
Approximate Boolean Reasoning Approach to
Rough Sets and Data Mining

Hung Son Nguyen

Institute of Mathematics, Warsaw University
son@mimuw.edu.pl

RSFDGrC, September 3, 2005

Hung Son Nguyen (UW) ABR approach to RS & DM RSFDGrC, September 3, 2005 1 / 44



Outline

1 Boolean Reasoning Methodology
Introduction
Boolean Reasoning Approach to AI

2 Rough Set Approach to Data Mining
Concept Approximation Problem
Rough approximation of concepts

3 Approximate Boolean Reasoning
Motivation
ABR and Reducts vs. Association Rules

Hung Son Nguyen (UW) ABR approach to RS & DM RSFDGrC, September 3, 2005 2 / 44



Outline

1 Boolean Reasoning Methodology
Introduction
Boolean Reasoning Approach to AI

2 Rough Set Approach to Data Mining
Concept Approximation Problem
Rough approximation of concepts

3 Approximate Boolean Reasoning
Motivation
ABR and Reducts vs. Association Rules

Hung Son Nguyen (UW) ABR approach to RS & DM RSFDGrC, September 3, 2005 3 / 44



Boolean algebra in Computer Science

George Boole
(1815-1864)

George Boole was truly one of the founders
of computer science;

Boolean algebra was an attempt to use
algebraic techniques to deal with expressions
in the propositional calculus.

Boolean algebras find many applications in
electronic and computer design.

They were first applied to switching by
Claude Shannon in the 20th century.

Boolean Algebra is also a convenient
notation for representing Boolean functions.
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Algebraic approach to problem solving

Word Problem:

Madison has a pocket full of
nickels and dimes.

She has 4 more dimes
than nickels.

The total value of the
dimes and nickels is $1.15.

How many dimes and nickels
does she have?

Problem modeling:

N = number of nickels

D = number of dimes

D = N + 4
10D + 5N = 115

Solving algebraic problem:

...⇒D = 9;N = 5

Hura: 9 dimes and 5 nickels!
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Boolean Algebra:

a tuple

B = (B,+, ·, 0, 1)

satisfying following axioms:
- Commutative laws:

(a+ b) = (b+ a) and
(a · b) = (b · a)

- Distributive laws:
a · (b+ c) = (a · b) + (a · c), and
a+ (b · c) = (a+ b) · (a+ c)

- Identity elements:
a+ 0 = a and a · 1 = a

- Complementary:
a+ a = 1 and a · a = 0

Binary Boolean algebra

B2 = ({0, 1},+, ·, 0, 1)

is the smallest, but the most
important, model of general
Boolean Algebra.

x y x+ y x · y
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

x ¬x
0 1
1 0

Applications:

circuit design;

propositional calculus;
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Associative law: (x+ y) + z = x+ (y + z) and (x · y) · z = x · (y · z)

Idempotence: x+ x = x and x · x = x(dual)

Op. with 0 and 1: x+ 1 = 1 and x · 0 = 0(dual)

Absorption laws: (y · x) + x = x and (y + x) · x = x(dual)

Involution laws: (x) = x

DeMorgan’s laws:

¬(x+ y) = ¬x · ¬y and ¬(x · y) = ¬x+ ¬y(dual)

Consensus laws:

(x+ y) · (x+ z) · (y + z) = (x+ y) · (x+ z) and

(x · y) + (x · z) + (y · z) = (x · b) + (x · z)

Duality principle: Any algebraic equality derived from the axioms of Boolean
algebra remains true when the operators + and · are interchanged
and the identity elements 0 and 1 are interchanged
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Boolean function

Any function f : {0, 1}n → {0, 1} is called a Boolean function;

An implicant of function f is a term t = x1...xmy1...yk such that

∀x1,...,xnt(x1, ..., xn) = 1 ⇒ f(x1, ..., xn) = 1

Prime implicant: an implicant that ceases to be so if any of its literal
is removed.

φ1 = xyz + xyz + xyz + xyz

φ2 = (x+ y+ z)(x+ y+ z)(x+ y+ z)(x+ y+ z)
φ3 = xy + xz + yz

xyz is an implicant

xy is a prime implicant

x y z f
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1
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Boolean Reasoning Approach

Theorem (Blake Canonical Form)

A Boolean function can be represented as a disjunction of all of its prime
implicants

f = t1 + t2 + ...+ tk

Boolean Reasoning

1 Modeling: Represent the problem by a collection of Boolean
equations

2 Reduction: Condense the equations into a single Boolean equation

f = 0 or f = 1

3 Development: Construct the Blake Canonical form, i.e., generate
the prime implicants of f

4 Reasoning: Apply a sequence of reasoning to solve the problem
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Boolean Reasoning – Example

Problem:

A, B, C, D are considering going to a
party. Social constrains:

If A goes than B won’t go and
C will;

If B and D go, then either A or
C (but not both) will go

If C goes and B does not, then
D will go but A will not.

Problem modeling:

A→ B ∧ C ! A(B + C) = 0

... ! BD(AC +AC) = 0

... ! BC(A+D) = 0

After reduction:
f = A(B + C) +BD(AC +
AC) +BC(A+D) = 0
Blake Canonical form:
f = BCD +BCD +A = 0
Facts:

BD −→ C

C −→ B ∨D
A −→ 0

Reasoning: (theorem proving)
e.g., show that

”nobody can go alone.”
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Boolean reasoning for decision problems

SAT: whether an equation

f(x1, ..., xn) = 1

has a solution?

SAT is the first problem which has
been proved to be NP-complete
(the Cook’s theorem).

E.g., scheduling problem may be
solved by SAT-solver.
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procedure DPLL( φ, t )

//SAT:
if φ/t is empty then

return SATISFIABLE;
end if

//Conflict:
if φ/t contains an empty clause then

return UNSATISFIABLE;
end if

//Unit Clause:
if φ/t contains a unit clause {p} then

return DPLL(φ, tp);
end if

//Pure Literal:
if φ/t has a pure literal p then

return DPLL( φ, tp);
end if

//Branch:
Let p be a literal from a minimum size clause of φ/t
if DPLL( φ, tp ) then

return SATISFIABLE;
else

return DPLL( φ, tp );
end if
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Boolean reasoning for optimization problems

A function φ : {0, 1}n → {0, 1} is
”monotone” if

∀x,y∈{0,1}n(x 6 y) ⇒ (φ(x) 6 φ(y))

Monotone functions can be represented
by a boolean expression without
negations.

Minimal Prime Implicant Problem:

input: Monotone Boolean function
f of n variables.

output: A prime implicant of f with
the minimal length.

is NP-hard.
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Heuristics for minimal prime implicants

Example

f = (x1 + x2 + x3)(x2 + x4)(x1 + x3 + x5)(x1 + x5)(x4 + x6)

The prime implicant can be treated as a set covering problem.

1 Greedy algorithm: In each step, select the variable that most
frequently occurs within clauses

2 Linear programming: Convert the given function into a system of
linear inequations and applying the Integer Linear Programming (ILP)
approach to this system.

3 Evolutionary algorithms:
The search space consists of all subsets of variables
the cost function for a subset X of variables is defined by (1) the
number of clauses that are uncovered by X, and (2) the size of X,
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Boolean Reasoning Approach to Rough sets

Reduct calculation;

Decision rule generation;

Real value attribute discretization;

Symbolic value grouping;

Hyperplanes and new direction creation;
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The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an
approximate reasoning problem.

Assume that there are

Two agents A1 and A2;

They are talking about objects from a common universe U ;

They use different languages L1 and L2;

Every formula ψ in L1 (and L2) describes a set Cψ of objects from U .
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Many tasks in data mining can be formulated as an
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Assume that there are

Two agents A1 and A2;

They are talking about objects from a common universe U ;

They use different languages L1 and L2;

Every formula ψ in L1 (and L2) describes a set Cψ of objects from U .

Each agent, who wants to understand the other, should perform

an approximation of concepts used by the other;

an approximation of reasoning scheme, e.g., derivation laws;
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An universe of keys

Teacher
L1 = {keyboard, ...}
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An universe of keys

Teacher
L1 = {keyboard, ...}

Learner
L2 = {black, brown, white,

metal, plastic, ...}
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Classification Problem

Given

A concept C ⊂ U used by teacher;

A sample U = U+ ∪ U−, where

U+ ⊂ C: positive examples;
U− ⊂ U \ C: negative examples;

Language L2 used by learner;

Goal

build an approximation of C in terms of L2

with simple description;

with high quality of approximation;

using efficient algorithm.

Decision table
S = (U,A ∪ {dec})
describes training data set.

a1 a2 ... dec
u1 1 0 ... 0
u2 1 1 ... 1
... ... ... ... ...
un 0 1 ... 0
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Clustering Problem

Original definition: Division of data into groups of similar objects.

In terms of approximate reasoning: Looking for approximation of a
similarity relation (i.e., a concept of being similar):

Universe: the set of pairs of objects;
Teacher: a partial knowledge about similarity + optimization criteria;
Learner: describes the similarity relation using available features;
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Association Discovery

Basket data analysis: looking for approximation of customer
behavior in terms of association rules;

Universe: the set of transactions;
Teacher: hidden behaviors of individual customers;
Learner: uses association rules to describe some common trends;

Time series data analysis:
Universe: Sub-sequences obtained by windowing with all possible frame
sizes.
Teacher: the actual phenomenon behind the collection of timed
measurements, e.g., stock market, earth movements.
Learner: trends, variations, frequent episodes, extrapolation.
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Rough set approach to Concept approximations

Lower approximation – we are sure that these objects are in the set.

Upper approximation - it is possible (likely, feasible) that these
objects belong to our set (concept). They roughly belong to the set.

AX

AX

X

U
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Generalized definition

Rough approximation of the concept C (induced by a sample X):

any pair P = (L,U) satisfying the following conditions:

1 L ⊆ U ⊆ U ;

2 L,U are subsets of U expressible in the language L2;

3 L ∩X ⊆ C ∩X ⊆ U ∩X;
4 (∗) the set L is maximal (and U is minimal) in the family of sets

definable in L satisfying (3).

Rough membership function of concept C:

any function f : U → [0, 1] such that the pair (Lf ,Uf ), where

Lf = {x ∈ U : f(x) = 1} and

Uf = {x ∈ U : f(x) > 0}.
is a rough approximation of C (induced from sample U)
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Example of Rough Set models

Standard rough sets defined by attributes:
lower and upper approximation of X by attributes from B are defined
by indiscernible classes.

Tolerance based rough sets:
Using tolerance relation (also similarity relation) instead of
indiscernibility relation.

Variable Precision Rough Sets (VPRS)
allowing some admissible level 0 ≤ β ≤ 1 of classification inaccuracy.

Generalized approximation space
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Rough Sets – Extensions

Variable Precision Rough Sets (VPRS)

Using tolerance relation (also similarity relation) instead of
indiscernibility relation.

If we allow weaker indiscernibility (tolerance) the indiscernibility
classes may overlap.

The family of sets which are definable using tolerance classes is richer
than in case of equivalence classes.

We may also extend the lower approximation of a set, allowing some
admissible level 0 ≤ β ≤ 1 of classification inaccuracy.

AβX =
⋃
{[x]A|

|[x]A ∩X|
|[x]A|

≥ β}
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Generalized approximation space

is a quadruple A = (U , I, ν, P ), where

1 U is a non-empty set of objects (an universe),
2 I : U → P(U) is an uncertainty function satisfying conditions:

x ∈ I(x) for x ∈ U
y ∈ I(x) ⇐⇒ x ∈ I(y) for any x, y ∈ U .

Thus, the relation xRy ⇐⇒ y ∈ I(x) is a tolerance relation
(reflexive and symmetric) and I(x) is a tolerance class of x,

3 ν : P(U)× P(U) → [0, 1] is a vague inclusion function, which is a
kind of membership function defined over P(U)× P(U) to measure
degree of inclusion between two sets. Vague inclusion must be
monotone with respect to the second argument, i.e., if Y ⊆ Z then
ν(X,Y ) ≤ ν(X,Z) for X,Y, Z ⊆ U .

4 P : I(U) → {0, 1} is a structurality function
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Generalized Approximation Space

Together with uncertainty function I, vague inclusion function ν
defines the rough membership function for x ∈ U , X ⊆ U :

µI,ν(x,X) = ν(I(x), X)

The vague inclusion function ν is approximately constructed from the
finite set of examples U ∈ U .
Lower and upper approximations in A of X ⊆ U are then defined as

LA(X) = {x ∈ U : P (I(x)) = 1 ∧ ν(I(x), X) = 1}
UA(X) = {x ∈ U : P (I(x)) = 1 ∧ ν(I(x), X) > 0}

The structurality function allows us to enforce additional global
conditions on sets I(x) considered in approximations. Only sets
X ∈ I(U) for which P (X) = 1 (referred as P-structural elements in
U) are considered.

For example, function Pα(X) = 1 ⇐⇒ |X ∪ U |/|U | > α will discard
all relatively small subsets of U (given by α).
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Classifier

Classifier

Result of a concept approximation
method.
It is also called the classification
algorithm featured by

Input: information vector of an
object;

Output: whether an object
belong to the concept;

Parameters: are necessary for
tuning the quality of classifier;
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Rough classifier

Outside look: 4 possible answers

YES (lower approximation)

POSSIBLY YES (boundary region)

NO

DON’T KNOW

Inside:

Feature selection/reduction;

Feature extraction (discretization, value
grouping, hyperplanes ...);

Decision rule extraction;

Data decomposition;

Reasoning scheme approximation;
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Boolean Reasoning Approach to Rough sets

Complexity of encoding functions

Given a decision table with n objects and m attributes

Problem Nr of variables Nr of clauses

minimal reduct O(m) O(n2)
decision rules O(n) functions

O(m) O(n)
discretization O(mn) O(n2)
grouping O(

∑
a∈A 2|Va|) O(n2)

hyperplanes O(nm) O(n2)

Greedy algorithm:

time complexity of searching for the best variable:

O(#variables×#clauses)
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Data Mining

The iterative and interactive process of discovering
non-trivial, implicit, previously unknown and
potentially useful (interesting) information or
patterns from large databases.

W. Frawley and G. Piatetsky-Shapiro and C.
Matheus,(1992)

The science of extracting
useful information from
large data sets or
databases.

D. Hand, H. Mannila,
P. Smyth (2001)

Rough set algorithms based on BR reasoning:

Advantages:

accuracy: high;

interpretability: high;

adjustability: high;

etc.

Disadvantages:

Complexity: high;

Scalability: low;

Usability of domain knowledge:
weak;
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Approximate Boolean Reasoning

Figure: The Boolean reasoning scheme for optimization problems
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Data reduction in Rough sets

What is reduct?

Reducts are minimal subsets of attributes which contain a necessary
portion of information of the set of all attributes.

Given an information system S = (U,A) and a monotone evaluation
function

µS : P(A) −→ <+

The set B ⊂ A is called µ-reduct, if

µ(B) = µ(A),
for any proper subset B′ ⊂ B we have µ(B′) < µ(B);

The set B ⊂ A is called approximated reduct, if

µ(B) ≥ µ(A)(1− ε),
for any proper subset ...
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Some types of reducts

Information reduct:

µ1(B) = number of pairs of objects discerned by B

Decision oriented reduct:

µ2(B) = number of pairs of conflict objects discerned by B

Object oriented reduct:

µx(B) = number of objects discerned with x by B

Frequent reducts;

α-reducts: (1− α) approximation reduct with respect to the
discernibility measure;

...
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Example

A |a1 a2 a3 a4 |dec
ID|outlook temp. hum. windy |play
1 |sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high FALSE| yes
4 |rainy mild high FALSE| yes
5 |rainy cool normal FALSE| yes
6 |rainy cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |sunny mild high FALSE| no
9 |sunny cool normal FALSE| yes
10|rainy mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high TRUE | yes
13|overcast hot normal FALSE| ?
14|rainy mild high TRUE | ?
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Discernibility Matrix

M 1 2 6 8

3 a1 a1, a4 a1, a2, a3, a4 a1, a2

4 a1, a2 a1, a2, a4 a2, a3, a4 a1

5 a1, a2, a3 a1, a2, a3, a4 a4 a1, a2, a3

7 a1, a2, a3, a4 a1, a2, a3 a1 a1, a2, a3, a4

9 a2, a3 a2, a3, a4 a1, a4 a2, a3

10 a1, a2, a3 a1, a2, a3, a4 a2, a4 a1, a3

11 a2, a3, a4 a2, a3 a1, a2 a3, a4

12 a1, a2, a4 a1, a2 a1, a2, a3 a1, a4

Hung Son Nguyen (UW) ABR approach to RS & DM RSFDGrC, September 3, 2005 40 / 44



Reducts

After reducing of all repeated clauses we have:

f(x1, x2, x3, x4) =(x1)(x1 + x4)(x1 + x2)(x1 + x2 + x3 + x4)(x1 + x2 + x4)
(x2 + x3 + x4)(x1 + x2 + x3)(x4)(x2 + x3)(x2 + x4)
(x1 + x3)(x3 + x4)(x1 + x2 + x4)

remove those clauses that are absorbed by some other clauses (using
absorbtion rule: p(p+ q) ≡ p):

f = (x1)(x4)(x2 + x3)

Translate f from CNF to DNF

f = x1x4x2 + x1x4x3

Every monomial corresponds to a reduct. Thus we have 2 reducts:
R1 = {a1, a2, a4} and R2 = {a1, a3, a4}
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counting table

By contingency table of a set of attributes B we denote the
two-dimensional array Count(B) = [nv,k]v∈INF (B),k∈Vdec

, where

nv,k = card({x ∈ U : infB(x) = v and dec(x) = k})

Discernibility measure:

discdec(B) =
1
2

∑
v 6=v′,k 6=k′

nv,k · nv′,k′ (1)
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discdec(B) = conflict(U)−
∑

[x]∈U/IND(B)

conflict([x]IND(B)) (2)

Thus, the discernibility measure can be determined in O(S) time:

discdec(B) =
1
2

(
n2 −

d∑
k=1

n2
k

)
− 1

2

∑
v∈INF (B)

( d∑
k=1

nv,k

)2

−
d∑

k=1

n2
v,k


(3)

where nk = |CLASSk| =
∑

v nv,k is the size of kth decision class.
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ABR approach to reducts

First we have to calculate the number of occurrences of each attributes in
the discernibility matrix:

eval(a1) = discdec(a1) = 23 eval(a2) = discdec(a2) = 23
eval(a3) = discdec(a3) = 18 eval(a4) = discdec(a4) = 16

Thus a1 and a2 are the two most preferred attributes.

Assume that we select a1. Now we are taking under consideration only those
cells of the discernibility matrix which are not containing a1. There are 9
such cells only, and the number of occurrences are as following:

eval(a2) = discdec(a1, a2)− discdec(a1) = 7
eval(a3) = discdec(a1, a3)− discdec(a1) = 7
eval(a4) = discdec(a1, a4)− discdec(a1) = 6

If this time we select a2, then the are only 2 remaining cells, and, both are
containing a4;

Therefore the greedy algorithm returns the set {a1, a2, a4} as a reduct of
sufficiently small size.
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