Approximate Boolean Reasoning Approach to Rough Sets and Data Mining

Hung Son Nguyen
Institute of Mathematics, Warsaw University son@mimuw.edu.pl

RSFDGrC, September 3, 2005

Outline

(1) Boolean Reasoning Methodology

- Introduction
- Boolean Reasoning Approach to AI
(2) Rough Set Approach to Data Mining
- Concept Approximation Problem
- Rough approximation of concepts
(3) Approximate Boolean Reasoning
- Motivation
- ABR and Reducts vs. Association Rules

Outline

(1) Boolean Reasoning Methodology

- Introduction
- Boolean Reasoning Approach to AI
(2) Rough Set Approach to Data Mining
- Concept Approximation Problem
- Rough approximation of concepts
(3) Approximate Boolean Reasoning
- Motivation
- ABR and Reducts vs. Association Rules

Boolean algebra in Computer Science

George Boole (1815-1864)

- George Boole was truly one of the founders of computer science;
- Boolean algebra was an attempt to use algebraic techniques to deal with expressions in the propositional calculus.
- Boolean algebras find many applications in electronic and computer design.
- They were first applied to switching by Claude Shannon in the 20th century.
- Boolean Algebra is also a convenient notation for representing Boolean functions.

Algebraic approach to problem solving

Word Problem:
 Madison has a pocket full of nickels and dimes.
 - She has 4 more dimes than nickels.
 - The total value of the dimes and nickels is $\$ 1.15$.
 How many dimes and nickels does she have?

Algebraic approach to problem solving

- Problem modeling:

Word Problem:

Madison has a pocket full of nickels and dimes.

- She has 4 more dimes than nickels.
- The total value of the dimes and nickels is $\$ 1.15$.

How many dimes and nickels does she have?

$$
\begin{aligned}
& N=\text { number of nickels } \\
& D=\text { number of dimes } \\
& D=N+4 \\
& 10 D+5 N=115
\end{aligned}
$$

Algebraic approach to problem solving

- Problem modeling:

Word Problem:
Madison has a pocket full of nickels and dimes.

- She has 4 more dimes than nickels.
- The total value of the dimes and nickels is $\$ 1.15$.

How many dimes and nickels does she have?

$$
\begin{aligned}
& N=\text { number of nickels } \\
& D=\text { number of dimes } \\
& D=N+4 \\
& 10 D+5 N=115
\end{aligned}
$$

- Solving algebraic problem:

$$
\ldots \Rightarrow D=9 ; N=5
$$

Algebraic approach to problem solving

- Problem modeling:

Word Problem:

Madison has a pocket full of nickels and dimes.

- She has 4 more dimes than nickels.
- The total value of the dimes and nickels is $\$ 1.15$.

How many dimes and nickels does she have?

$$
\begin{aligned}
& N=\text { number of nickels } \\
& D=\text { number of dimes } \\
& D=N+4 \\
& 10 D+5 N=115
\end{aligned}
$$

- Solving algebraic problem:

$$
\ldots \Rightarrow D=9 ; N=5
$$

- Hura: 9 dimes and 5 nickels!

Boolean Algebra:

a tuple

$$
\mathcal{B}=(B,+, \cdot, 0,1)
$$

satisfying following axioms:

- Commutative laws:

$$
\begin{aligned}
& (a+b)=(b+a) \text { and } \\
& (a \cdot b)=(b \cdot a)
\end{aligned}
$$

- Distributive laws:

$$
\begin{aligned}
& a \cdot(b+c)=(a \cdot b)+(a \cdot c), \text { and } \\
& a+(b \cdot c)=(a+b) \cdot(a+c)
\end{aligned}
$$

- Identity elements:

$$
a+0=a \text { and } a \cdot 1=a
$$

- Complementary:

$$
a+\bar{a}=1 \text { and } a \cdot \bar{a}=0
$$

Boolean Algebra:

a tuple

$$
\mathcal{B}=(B,+, \cdot, 0,1)
$$

satisfying following axioms:

- Commutative laws:

$$
\begin{aligned}
& (a+b)=(b+a) \text { and } \\
& (a \cdot b)=(b \cdot a)
\end{aligned}
$$

- Distributive laws:

$$
\begin{aligned}
& a \cdot(b+c)=(a \cdot b)+(a \cdot c), \text { and } \\
& a+(b \cdot c)=(a+b) \cdot(a+c)
\end{aligned}
$$

- Identity elements:

$$
a+0=a \text { and } a \cdot 1=a
$$

- Complementary:

$$
a+\bar{a}=1 \text { and } a \cdot \bar{a}=0
$$

Binary Boolean algebra

$$
\mathcal{B}_{2}=(\{0,1\},+, \cdot, 0,1)
$$

is the smallest, but the most important, model of general Boolean Algebra.

x	y	$x+y$	$x \cdot y$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

x	$\neg x$
0	1
1	0

Applications:

- circuit design;
- propositional calculus;

Associative law:

$$
(x+y)+z=x+(y+z) \text { and }(x \cdot y) \cdot z=x \cdot(y \cdot z)
$$

Idempotence:

$$
x+x=x \quad \text { and } \quad x \cdot x=x(\text { dual })
$$

Op. with 0 and 1: $\quad x+1=1$ and $x \cdot 0=0$ (dual)
Absorption laws:

$$
\begin{aligned}
& (y \cdot x)+x=x \quad \text { and } \quad(y+x) \cdot x=x(\text { dual }) \\
& \overline{(\bar{x})}=x
\end{aligned}
$$

Involution laws:
DeMorgan's laws:

$$
\neg(x+y)=\neg x \cdot \neg y \quad \text { and } \quad \neg(x \cdot y)=\neg x+\neg y(\text { dual })
$$

Consensus laws:

$$
\begin{aligned}
(x+y) \cdot(\bar{x}+z) \cdot(y+z) & =(x+y) \cdot(\bar{x}+z) \text { and } \\
(x \cdot y)+(\bar{x} \cdot z)+(y \cdot z) & =(x \cdot b)+(\bar{x} \cdot z)
\end{aligned}
$$

Duality principle: Any algebraic equality derived from the axioms of Boolean algebra remains true when the operators + and \cdot are interchanged and the identity elements 0 and 1 are interchanged

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

x	y	z	f
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	1

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

A Boolean function can be represented by many Boolean formulas;

- $\phi_{1}=x y \bar{z}+x \bar{y} z+\bar{x} y z+x y z$

x	y	z	f
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	1

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

A Boolean function can be represented by many Boolean formulas;

- $\phi_{1}=x y \bar{z}+x \bar{y} z+\bar{x} y z+x y z$
- $\phi_{2}=(x+y+z)(\bar{x}+y+z)(x+\bar{y}+z)(x+y+\bar{z})$

x	y	z	f
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	1

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

A Boolean function can be represented by many Boolean formulas;

- $\phi_{1}=x y \bar{z}+x \bar{y} z+\bar{x} y z+x y z$
- $\phi_{2}=(x+y+z)(\bar{x}+y+z)(x+\bar{y}+z)(x+y+\bar{z})$
- $\phi_{3}=x y+x z+y z$

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

A Boolean function can be represented by many Boolean formulas;

- $\phi_{1}=x y \bar{z}+x \bar{y} z+\bar{x} y z+x y z$
- $\phi_{2}=(x+y+z)(\bar{x}+y+z)(x+\bar{y}+z)(x+y+\bar{z})$
- $\phi_{3}=x y+x z+y z$
- $x y \bar{z}$ is an implicant

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

A Boolean function can be represented by many Boolean formulas;

- $\phi_{1}=x y \bar{z}+x \bar{y} z+\bar{x} y z+x y z$
- $\phi_{2}=(x+y+z)(\bar{x}+y+z)(x+\bar{y}+z)(x+y+\bar{z})$
- $\phi_{3}=x y+x z+y z$
- $x y \bar{z}$ is an implicant
- $x y$ is a prime implicant

x	y	z	f
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	1

Boolean Reasoning Approach

Theorem (Blake Canonical Form)
A Boolean function can be represented as a disjunction of all of its prime implicants

$$
f=t_{1}+t_{2}+\ldots+t_{k}
$$

Boolean Reasoning Approach

Theorem (Blake Canonical Form)

A Boolean function can be represented as a disjunction of all of its prime implicants

$$
f=t_{1}+t_{2}+\ldots+t_{k}
$$

Boolean Reasoning

(1) Modeling: Represent the problem by a collection of Boolean equations
(2) Reduction: Condense the equations into a single Boolean equation

$$
f=0 \quad \text { or } \quad f=1
$$

(3) Development: Construct the Blake Canonical form, i.e., generate the prime implicants of f
(9) Reasoning: Apply a sequence of reasoning to solve the problem

Boolean Reasoning - Example

Problem:

A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

Boolean Reasoning - Example

Problem:

A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

Problem modeling:

$$
\begin{array}{rlr}
A \rightarrow \bar{B} \wedge C \text { ans } A(B+\bar{C}) & =0 \\
\ldots \text { ans } B D(A C+\overline{A C}) & =0 \\
\ldots \text { ans } \bar{B} C(A+\bar{D}) & =0
\end{array}
$$

Boolean Reasoning - Example

Problem:

A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

Problem modeling:

$$
\begin{aligned}
& A \rightarrow \bar{B} \wedge C \leadsto A(B+\bar{C}) \quad=0 \\
& \ldots \leadsto B B D(A C+\overline{A C})=0 \\
& \ldots \text {.. } \quad \bar{B} C(A+\bar{D}) \quad 0
\end{aligned}
$$

Boolean Reasoning - Example

Problem:

A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

Problem modeling:

$$
\begin{aligned}
A \rightarrow \bar{B} \wedge C \leadsto A(B+\bar{C}) & =0 \\
\ldots \leadsto B D(A C+\overline{A C}) & =0 \\
\ldots \leadsto \bar{B} C(A+\bar{D}) & =0
\end{aligned}
$$

Boolean Reasoning - Example

Problem:

A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

Problem modeling:

$$
\begin{aligned}
A \rightarrow \bar{B} \wedge C \leadsto A(B+\bar{C}) & =0 \\
\ldots \nprec B D(A C+\overline{A C}) & =0 \\
\ldots \leadsto \bar{B} C(A+\bar{D}) & =0
\end{aligned}
$$

- After reduction:

$$
\begin{aligned}
& f=A(B+\bar{C})+B D(A C+ \\
& \overline{A C})+\bar{B} C(A+\bar{D})=0
\end{aligned}
$$

- Blake Canonical form: $f=B \bar{C} D+\bar{B} C \bar{D}+A=0$
- Facts:

$$
\begin{aligned}
B D & \longrightarrow C \\
C & \longrightarrow B \vee D \\
A & \longrightarrow 0
\end{aligned}
$$

Boolean Reasoning - Example

Problem:

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

Problem modeling:

$$
\begin{aligned}
A \rightarrow \bar{B} \wedge C \text { ぃぃ } A(B+\bar{C}) & =0 \\
\ldots \text { ↔ } B D(A C+\overline{A C}) & =0 \\
\ldots \text { ↔ } \bar{B} C(A+\bar{D}) & =0
\end{aligned}
$$

- After reduction:
$f=A(B+\bar{C})+B D(A C+$ $\overline{A C})+\bar{B} C(A+\bar{D})=0$
- Blake Canonical form: $f=B \bar{C} D+\bar{B} C \bar{D}+A=0$
- Facts:

$$
\begin{aligned}
B D & \longrightarrow C \\
C & \longrightarrow B \vee D \\
A & \longrightarrow 0
\end{aligned}
$$

- Reasoning: (theorem proving) e.g., show that
"nobody can go alone."

Outline

(1) Boolean Reasoning Methodology

- Introduction
- Boolean Reasoning Approach to AI
(2) Rough Set Approach to Data Mining
- Concept Approximation Problem
- Rough approximation of concepts
(3) Approximate Boolean Reasoning
- Motivation
- ABR and Reducts vs. Association Rules

Boolean reasoning for decision problems

Planing (scheduling) problem \mathbf{P}

SAT or MAXSAT for f_{P} decoding
solution for P

Boolean reasoning for decision problems

Planing (scheduling) problem P

- SAT: whether an equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=1
$$

has a solution?

- SAT is the first problem which has been proved to be NP-complete (the Cook's theorem).

Boolean reasoning for decision problems

Planing (scheduling) problem P

- SAT: whether an equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=1
$$

has a solution?

- SAT is the first problem which has been proved to be NP-complete (the Cook's theorem).
- E.g., scheduling problem may be solved by SAT-solver.

procedure $\operatorname{DPLL}(\phi, t)$

```
//SAT:
    if }\phi/t\mathrm{ is empty then
        return SATISFIABLE;
    end if
//Conflict:
    if }\phi/t\mathrm{ contains an empty clause then
        return UNSATISFIABLE;
    end if
//Unit Clause:
    if }\phi/t\mathrm{ contains a unit clause {p} then
        return DPLL( }\phi,tp)
    end if
//Pure Literal:
    if }\phi/t\mathrm{ has a pure literal p then
        return DPLL( }\phi,tp)
    end if
//Branch:
    Let p}\mathrm{ be a literal from a minimum size clause of }\phi/
    if DPLL( }\phi,tp)\mathrm{ then
        return SATISFIABLE;
    else
        return DPLL( }\phi,t\overline{p})
    end if
```


Boolean reasoning for optimization problems

- A function $\phi:\{0,1\}^{n} \rightarrow\{0,1\}$ is " monotone" if

$$
\forall_{\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}}(\mathbf{x} \leqslant \mathbf{y}) \Rightarrow(\phi(\mathbf{x}) \leqslant \phi(\mathbf{y}))
$$

Boolean reasoning for optimization problems

optimization problem Π
encoding

- A function $\phi:\{0,1\}^{n} \rightarrow\{0,1\}$ is " monotone" if

$$
\forall_{\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}}(\mathbf{x} \leqslant \mathbf{y}) \Rightarrow(\phi(\mathbf{x}) \leqslant \phi(\mathbf{y}))
$$

- Monotone functions can be represented by a boolean expression without negations.

prime implicants of f_{Π}

decoding
heuristics

Boolean reasoning for optimization problems

- A function $\phi:\{0,1\}^{n} \rightarrow\{0,1\}$ is " monotone" if

$$
\forall_{\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}}(\mathbf{x} \leqslant \mathbf{y}) \Rightarrow(\phi(\mathbf{x}) \leqslant \phi(\mathbf{y}))
$$

- Monotone functions can be represented by a boolean expression without negations.
- Minimal Prime Implicant Problem:
input: Monotone Boolean function f of n variables.
output: A prime implicant of f with the minimal length.
is NP-hard.

Heuristics for minimal prime implicants

Example

$f=\left(x_{1}+x_{2}+x_{3}\right)\left(x_{2}+x_{4}\right)\left(x_{1}+x_{3}+x_{5}\right)\left(x_{1}+x_{5}\right)\left(x_{4}+x_{6}\right)$
The prime implicant can be treated as a set covering problem.
(1) Greedy algorithm: In each step, select the variable that most frequently occurs within clauses
(3) Linear programming: Convert the given function into a system of linear inequations and applying the Integer Linear Programming (ILP) approach to this system.
(0) Evolutionary algorithms:

The search space consists of all subsets of variables the cost function for a subset X of variables is defined by (1) the number of clauses that are uncovered by X, and (2) the size of X,

Boolean Reasoning Approach to Rough sets

- Reduct calculation;
- Decision rule generation;
- Real value attribute discretization;
- Symbolic value grouping;
- Hyperplanes and new direction creation;

Outline

(1) Boolean Reasoning Methodology

- Introduction
- Boolean Reasoning Approach to AI
(2) Rough Set Approach to Data Mining
- Concept Approximation Problem
- Rough approximation of concepts
(3) Approximate Boolean Reasoning
- Motivation
- ABR and Reducts vs. Association Rules

The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an APPROXIMATE REASONING PROBLEM.

Assume that there are

- Two agents A_{1} and A_{2};

The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an APPROXIMATE REASONING PROBLEM.

Assume that there are

- Two agents A_{1} and A_{2};
- They are talking about objects from a common universe \mathcal{U};

The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an APPROXIMATE REASONING PROBLEM.

Assume that there are

- Two agents A_{1} and A_{2};
- They are talking about objects from a common universe \mathcal{U};
- They use different languages \mathcal{L}_{1} and \mathcal{L}_{2};

The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an approximate reasoning problem.

Assume that there are

- Two agents A_{1} and A_{2};
- They are talking about objects from a common universe \mathcal{U};
- They use different languages \mathcal{L}_{1} and \mathcal{L}_{2};
- Every formula ψ in \mathcal{L}_{1} (and \mathcal{L}_{2}) describes a set C_{ψ} of objects from \mathcal{U}.

Each agent, who wants to understand the other, should perform

- an approximation of concepts used by the other;
- an approximation of reasoning scheme, e.g., derivation laws;

An universe of keys

Teacher

$$
\mathcal{L}_{1}=\{\text { keyboard }, \ldots\}
$$

An universe of keys

Classification Problem

Given

- A concept $C \subset \mathcal{U}$ used by teacher;
- A sample $U=U^{+} \cup U^{-}$, where
- $U^{+} \subset C$: positive examples;
- $U^{-} \subset \mathcal{U} \backslash C$: negative examples;
- Language \mathcal{L}_{2} used by learner;

Goal

build an approximation of C in terms of \mathcal{L}_{2}

- with simple description;
- with high quality of approximation;
- using efficient algorithm.

Clustering Problem

- Original definition: Division of data into groups of similar objects.

- In terms of approximate reasoning: Looking for approximation of a similarity relation (i.e., a concept of being similar):
- Universe: the set of pairs of objects;
- Teacher: a partial knowledge about similarity + optimization criteria;
- Learner: describes the similarity relation using available features;

Association Discovery

- Basket data analysis: looking for approximation of customer behavior in terms of association rules;
- Universe: the set of transactions;
- Teacher: hidden behaviors of individual customers;
- Learner: uses association rules to describe some common trends;

Association Discovery

- Basket data analysis: looking for approximation of customer behavior in terms of association rules;
- Universe: the set of transactions;
- Teacher: hidden behaviors of individual customers;
- Learner: uses association rules to describe some common trends;
- Time series data analysis:
- Universe: Sub-sequences obtained by windowing with all possible frame sizes.
- Teacher: the actual phenomenon behind the collection of timed measurements, e.g., stock market, earth movements.
- Learner: trends, variations, frequent episodes, extrapolation.

Outline

(1) Boolean Reasoning Methodology

- Introduction
- Boolean Reasoning Approach to AI
(2) Rough Set Approach to Data Mining
- Concept Approximation Problem
- Rough approximation of concepts
(3) Approximate Boolean Reasoning
- Motivation
- ABR and Reducts vs. Association Rules

Rough set approach to Concept approximations

- Lower approximation - we are sure that these objects are in the set.
- Upper approximation - it is possible (likely, feasible) that these objects belong to our set (concept). They roughly belong to the set.

Generalized definition

Rough approximation of the concept C (induced by a sample X): any pair $\mathbb{P}=(\mathbf{L}, \mathbf{U})$ satisfying the following conditions:
(1) $\mathbf{L} \subseteq \mathbf{U} \subseteq \mathcal{U}$;
(2) \mathbf{L}, \mathbf{U} are subsets of \mathcal{U} expressible in the language \mathcal{L}_{2};
(3) $\mathbf{L} \cap X \subseteq C \cap X \subseteq \mathbf{U} \cap X$;
(9) (*) the set \mathbf{L} is maximal (and \mathbf{U} is minimal) in the family of sets definable in \mathcal{L} satisfying (3).

Generalized definition

Rough approximation of the concept C (induced by a sample X): any pair $\mathbb{P}=(\mathbf{L}, \mathbf{U})$ satisfying the following conditions:
(1) $\mathbf{L} \subseteq \mathbf{U} \subseteq \mathcal{U}$;
(2) \mathbf{L}, \mathbf{U} are subsets of \mathcal{U} expressible in the language \mathcal{L}_{2};
(3) $\mathbf{L} \cap X \subseteq C \cap X \subseteq \mathbf{U} \cap X$;
(9) (*) the set \mathbf{L} is maximal (and \mathbf{U} is minimal) in the family of sets definable in \mathcal{L} satisfying (3).

Rough membership function of concept C :
any function $f: \mathcal{U} \rightarrow[0,1]$ such that the pair $\left(\mathbf{L}_{f}, \mathbf{U}_{f}\right)$, where

- $\mathbf{L}_{f}=\{x \in \mathcal{U}: f(x)=1\}$ and
- $\mathbf{U}_{f}=\{x \in \mathcal{U}: f(x)>0\}$.
is a rough approximation of C (induced from sample U)

Example of Rough Set models

- Standard rough sets defined by attributes:
- lower and upper approximation of X by attributes from B are defined by indiscernible classes.
- Tolerance based rough sets:
- Using tolerance relation (also similarity relation) instead of indiscernibility relation.
- Variable Precision Rough Sets (VPRS)
- allowing some admissible level $0 \leq \beta \leq 1$ of classification inaccuracy.
- Generalized approximation space

Rough Sets - Extensions

Variable Precision Rough Sets (VPRS)

- Using tolerance relation (also similarity relation) instead of indiscernibility relation.
- If we allow weaker indiscernibility (tolerance) the indiscernibility classes may overlap.
- The family of sets which are definable using tolerance classes is richer than in case of equivalence classes.
- We may also extend the lower approximation of a set, allowing some admissible level $0 \leq \beta \leq 1$ of classification inaccuracy.

$$
\underline{A}_{\beta} X=\bigcup\left\{[x]_{A} \left\lvert\, \frac{\left|[x]_{A} \cap X\right|}{\left|[x]_{A}\right|} \geq \beta\right.\right\}
$$

Generalized approximation space

 is a quadruple $\mathcal{A}=(\mathcal{U}, I, \nu, P)$, where(1) \mathcal{U} is a non-empty set of objects (an universe),
(2) $I: \mathcal{U} \rightarrow \mathcal{P}(\mathcal{U})$ is an uncertainty function satisfying conditions:

- $x \in I(x)$ for $x \in \mathcal{U}$
- $y \in I(x) \Longleftrightarrow x \in I(y)$ for any $x, y \in \mathcal{U}$.

Thus, the relation $x R y \Longleftrightarrow y \in I(x)$ is a tolerance relation (reflexive and symmetric) and $I(x)$ is a tolerance class of x,
(3) $\nu: \mathcal{P}(\mathcal{U}) \times \mathcal{P}(\mathcal{U}) \rightarrow[0,1]$ is a vague inclusion function, which is a kind of membership function defined over $\mathcal{P}(\mathcal{U}) \times \mathcal{P}(\mathcal{U})$ to measure degree of inclusion between two sets. Vague inclusion must be monotone with respect to the second argument, i.e., if $Y \subseteq Z$ then $\nu(X, Y) \leq \nu(X, Z)$ for $X, Y, Z \subseteq \mathcal{U}$.
(4) $P: I(\mathcal{U}) \rightarrow\{0,1\}$ is a structurality function

Generalized Approximation Space

- Together with uncertainty function I, vague inclusion function ν defines the rough membership function for $x \in \mathcal{U}, X \subseteq \mathcal{U}$:

$$
\mu_{I, \nu}(x, X)=\nu(I(x), X)
$$

- The vague inclusion function ν is approximately constructed from the finite set of examples $U \in \mathcal{U}$.
- Lower and upper approximations in \mathcal{A} of $X \subseteq \mathcal{U}$ are then defined as

$$
\begin{aligned}
\mathbf{L}_{\mathcal{A}}(X) & =\{x \in \mathcal{U}: P(I(x))=1 \wedge \nu(I(x), X)=1\} \\
\mathbf{U}_{\mathcal{A}}(X) & =\{x \in \mathcal{U}: P(I(x))=1 \wedge \nu(I(x), X)>0\}
\end{aligned}
$$

- The structurality function allows us to enforce additional global conditions on sets $I(x)$ considered in approximations. Only sets $X \in I(\mathcal{U})$ for which $P(X)=1$ (referred as P-structural elements in $U)$ are considered.
- For example, function $P_{\alpha}(X)=1 \Longleftrightarrow|X \cup U| /|U|>\alpha$ will discard all relatively small subsets of U (given by α).

Classifier

Classifier

Result of a concept approximation method.
It is also called the classification algorithm featured by

- Input: information vector of an object;
- Output: whether an object belong to the concept;
- Parameters: are necessary for tuning the quality of classifier;

Rough classifier

Outside look: 4 possible answers

- YES (lower approximation)
- POSSIBLY YES (boundary region)
- NO
- DON'T KNOW

Inside:

- Feature selection/reduction;
- Feature extraction (discretization, value grouping, hyperplanes ...);
- Decision rule extraction;
- Data decomposition;
- Reasoning scheme approximation;

Outline

(1) Boolean Reasoning Methodology

- Introduction
- Boolean Reasoning Approach to AI
(2) Rough Set Approach to Data Mining
- Concept Approximation Problem
- Rough approximation of concepts
(3) Approximate Boolean Reasoning
- Motivation
- ABR and Reducts vs. Association Rules

Boolean Reasoning Approach to Rough sets

Complexity of encoding functions
Given a decision table with n objects and m attributes

Problem	Nr of variables	Nr of clauses
minimal reduct	$O(m)$	$O\left(n^{2}\right)$
decision rules	$O(n)$ functions	
	$O(m)$	$O(n)$
discretization	$O(m n)$	$O\left(n^{2}\right)$
grouping	$O\left(\sum_{a \in A} 2^{\left\|V_{a}\right\|}\right)$	$O\left(n^{2}\right)$
hyperplanes	$O\left(n^{m}\right)$	$O\left(n^{2}\right)$

Greedy algorithm:

time complexity of searching for the best variable:

$$
O(\# \text { variables } \times \# \text { clauses })
$$

Data Mining

The iterative and interactive process of discovering non-trivial, implicit, previously unknown and potentially useful (interesting) information or patterns from large databases.

W. Frawley and G. Piatetsky-Shapiro and C. Matheus,(1992)

The science of extracting useful information from large data sets or databases.D. Hand, H. Mannila, P. Smyth (2001)

Rough set algorithms based on BR reasoning:

Advantages:

- accuracy: high;
- interpretability: high;
- adjustability: high;
- etc.

Disadvantages:

- Complexity: high;
- Scalability: low;
- Usability of domain knowledge: weak;

Approximate Boolean Reasoning

Figure: The Boolean reasoning scheme for optimization problems

Outline

(1) Boolean Reasoning Methodology

- Introduction
- Boolean Reasoning Approach to AI
(2) Rough Set Approach to Data Mining
- Concept Approximation Problem
- Rough approximation of concepts
(3) Approximate Boolean Reasoning
- Motivation
- ABR and Reducts vs. Association Rules

Data reduction in Rough sets

What is reduct?

Reducts are minimal subsets of attributes which contain a necessary portion of information of the set of all attributes.

- Given an information system $\mathbb{S}=(U, A)$ and a monotone evaluation function

$$
\mu_{\mathbb{S}}: \mathcal{P}(A) \longrightarrow \Re^{+}
$$

- The set $B \subset A$ is called μ-reduct, if
- $\mu(B)=\mu(A)$,
- for any proper subset $B^{\prime} \subset B$ we have $\mu\left(B^{\prime}\right)<\mu(B)$;
- The set $B \subset A$ is called approximated reduct, if
- $\mu(B) \geq \mu(A)(1-\varepsilon)$,
- for any proper subset ...

Some types of reducts

- Information reduct:

$$
\mu_{1}(B)=\text { number of pairs of objects discerned by } B
$$

- Decision oriented reduct:

$$
\mu_{2}(B)=\text { number of pairs of conflict objects discerned by } B
$$

- Object oriented reduct:

$$
\mu_{x}(B)=\text { number of objects discerned with } x \text { by } B
$$

- Frequent reducts;
- α-reducts: $(1-\alpha)$ approximation reduct with respect to the discernibility measure;

Example

$\mathbb{A} \mid a_{1}$	a_{2}	a_{3}	a_{4}	dec
ID\|outlook	temp.	hum.	windy	play
1 \|sunny	hot	high	FALSE\|	no
2 \|sunny	hot	high	TRUE	no
3 \|overcast	hot	high	FALSE	yes
4 \|rainy	mild	high	FALSE	yes
5 \|rainy	cool	normal	FALSE	\| yes
6 \|rainy	cool	normal	TRUE	no
7 \|overcast	cool	normal	TRUE	yes
8 \|sunny	mild	high	FALSE	no
9 \|sunny	cool	normal	FALSE	yes
10\|rainy	mild	norma	FALSE	yes
11\|sunny	mild	normal	TRUE	yes
12\|overcast	mild	high	TRUE	\| yes
13\|overcast	hot	normal	FALSE	?
14\|rainy	mild	high	TRUE	?

Discernibility Matrix

\mathbb{M}	1	2	6	8
3	a_{1}	a_{1}, a_{4}	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{1}, a_{2}
4	a_{1}, a_{2}	a_{1}, a_{2}, a_{4}	a_{2}, a_{3}, a_{4}	a_{1}
5	a_{1}, a_{2}, a_{3}	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{4}	a_{1}, a_{2}, a_{3}
7	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{1}, a_{2}, a_{3}	a_{1}	$a_{1}, a_{2}, a_{3}, a_{4}$
9	a_{2}, a_{3}	a_{2}, a_{3}, a_{4}	a_{1}, a_{4}	a_{2}, a_{3}
10	a_{1}, a_{2}, a_{3}	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{2}, a_{4}	a_{1}, a_{3}
11	a_{2}, a_{3}, a_{4}	a_{2}, a_{3}	a_{1}, a_{2}	a_{3}, a_{4}
12	a_{1}, a_{2}, a_{4}	a_{1}, a_{2}	a_{1}, a_{2}, a_{3}	a_{1}, a_{4}

Reducts

After reducing of all repeated clauses we have:

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & \left(x_{1}\right)\left(x_{1}+x_{4}\right)\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}+x_{2}+x_{4}\right) \\
& \left(x_{2}+x_{3}+x_{4}\right)\left(x_{1}+x_{2}+x_{3}\right)\left(x_{4}\right)\left(x_{2}+x_{3}\right)\left(x_{2}+x_{4}\right) \\
& \left(x_{1}+x_{3}\right)\left(x_{3}+x_{4}\right)\left(x_{1}+x_{2}+x_{4}\right)
\end{aligned}
$$

- remove those clauses that are absorbed by some other clauses (using absorbtion rule: $p(p+q) \equiv p)$:

$$
f=\left(x_{1}\right)\left(x_{4}\right)\left(x_{2}+x_{3}\right)
$$

- Translate f from CNF to DNF

$$
f=x_{1} x_{4} x_{2}+x_{1} x_{4} x_{3}
$$

- Every monomial corresponds to a reduct. Thus we have 2 reducts: $R_{1}=\left\{a_{1}, a_{2}, a_{4}\right\}$ and $R_{2}=\left\{a_{1}, a_{3}, a_{4}\right\}$

counting table

By contingency table of a set of attributes B we denote the two-dimensional array $\operatorname{Count}(B)=\left[n_{v, k}\right]_{v \in I N F(B), k \in V_{d e c}}$, where

$$
n_{v, k}=\operatorname{card}\left(\left\{x \in U: i n f_{B}(x)=v \text { and } \operatorname{dec}(x)=k\right\}\right)
$$

Discernibility measure:

$$
\begin{equation*}
\operatorname{disc}_{d e c}(B)=\frac{1}{2} \sum_{v \neq v^{\prime}, k \neq k^{\prime}} n_{v, k} \cdot n_{v^{\prime}, k^{\prime}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{disc}_{d e c}(B)=\operatorname{conflict}(U)-\sum_{[x] \in U / I N D(B)} \operatorname{conflict}\left([x]_{I N D(B)}\right) \tag{2}
\end{equation*}
$$

Thus, the discernibility measure can be determined in $O(S)$ time:

$$
\begin{equation*}
\operatorname{disc}_{d e c}(B)=\frac{1}{2}\left(n^{2}-\sum_{k=1}^{d} n_{k}^{2}\right)-\frac{1}{2} \sum_{v \in I N F(B)}\left[\left(\sum_{k=1}^{d} n_{v, k}\right)^{2}-\sum_{k=1}^{d} n_{v, k}^{2}\right] \tag{3}
\end{equation*}
$$

where $n_{k}=\left|C L A S S_{k}\right|=\sum_{v} n_{v, k}$ is the size of $k^{t h}$ decision class.

ABR approach to reducts

- First we have to calculate the number of occurrences of each attributes in the discernibility matrix:

$$
\begin{array}{ll}
\operatorname{eval}\left(a_{1}\right)=\operatorname{disc}_{d e c}\left(a_{1}\right)=23 & \operatorname{eval}\left(a_{2}\right)=\operatorname{disc_{dec}(a_{2})=23} \\
\operatorname{eval}\left(a_{3}\right)=\operatorname{disc}_{d e c}\left(a_{3}\right)=18 & \operatorname{eval}\left(a_{4}\right)=\operatorname{disc}_{d e c}\left(a_{4}\right)=16
\end{array}
$$

Thus a_{1} and a_{2} are the two most preferred attributes.

- Assume that we select a_{1}. Now we are taking under consideration only those cells of the discernibility matrix which are not containing a_{1}. There are 9 such cells only, and the number of occurrences are as following:

$$
\begin{aligned}
& \operatorname{eval}\left(a_{2}\right)=\operatorname{disc}_{d e c}\left(a_{1}, a_{2}\right)-\operatorname{disc}_{d e c}\left(a_{1}\right)=7 \\
& \operatorname{eval}\left(a_{3}\right)=\operatorname{disc}_{d e c}\left(a_{1}, a_{3}\right)-\operatorname{disc}_{d e c}\left(a_{1}\right)=7 \\
& \operatorname{eval}\left(a_{4}\right)=\operatorname{disc}_{d e c}\left(a_{1}, a_{4}\right)-\operatorname{disc}_{d e c}\left(a_{1}\right)=6
\end{aligned}
$$

- If this time we select a_{2}, then the are only 2 remaining cells, and, both are containing a_{4};
- Therefore the greedy algorithm returns the set $\left\{a_{1}, a_{2}, a_{4}\right\}$ as a reduct of sufficiently small size.

