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Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

Probability of successful learning

Number of training examples

Complexity of hypothesis space

Accuracy to which target concept is approximated

Manner in which training examples presented

Sinh Hoa Nguyen, Hung Son Nguyen (Polish-Japanese Institute of Information Technology Institute of Mathematics, Warsaw University)Computational Learning Theory February 14, 2006 3 / 35



12 + 22 + ... + n2 =
n(n + 1)(2n + 1)

6
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Prototypical Concept Learning Task

Given:
Instances X: Possible days, each described by the attributes Sky,
AirTemp, Humidity, Wind, Water, Forecast
Target function c: EnjoySport : X → {0, 1}
Hypotheses H: Conjunctions of literals. E.g.

〈?, Cold,High, ?, ?, ?〉.

Training examples D: Positive and negative examples of the target
function

〈x1, c(x1)〉, . . . 〈xm, c(xm)〉

Determine:
A hypothesis h in H such that h(x) = c(x) for all x in D?
A hypothesis h in H such that h(x) = c(x) for all x in X?
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Sample Complexity

How many training examples are sufficient to learn the target concept?

1 If learner proposes instances, as queries to teacher

Learner proposes instance x, teacher provides c(x)
2 If teacher (who knows c) provides training examples

teacher provides sequence of examples of form 〈x, c(x)〉
3 If some random process (e.g., nature) proposes instances

instance x generated randomly, teacher provides c(x)

Sinh Hoa Nguyen, Hung Son Nguyen (Polish-Japanese Institute of Information Technology Institute of Mathematics, Warsaw University)Computational Learning Theory February 14, 2006 6 / 35



Sample Complexity: 1

Learner proposes instance x, teacher provides c(x)
(assume c is in learner’s hypothesis space H)

Optimal query strategy: play 20 questions

pick instance x such that half of hypotheses in V S classify x positive,
half classify x negative

When this is possible, need dlog2 |H|e queries to learn c

when not possible, need even more
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Sample Complexity: 2

Teacher (who knows c) provides training examples
(assume c is in learner’s hypothesis space H)

Optimal teaching strategy: depends on H used by learner

Consider the case H = conjunctions of up to n boolean literals and their
negations

e.g., (AirTemp = Warm) ∧ (Wind = Strong), where
AirTemp,Wind, . . . each have 2 possible values.

if n possible boolean attributes in H, n + 1 examples suffice

why?
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Sample Complexity: 3

Given:

set of instances X

set of hypotheses H

set of possible target concepts C

training instances generated by a fixed, unknown probability
distribution D over X

Learner observes a sequence D of training examples of form 〈x, c(x)〉, for
some target concept c ∈ C

instances x are drawn from distribution D
teacher provides target value c(x) for each

Learner must output a hypothesis h estimating c

h is evaluated by its performance on subsequent instances drawn
according to D

Note: probabilistic instances, noise-free classifications
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True Error of a Hypothesis

Definition

The true error (denoted errorD(h)) of hypothesis h with respect to
target concept c and distribution D is the probability that h will
misclassify an instance drawn at random according to D.

errorD(h) ≡ Pr
x∈D

[c(x) 6= h(x)]

With probability (1− ε) one can estimate

|erc
D − erc

D| 6 s ε
2

√
erc

D(1− erc
D)

|D|
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Two Notions of Error

Training error of hypothesis h with respect to target concept c

How often h(x) 6= c(x) over training instances

True error of hypothesis h with respect to c

How often h(x) 6= c(x) over future random instances

Our concern:

Can we bound the true error of h given the training error of h?

First consider when training error of h is zero (i.e., h ∈ V SH,D)
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No Free Lunch Theorem

No search or learning algorithm can be the best on all possible learning or
optimization problems.

In fact, every algorithm is the best algorithm for the same number of
problems.

But only some problems are of interest.

For example: a random search algorithm is perfect for a completely
random problem (the “white noise” problem), but for any search or
optimization problem with structure, random search is not so good.
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Exhausting the Version Space

Definition

The version space V SH,D is said to be ε-exhausted with respect to c and
D, if every hypothesis h in V SH,D has error less than ε with respect to c
and D.

(∀h ∈ V SH,D) errorD(h) < ε
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How many examples will ε-exhaust the VS?

Theorem (Haussler, 1988)

If the hypothesis space H is finite, and D is a sequence of m ≥ 1
independent random examples of some target concept c, then for any
0 ≤ ε ≤ 1, the probability that the version space with respect to H and D
is not ε-exhausted (with respect to c) is less than

|H|e−εm

Interesting! This bounds the probability that any consistent learner
will output a hypothesis h with error(h) ≥ ε

If we want to this probability to be below δ

|H|e−εm ≤ δ

then

m ≥ 1
ε
(ln |H|+ ln(1/δ))
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Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least
(1− δ) that

every h in V SH,D satisfies errorD(h) ≤ ε

Use our theorem:

m ≥ 1
ε
(ln |H|+ ln(1/δ))

Suppose H contains conjunctions of constraints on up to n boolean
attributes (i.e., n boolean literals). Then |H| = 3n, and

m ≥ 1
ε
(ln 3n + ln(1/δ))

or

m ≥ 1
ε
(n ln 3 + ln(1/δ))
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How About EnjoySport?

m ≥ 1
ε
(ln |H|+ ln(1/δ))

If H is as given in EnjoySport then |H| = 973, and

m ≥ 1
ε
(ln 973 + ln(1/δ))

... if want to assure that with probability 95%, V S contains only
hypotheses with errorD(h) ≤ .1, then it is sufficient to have m examples,
where

m ≥ 1
.1

(ln 973 + ln(1/.05))

m ≥ 10(ln 973 + ln 20)

m ≥ 10(6.88 + 3.00)

m ≥ 98.8
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PAC Learning

Consider a class C of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H.

Definition

C is PAC-learnable by L using H if for all c ∈ C, distributions D over X,
ε such that 0 < ε < 1/2, and δ such that 0 < δ < 1/2, learner L will with
probability at least (1− δ) output a hypothesis h ∈ H such that
errorD(h) ≤ ε, in time that is polynomial in 1/ε, 1/δ, n and size(c).
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Example

Unbiased learner: |H| = 22n

m ≥ 1
ε
(ln |H|+ ln(1/δ))

≥ 1
ε
(2n ln 2 + ln(1/δ))

k–term DNF:
T1 ∨ T2 ∨ ... ∨ Tk

We have |H| ≤ (3n)k, thus

m ≥ 1
ε
(ln |H|+ ln(1/δ))

≥ 1
ε
(kn ln 3 + ln(1/δ))

So are k-DNFs PAC learnable?
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Agnostic Learning

So far, assumed c ∈ H

Agnostic learning setting: don’t assume c ∈ H

What do we want then?

The hypothesis h that makes fewest errors on training data

What is sample complexity in this case?

m ≥ 1
2ε2

(ln |H|+ ln(1/δ))

derived from Hoeffding bounds:

Pr[errorD(h) > errorD(h) + ε] ≤ e−2mε2
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Discretization problem

erc
D = µ((λ, λ0])

Let β0 = sup{β|µ((β, λ0]) < ε}. then erc
D(fλ∗) 6 ε ⇔ λ∗ 6 β0 ⇔

there exists an instance xi which is belonging to [λ0, β0];
The probability that there is no instance that belongs to [β, λ0] is
equal to 6 (1− ε)m. Hence

µm{D ∈ S(m, fλ0)|erD(L(D)) 6 ε} > 1− (1− ε)m

This probability is > 1− δ if m > m0 =

⌈
1
ε
ln

1
δ

⌉
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Shattering a Set of Instances

Definition

Definition: a dichotomy of a set S is a partition of S into two disjoint
subsets.

Definition

A set of instances S is shattered by hypothesis space H if and only if for
every dichotomy of S there exists some hypothesis in H consistent with
this dichotomy.
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Three Instances Shattered

Let S = {x1, x2, ...xm} ⊂ X.

Let ΠH(S) = |{(h(x1), ..., h(xm)) ∈ {0, 1}m : h ∈ H}| ≤ 2m

If ΠH(S) = 2m then we say H shatters S.
Let ΠH(m) = max

S∈Xm
ΠH(S)

In previous example (space of radiuses) ΠH(m) = m + 1.
In general it is hard to find a formula for ΠH(m)!!!
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The Vapnik-Chervonenkis Dimension

Definition

The Vapnik-Chervonenkis dimension, V C(H), of hypothesis space H
defined over instance space X is the size of the largest finite subset of X
shattered by H. If arbitrarily large finite sets of X can be shattered by H,
then V C(H) ≡ ∞.
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Examples of VC Dim

H = {circles...} =⇒ V C(H) = 3

H = {rectangles...} =⇒ V C(H) = 4

H = {threshold functions...} =⇒
V C(H) = 1 if + is always on the left;

V C(H) = 2 if + can be on left or right

H = {intervals...} =⇒
VC(H) = 2 if + is always in center

VC(H) = 3 if center can be + or -

H = { linear decision surface in 2D ... }
=⇒ V C(H) = 3

Is there an H with V C(H) = ∞?

Theorem If |H| < ∞ then V Cdim(H) 6 log |H|

Let Mn = the set of all Boolean monomials of n
variables. Since, |Mn| = 3n we have

V Cdim(Mn) 6 n log 3
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Sample Complexity from VC Dimension

How many randomly drawn examples suffice to ε-exhaust V SH,D with
probability at least (1− δ)?

m ≥ 1
ε
(4 log2(2/δ) + 8V C(H) log2(13/ε))
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Potential learnability

Let D ∈ S(m, c)

Hc(D) = {h ∈ H|h(xi) = c(xi)(i = 1, ...,m)}

Algorithm L is consistent if and only if L(D) ∈ Hc(D) for any
training sample D

Bc
ε = {h ∈ H|erΩ(h) > ε}

We say that H is potentially learnable if, given real numbers
0 < ε, δ < 1 there is a positive integer m0 = m0(ε, δ) such that,
whenever m > m0,

µm{D ∈ S(m, c)|Hc(D) ∩ Bc
ε = ∅} > 1− δ

for any probability distribution µ on X and c ∈ H
(Theorem:) If H is potentially learnable, and L is a consistent
learning algorithm for H, then L is PAC.
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Theorem

Haussler, 1988 Any finite hypothesis space is potentially learnable.

Proof: Let h ∈ Bε then

µm{D ∈ S(m, c)|erD(h) = 0} 6 (1− ε)m

⇒ µm{D : H[D] ∩ Bε 6= ∅} 6 |Bε|(1− ε)m 6 |H|(1− ε)m

It is enough to chose m > m0 =
⌈

1
ε ln |H|

δ

⌉
to obtain |H|(1− ε)m < δ
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Fundamental theorem

Theorem

If a hypothesis space has infinite VC dimension then it is not potentially
learnable. Inversely, finite VC dimension is sufficient for potential
learnability

Let V Cdim(H) = d ≥ 1 Each consistent algorithm L is PAC with
sample complexity

mL(H, δ, ε) ≤
⌈

4
ε

(
d log

12
ε

+ log
2
δ

)⌉
Lower bounds: for any PAC learning algorithm L for finite VC
dimension space H,

mL(H, δ, ε) > d(1− ε)
If δ ≤ 1/100 and ε ≤ 1/8, then mL(H, δ, ε) > d−1

32ε
mL(H, δ, ε) > 1−ε

ε ln 1
δ
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Combine theory with practice

Theory is when we know everything and
nothing works.

Practice is when everything works and no one
knows why.

We combine theory with practice —

nothing works and no one knows why.
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Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before convergence?

Let’s consider similar setting to PAC learning:

Instances drawn at random from X according to distribution D
Learner must classify each instance before receiving correct
classification from teacher

Can we bound the number of mistakes learner makes before
converging?
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Mistake Bounds: Find-S

Consider Find-S when H = conjunction of boolean literals

Find-S:

Initialize h to the most specific hypothesis
l1 ∧ ¬l1 ∧ l2 ∧ ¬l2 . . . ln ∧ ¬ln
For each positive training instance x

Remove from h any literal that is not satisfied by x

Output hypothesis h.

How many mistakes before converging to correct h?
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Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:

Learn concept using version space Candidate-Elimination
algorithm

Classify new instances by majority vote of version space members

How many mistakes before converging to correct h?

... in worst case?

... in best case?
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Optimal Mistake Bounds

Let MA(C) be the max number of mistakes made by algorithm A to learn
concepts in C. (maximum over all possible c ∈ C, and all possible training
sequences)

MA(C) ≡ max
c∈C

MA(c)

Definition: Let C be an arbitrary non-empty concept class. The optimal
mistake bound for C, denoted Opt(C), is the minimum over all possible
learning algorithms A of MA(C).

Opt(C) ≡ min
A∈learning algorithms

MA(C)

V C(C) ≤ Opt(C) ≤ MHalving(C) ≤ log2(|C|).
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