DATA MINING IN TIME RELATED

 DATA
Time Series Data Mining

\square Data mining concepts to analyzing time series data
\square Revels hidden patterns that are characteristic and predictive time series events
\square Traditional analysis is unable to identify complex characteristics (complex, non-periodic, irregular, chaotic)

Time series

\square,,a sequence of observed data, usually ordered in time"
$\square X=\left(x_{t,} t=1 . . N\right)$

Example 1: seismic time series

\square Diamonds = observations
\square E.g. Seismic activity
\square Squares $=$ important observations = events

- E.g. Earthquakes
\square Goal: to

characterize, when peeks occur

Example 2: welding time series

\square Diamonds: measured stickout length of droplet (in pixels)
\square Squares: droplet release (chaotic, noisy, irregular nature - impossible using traditional methods)
\square Goal: prediction of
 release of metal droplet

Example 3: stock prices

\square Diamonds: daily open price
\square Squares: days when price increases more than 5\%
\square Goal: to find hidden patterns that provide th desired trading edge

Event = important occurrence

$\square E x 1$: earthquake
$\square E x 2$: release of the droplet
$\square E x 3$: sharp rise (fall) of stock price

Temporal pattern

\square Hidden structure in time series that is characteristic and predictive of events
\square Temporal pattern $\mathbf{p}=$ real vector of length \mathbf{Q}

Temporal pattern cluster

\square Temporal patterns usually do not match time series
\square TPC is a set of all points within delta from temporal pattern: $P=\left\{\boldsymbol{a} \in \mathbf{R}^{Q}: d(\mathbf{p}, \mathbf{a}) \leq \delta\right\}$

Phase space

\square Q dimensional metric space embedding time series
\square Mapping of set of Q observations of time series into $x_{t}=\left(x_{t-(Q-1) \tau}, \ldots, x_{t-2 \tau}, x_{t-\tau}, x_{t}\right)$

Phase space example - constant

$\square X=\left\{x_{t}=c: t=1 . . N\right\}$
$\square \tau=1, \mathrm{Q}=2$

Phase space example - seismic

Phase space example - welding

Phase space example - stock open price

Event characterization function

\square Represents the value of future „eventness" for current time index
\square Addresses the specific goal
\square Examples:

$$
\begin{aligned}
& g(t)=x_{t+1} ; \\
& g(t)=x_{t+3} ; \\
& g(t)=\max \left\{x_{t+1}, x_{t+2}, x_{t+3}\right\}
\end{aligned}
$$

\square Welding: $g(t)=y_{t+1} ;$
\square Stock prices change: $g(t)=\left(x_{t+1}-x_{t}\right) / x_{t}$

Augmented Phase space

$\square \mathrm{Q}+1$ dimensional space formed by extending phase space with $g(\cdot)=$ space of vectors $<\mathbf{x}_{t}$, $g(t)>\in \mathbf{R}^{Q+1}$

Augmented Phase space example

seismic

Augmented Phase space example

\square welding

Augmented Phase space example

stock open price

Objective function

\square Measures how a temporal pattern cluster characterizes events
$\square M\left(\tilde{M}\right.$ - set of all time indices t when \mathbf{x}_{t} is within (outside) temporal pattern cluster P

$$
\begin{gathered}
M=\left\{t: \mathbf{x}_{t} \in P, t \in \Lambda\right\} \\
\mu_{M}=\frac{1}{\operatorname{card}(M)} \sum_{t \in M} g(t) \\
\sigma_{M}^{2}=\frac{1}{\operatorname{card}(M)} \sum_{t \in M}\left(g(t)-\mu_{M}\right)^{2}
\end{gathered}
$$

Objective function

$\square \boldsymbol{t}$ test for the difference between two independent means (for statistically significant and high average eventness clusters)

$$
f(P)=\frac{\mu_{M}-\mu_{\tilde{M}}}{\sqrt{\frac{\sigma_{M}^{2}}{\operatorname{card}(M)}-\frac{\sigma_{\tilde{M}}^{2}}{\operatorname{card}(\tilde{M})}}}
$$

Objective function

- When every event is required to be predicted by temporal pattern
- $g()$ is binary
- C - collection of temporal pattern clusters
- Ratio of correct predictions to all predictions

$$
f(C)=\frac{t_{p}+t_{n}}{t_{p}+t_{n}+f_{p}+f_{n}}
$$

$\square t_{p}=\operatorname{card}\left(\left\{\mathbf{x}_{t}: \exists P_{i} \in C \quad \mathbf{x}_{t} \in P_{i} \wedge g(t)=1\right\}\right)$
$\square f_{p}=\operatorname{card}\left(\left\{\mathbf{x}_{t}: \exists P_{i} \in C \quad x_{t} \in P_{i} \wedge g(t)=0\right\}\right)$
$\square t_{n}=\operatorname{card}\left(\left\{x_{t}: \forall P_{i} \in C \quad x_{t} \notin P_{i} \wedge g(t)=1\right\}\right)$
$\square f_{n}=\operatorname{card}\left(\left\{\mathbf{x}_{i}: \forall P_{i} \in C \quad \mathbf{x}_{t} \notin P_{i} \wedge g(t)=0\right\}\right)$

Optimization problem

$$
\max _{\mathbf{x}, \delta} f(p)
$$

Genetic Algorithm
\square Chromosome consists of $\mathrm{Q}+1$ genes
\square E.g. Q=2
$\square\left(x_{t-1}, x_{t}, \delta\right)$

Seismic example

DISCOVERY OF FREQUENT EPISODES IN EVENT SEQUENCES

Events, event sequences

\square event: $(A, t) A \in E$
event sequence s on $E:\left(s, T_{s} T_{\mathrm{e}}\right)$

$$
s=\left\langle\left(A_{1}, t_{1}\right),\left(A_{2}, t_{2}\right), \ldots,\left(A_{n}, t_{n}\right)\right\rangle
$$

\square window on $\mathbf{s}: \mathbf{w}=\left(w, t_{s}, t_{\mathrm{e}}\right), t_{\mathrm{s}}<T_{\mathrm{e}^{\prime}} t_{\mathrm{e}}>T_{\mathrm{s}}$
\square width(w)= $t_{\mathrm{e}}-t_{s}$

Episodes

\square Collection of events occurring together
\square serial, parallel, non-serial \& non-parallel
$\square(V, \leq, g)$
$V-$ set of nodes
$\leq-$ partial order on V
$g: V \rightarrow E$ mapping associating each node with event type

α

γ

Occurrence of episodes

$$
\square \mathbf{w}=(w, 37,44)
$$

α

Frequency of an episode

$\square \mathrm{W}(\mathrm{s}$, win $)-$ all windows in \mathbf{s} of length win

$$
\operatorname{fr}(\alpha, \mathbf{s}, \operatorname{win})=\frac{\operatorname{card}(\{\mathbf{w} \in W(\mathbf{s}, \operatorname{win}): \alpha \text { occursin } \mathbf{w}\})}{\operatorname{card}(W(\mathbf{s}, \operatorname{win}))}
$$

Goal

\square Given (1) a frequency threshold min_fr, (2) window width win, discover all episodes α (from a given class of episodes) such that

$$
\operatorname{fr}(\alpha, \mathbf{s}, \text { win }) \geq m i n _f r
$$

Episode rule generation algorithm

INPUT: event sequence s, win, min_fr, confidence threshold min_conf
OUTPUT: Episode rules that hold in swith respect to win, min_fr, min_conf

1. /* find all frequent episodes */
2. compute $\mathcal{F}(\mathbf{s}$, win,min_fr)
3. /* generate rules */
4. for all $\alpha \in \mathcal{F}\left(\mathbf{s}\right.$, win, $\left.m i n _f r\right)$ do
5. for all $\beta \prec \alpha$ do
if $\operatorname{fr}(\alpha) / \operatorname{fr}(\beta) \geq$ min_conf then output the rule $\beta \rightarrow \alpha$ and the conf. $\operatorname{fr}(\alpha) / \operatorname{fr}(\beta)$

Example

- $\beta<\gamma$
\square if we know that β occurs in 4.2% of windows and γ in 4.0% we can estimate that after seeing a window with A and B there is a chance 0.95 that C follows in the same window.

Frequent episode generation algorithm

INPUT: event sequence \mathbf{s}, win, min_fr
OUTPUT: Collection $\mathcal{F}(s$, win,min_fr) of frequent episodes
compute $C_{1}=\{\alpha:|\alpha|=1\}$
2. $\quad I=1$
3. while $C_{l} \neq \varnothing$ do
4.
5.
6.

$$
\begin{aligned}
& \text { compute } F_{l}=\left\{\alpha \in C_{l}: f r(\alpha, \mathbf{s}, \text { win }) \geq \text { min_fr }\right\} \\
& I=I+1 \\
& \text { compute } C_{l}=\{\alpha:|\alpha|=\mid \text { and for all } \beta \prec \alpha \text { such that }|\beta|<I \\
& \text { we have } \left.\beta \in F_{|\beta|}\right\}
\end{aligned}
$$

7. for all I do output F_{1}
