into $X_1, X_2, ..., X_{n_t}$, then discernibility measure for t is defined by

$$Disc(t, X) = conflict(X) - \sum_{i=1}^{n_t} conflict(X_i)$$

I SOC

イロト イポト イヨト イヨト

Example



1

590

◆ロト ◆聞ト ◆ヨト ◆ヨト

MD algorithm is using two kinds of tests depending on attribute types.

For symbolic attributes a_j ∈ A, test functions defined by sets of values, i.e.,

$$t_{a_{j}\in V}\left(u\right)=1\Longleftrightarrow\left[a_{j}\left(u\right)\in V\right]$$

where $V \subset V_{a_j}$, are considered.

• For numeric attributes $a_i \in A$, only test functions defined by cuts:

$$t_{a_{i}>c}\left(u\right)=True\Longleftrightarrow\left[a_{i}\left(u\right)\leq c\right]\Longleftrightarrow\left[a_{i}\left(u\right)\in\left(-\infty;c\right\rangle\right)\right]$$

where c is a *cut* in V_{a_i} , are considered.

MD algorithm

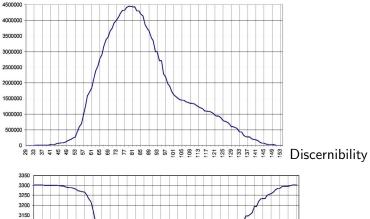
- 1: Initialize a decision tree \mathbf{T} with one node labeled by the set of all objects U;
- 2: $\mathbf{Q} := [\mathbf{T}]; \{$ Initialize a FIFO queue \mathbf{Q} containing $\mathbf{T}\}$
- 3: while ${\bf Q}$ is not empty ${\boldsymbol d}{\boldsymbol o}$
- 4: $N := \mathbf{Q}.head(); \{ \text{Get the first element of the queue} \}$
- 5: X := N.Label;
- 6: **if** the major class of X is large enough **then**
- 7: $N.Label := major_class(X);$
- 8: **else**
- 9: t := ChooseBestTest(X);{Search for best test of form $t_{a \in V}$ for $V \subset V_a$ with respect to Disc(., X)}
- 10: N.Label := t;
- 11: Create two successors of the current node N_L and N_R and label them by X_L and X_R , where

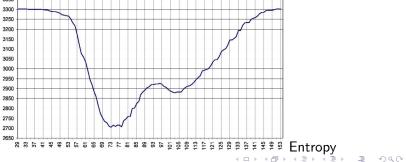
$$X_L = \{ u \in X : t(u) = 0 \} \quad X_R = \{ u \in X : t(u) = 1 \}$$

12:
$$\mathbf{Q}.insert(N_L, N_R); \{ \text{Insert } N_L \text{ and } N_R \text{ into } \mathbf{Q} \}$$

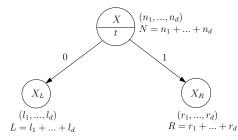
- 13: end if
- 14: end while

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のなべ





Properties of MD-heuristics



$$Disc(t, X) = LR - \sum_{i=1}^{d} l_i r_i$$
$$Disc(t, X) = \sum_{i=1}^{d} l_i \sum_{i=1}^{d} r_i - \sum_{i=1}^{d} l_i r_i$$
$$Disc(t, X) = \sum_{i \neq j} l_i r_j$$

◆ロト ◆聞ト ◆ヨト ◆ヨト

3

$$\begin{aligned} Disc(t,X) &= conflict(X) - conflict(X_1) - conflict(X_2) \\ &= \frac{1}{2} \sum_{i \neq j} n_i n_j - \frac{1}{2} \sum_{i \neq j} l_i l_j - \frac{1}{2} \sum_{i \neq j} r_i r_j \\ &= \frac{1}{2} \left(N^2 - \sum_{i=1}^d n_i^2 \right) - \frac{1}{2} \left(L^2 - \sum_{i=1}^d l_i^2 \right) - \frac{1}{2} \left(R^2 - \sum_{i=1}^d r_i^2 \right) \\ &= \frac{1}{2} \left(N^2 - L^2 - R^2 \right) - \frac{1}{2} \sum_{i=1}^d (n_i^2 - l_i^2 - r_i^2) \\ &= \frac{1}{2} \left[(L+R)^2 - L^2 - R^2 \right] - \frac{1}{2} \sum_{i=1}^d [(l_i + r_i)^2 - l_i^2 - r_i^2] \\ &= LR - \sum_{i=1}^d l_i r_i \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Conflict measure

2 MD-heuristics

3 Searching for binary partition of symbolic values

- 4 Searching for cuts on numeric attributes
- 5 Searching for best cuts
 - Divide and Conquer Technique
 - Example
 - Discernibility measure:
- Soft cuts and soft DT
 Soft Decision Tree

-

- ∢ /⊐) >

For a fixed attribute a and an object set $X \subset U$, we define the discernibility degree of a partition $P = (V_1, V_2)$ as follows

$$\begin{split} Disc_a(P|X) &= Disc(t_{a \in V_1}, X) \\ &= \left| \{ (x, y) \in X^2 : x, y \text{ are discerned by } P \} \end{split}$$

MD-PARTITION:

input: A set of objects X and an symbolic attribute a. *output*: A binary partition P of V_a such that $Disc_a(P|X)$ is maximal. Let $\mathbf{s}(v_i) = (n_1(v_i), n_2(v_i), ..., n_d(v_i))$ denote the counting table of the set $X_{v_i} = \{x \in X : a(x) = v_i\}$. The distance between two symbolic values $v, w \in V_a$ is determined as follows:

$$\delta_{disc}(v,w) = Disc(v,w) = \sum_{i \neq j} n_i(v) \cdot n_j(w)$$

One can generalize the definition of distance function by

$$\delta_{disc}(V_1, V_2) = \sum_{v \in V_1, w \in V_2} \delta_{disc}(v, w)$$

For arbitrary sets of values V_1, V_2, V_3

$$\delta_{disc} (V_1 \cup V_2, V_3) = \delta_{disc} (V_1, V_3) + \delta_{disc} (V_2, V_3)$$
(1)
$$\delta_{disc} (V_1, V_2) = \delta_{disc} (V_2, V_1)$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Example

					1 1	1	1		dec = 1	dec = 2
Α	а	b	dec]	dec = 1	dec = 2	_	b_1	2	1
u_1	a_1	b_1	1	a_1	$\begin{vmatrix} 2\\ 1 \end{vmatrix}$			b_2	1	2
u_2	a_1	b_2	1	a_2	1	1 1		b_3	1	0
u_3	a_2	b_3	1	a_3				b_4	0	2
u_4	a_3	b_1	1	a_4	0	1		b_5	0	1
u_5	a_1	b_4	2]						
							Ь			
u_6	a_2	b_2	2		а				b	
u_6 u_7	$\begin{array}{c} a_2 \\ a_2 \end{array}$	b_2 b_1	2	a_1	a ₹7	$- \bullet a_2$		h.	b 5	ha ha
				a_1	7			b_1		b_2
u_7	a_2	b_1	2		7	4		b_1 2/		b_2
u_7 u_8	$\begin{array}{c} a_2\\ a_4 \end{array}$	b_1 b_2	2 2		7	a_2	b_5	2/		2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

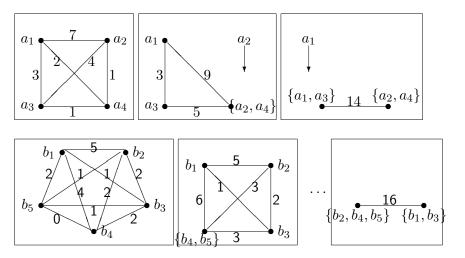
 μ_4

We have proposed the following heuristics for $\operatorname{MD-PARTITION}$ problem:

- grouping by minimizing conflict: a kind of agglomerative hierarchical clustering algorithm
- grouping by maximizing discernibility.

イロト イポト イヨト イヨト 二三

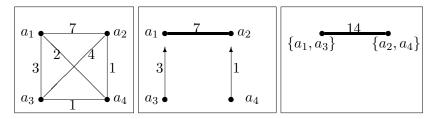
grouping by minimizing conflict



3

Image: A matched block

grouping by maximizing discernibility



3

Outline

Conflict measure

2 MD-heuristics

3 Searching for binary partition of symbolic values

4 Searching for cuts on numeric attributes

5 Searching for best cuts

- Divide and Conquer Technique
- Example
- Discernibility measure:

Soft cuts and soft DT Soft Decision Tree

-

Image: A matrix

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let us consider two cuts $c_L < c_R$ on attribute a.

Lemma

The following equation holds:

$$Disc(c_R) - Disc(c_L) = \sum_{i=1}^d \left[(R_i - L_i) \sum_{j \neq i} M_j \right]$$
(3)

where $(L_1, ..., L_d)$, $(M_1, ..., M_d)$ and $(R_1, ..., R_d)$ are the counting tables of intervals $(-\infty; c_L)$, $[c_L; c_R)$ and $[c_R; \infty)$, respectively (see Figure ??).

$$\begin{array}{c|c} L_1 \ L_2 \dots L_d & M_1 M_2 \dots M_d \\ \hline C_L & C_R \\ \hline \end{array}$$

イロト 不得 トイヨト イヨト ヨー シタウ

Definition

The cut $c_i \in \mathbf{C}_a$, where 1 < i < N, is called the *boundary cut* if there exist at least two such objects $u_1, u_2 \in U$ that $a(u_1) \in [c_{i-1}, c_i)$, $a(u_2) \in [c_i, c_{i+1})$ and $dec(u_1) \neq dec(u_2)$.

Theorem

The cut c_{Best} maximizing the function Disc(a, c) can be found among boundary cuts.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のなべ

Tail cuts

Definition

By a median of the k^{th} decision class we mean a cut $c \in \mathbf{C}_a$ which minimizing the value $|L_k - R_k|$. The median of the k^{th} decision class will be denoted by Median(k).

Let $c_1 < c_2 \ldots < c_N$ be the set of consecutive candidate cuts, and let

$$c_{min} = \min_{i} \{Median(i)\} \text{ and } c_{max} = \max_{i} \{Median(i)\}$$

Then we have the following theorem:

Theorem

The quality function $Disc : \{c_1, ..., c_N\} \to \mathbb{N}$ defined over the set of cuts is increasing in $\{c_1, ..., c_{min}\}$ and decreasing in $\{c_{max}, ..., c_N\}$. Hence

$$c_{Best} \in \{c_{min},...,c_{max}\}$$

Theorem

In case of decision tables with two decision classes, any single cut c_i , which is a local maximum of the function Disc, resolves more than half of conflicts in the decision table, i.e.

$$Disc(c_i) \geq \frac{1}{2} \cdot conflict(\mathbb{S})$$

Theorem

In case of decision table with two decision classes and n objects, the height of the MD decision tree using hyperplanes is not larger than $2 \log n - 1$.

(4 個)ト イヨト イヨト

Outline

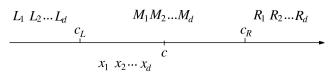
- Conflict measure
- 2 MD-heuristics
- 3 Searching for binary partition of symbolic values
- 4 Searching for cuts on numeric attributes

5 Searching for best cuts

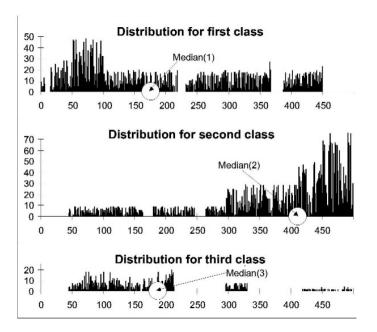
- Divide and Conquer Technique
- Example
- Discernibility measure:

Soft cuts and soft DTSoft Decision Tree

- The algorithm outline:
 - 1. Divide the set of possible cuts into k intervals
 - 2. Chose the interval to which the best cut may belong with the highest probability.
 - 3. If the considered interval is not STABLE enough then Go to Step 1
 - 4. Return the current interval as a result.
- The number of SQL queries is $O(d \cdot k \log_k n)$ and is minimum for k=3;
- How to define the measure evaluating the quality of the interval $[c_L; c_R]$?



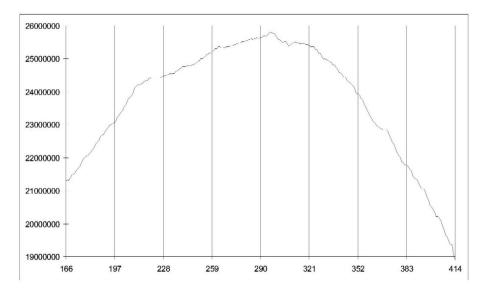
• This measure should estimate the quality of the best cut from $[c_L; c_R]$.



1 February 15, 2006

< 17 ▶

DQC 27 / 34



We construct estimation measures for intervals in four cases:

		Discernibility measure	Entropy Measure
Independency	as-	?	?
sumption			
Dependency		?	?
assumption			

Under dependency assumption, i.e.

$$\frac{x_1}{M_1} \simeq \frac{x_2}{M_2} \simeq \ldots \simeq \frac{x_d}{M_d} \simeq \frac{x_1 + \ldots + x_d}{M_1 + \ldots + M_d} = \frac{x}{M} =: t \in [0, 1]$$

discernibility measure for $\left[c_L;c_R\right]$ can be estimated by:

$$\frac{W(c_L) + W(c_R) + conflict(c_L; c_R)}{2} + \frac{[W(c_R) - W(c_L)]^2}{conflict(c_L; x_R)}$$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Under **dependency assumption**, i.e. $x_1, ..., x_d$ are independent random variables with uniform distribution over sets $\{0, ..., M_1\}$, ..., $\{0, ..., M_d\}$, respectively.

• The mean E(W(c)) for any cut $c \in [c_L; c_R]$ satisfies

$$E(W(c)) = \frac{W(c_L) + W(c_R) + conflict(c_L; c_R)}{2}$$

• and for the standard deviation of W(c) we have

$$D^{2}(W(c)) = \sum_{i=1}^{n} \left[\frac{M_{i}(M_{i}+2)}{12} \left(\sum_{j \neq i} (R_{j} - L_{j}) \right)^{2} \right]$$

• One can construct the measure estimating quality of the best cut in $[c_L;c_R]$ by

$$Eval\left([c_L;c_R],\alpha\right) = E(W(c)) + \alpha \sqrt{D^2(W(c))}$$

Outline

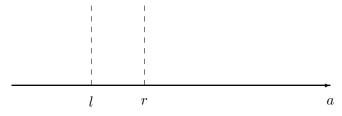
- Conflict measure
- 2 MD-heuristics
- 3 Searching for binary partition of symbolic values
- 4 Searching for cuts on numeric attributes
- 5 Searching for best cuts
 - Divide and Conquer Technique
 - Example
 - Discernibility measure:

Soft cuts and soft DT Soft Decision Tree

- ∢ /⊐ ▶

A soft cut is any triple $p = \langle a, l, r \rangle$, where

- $a \in A$ is an attribute,
- $l,r\in\Re$ are called the left and right bounds of p ;
- the value $\varepsilon = \frac{r-l}{2}$ is called the uncertain radius of p.
- We say that a soft cut p discerns a pair of objects x_1, x_2 if $a(x_1) < l$ and $a(x_2) > r$.



• The intuitive meaning of $p = \langle a, l, r \rangle$:

- there is a real cut somewhere between l and r.
- for any value v ∈ [l, r] we are not able to check if v is either on the left side or on the right side of the real cut.
- [l,r] is an uncertain interval of the soft cut p.
- normal cut can be treated as soft cut of radius 0.

- The test functions can be defined by soft cuts
- Here we propose two strategies using described above soft cuts:
 - fuzzy decision tree: any new object u can be classified as follows:
 - For every internal node, compute the probability that \boldsymbol{u} turns left and \boldsymbol{u} turns right;
 - For every leave L compute the probability that u is reaching L;
 - The decision for *u* is equal to decision labeling the leaf with largest probability.
 - rough decision tree: in case of uncertainty
 - Use both left and right subtrees to classify the new object;
 - Put together their answer and return the answer vector;
 - Vote for the best decision class.

Searching for soft cuts

STANDARD ALGORITHM FOR BEST CUT

• For a given attribute a and a set of candidate cuts $\{c_1, ..., c_N\}$, the best cut (a, c_i) with respect to given heuristic measure

$$F: \{c_1, \dots, c_N\} \to \mathbb{R}^+$$

can be founded in time $\Omega(N)$.

• The minimal number of simple SQL queries of form

SELECT COUNT FROM datatable WHERE (a BETWEEN c_L AND c_R) GROUPED BY d.

necessary to find out the best cut is $\Omega(dN)$

OUR PROPOSITIONS FOR SOFT CUTS

- Tail cuts can be eliminated
- Divide and Conquer Technique