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Transaction data analysis and
association rules
www.mimuw.edu.pl/~son/datamining

Nguyen Hung Son
This presentation was prepared on the basis of the following public materials:

1. Jiawei Han and Micheline Kamber, „Data mining, concept and techniques” http://www.cs.sfu.ca

2. Gregory Piatetsky-Shapiro, „kdnuggest”, http://www.kdnuggets.com/data_mining_course/

http://www.cs.sfu.ca/
http://www.kdnuggets.com/data_mining_course/
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Lecture plan
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Algorithm Apriori
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What Is Association Mining?

Association rule mining:
Finding frequent patterns, associations, correlations, or causal
structures among sets of items or objects in transaction databases, 
relational databases, and other information repositories.

Applications:
Basket data analysis, cross-marketing, catalog design, loss-leader 
analysis, clustering, classification, etc.

Examples. 
Rule form:  “Body => Ηead [support, confidence]”.
buys(x, “diapers”) => buys(x, “beers”) [0.5%, 60%]
major(x, “CS”) ^ takes(x, “DB”) => grade(x, “A”) [1%, 75%]
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Association Rule: Basic Concepts

Given: (1) database of transactions, (2) each transaction is a list of items 
(purchased by a customer in a visit)
Find: all rules that correlate the presence of one set of items with that of 
another set of items

E.g., 98% of people who purchase tires and auto accessories also get automotive services 
done

Applications
* ⇒ Maintenance Agreement (What the store should do to boost Maintenance 
Agreement sales)
Home Electronics ⇒ * (What other products should the store stocks up?)
Attached mailing in direct marketing
Detecting “ping-pong”ing of patients, faulty “collisions”
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Rule Measures: Support and Confidence
Find all the rules X & Y ⇒ Z with 
minimum confidence and support

support, s, probability that a 
transaction contains {X Y Z}
confidence, c, conditional probability
that a transaction having {X Y} 
also contains Z

Transaction ID Items Bought
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Let minimum support 50%, and minimum 
confidence 50%, we have

A ⇒ C  (50%, 66.6%)
C ⇒ A  (50%, 100%)

Customer
buys diaper

Customer
buys both

Customer
buys beer
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Association Rule Mining: A Road Map
Boolean vs. quantitative associations (Based on the types of values 
handled)

buys(x, “SQLServer”) ^ buys(x, “DMBook”) => buys(x, “DBMiner”) [0.2%, 60%]
age(x, “30..39”) ^ income(x, “42..48K”) => buys(x, “PC”) [1%, 75%]

Single dimension vs. multiple dimensional associations (see ex. above)
Single level vs. multiple-level analysis

What brands of beers are associated with what brands of diapers?

Various extensions
Correlation, causality analysis

Association does not necessarily imply correlation or causality
Maxpatterns and closed itemsets
Constraints enforced

E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?
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Lecture plan

Association rules
Algorithm Apriori
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Mining Association Rules –
An Example

For rule A ⇒ C:
support = support({A C}) = 50%
confidence = support({A C})/support({A}) = 66.6%

The Apriori principle:
Any subset of a frequent itemset must be frequent

Transaction ID Items Bought
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Frequent Itemset Support
{A} 75%
{B} 50%
{C} 50%
{A,C} 50%

Min. support 50%
Min. confidence 50%
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Possible number of rules
Given d unique items
Total number of itemsets = 2d

Total number of possible association rules:
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How to Mine Association Rules?

Two step approach:
1. Generate all frequent itemsets (sets of items whose

support > minsup )
2. Generate high confidence association rules from each

frequent itemset
Each rule is a binary partition of a frequent itemset

Frequent itemset generation is more expensive
operation. 
(There are 2d possible itemsets)



Association rules 11

Mining Frequent Itemsets: the Key Step

Find the frequent itemsets: the sets of items that have 
minimum support

A subset of a frequent itemset must also be a frequent itemset
i.e., if {AB} is a frequent itemset, both {A} and {B} should be a 
frequent itemset

Iteratively find frequent itemsets with cardinality from 1 to k (k-
itemset)

Use the frequent itemsets to generate association rules.



Association rules 12

Reducing Number of Candidates

Apriori principle:
– If an itemset is frequent, then all of its subsets must also be 

frequent
Apriori principle holds due to the following property of the
support measure:

∀X ,Y : (X ⊆Y)  => s (X ) ≥ s(Y)
Support of an itemset never exceeds the support of any of its
subsets
This is known as the anti-monotone property of support
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Key observation
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The Apriori Algorithm
Join Step: Ck is generated by joining Lk-1with itself
Prune Step:  Any (k-1)-itemset that is not frequent cannot be a subset of a 
frequent k-itemset
Pseudo-code:

Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1 that are contained in t
Lk+1 = candidates in Ck+1 with min_support

end
return ∪k Lk;
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An idea of Apriori algorithm

C1 = I

L1

SQL C2 = 
AprGen(F1)

L2

SQL

Ck = 
AprGen(Fk-1)

Lk

SQLLk-1

Computing in memory

Ck – a set of candidates
for k-frequent itemsets

Fk – A set of k-frequent
itemsets
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Apriori Algorithm — Example
TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2
Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2
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How to Generate Candidates?

Suppose the items in Lk-1 are listed in an order

Step 1: self-joining Lk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1

Step 2: pruning
forall itemsets c in Ck do

forall (k-1)-subsets s of c do
if (s is not in Lk-1) then delete c from Ck
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Example of Generating Candidates

L3={abc, abd, acd, ace, bcd}

Self-joining: L3*L3

abcd from abc and abd

acde from acd and ace

Pruning:

acde is removed because ade is 

not in L3

C4={abcd}

L3={abc, abd, abe acd, ace, bcd}

Self-joining: L3*L3

abcd from abc and abd

abce

abde

acde from acd and ace
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Illustration of candidate generation
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Rule generation

Given a frequent itemset L, find all non-empty subsets f 
⊆ L such that f => L – f satisfies the minimum 
confidence requirement
If {A,B,C,D} is a frequent itemset, candidate rules:
ABC =>D, ABD =>C, ACD =>B, BCD =>A,
A =>BCD, B =>ACD, C =>ABD, D =>ABC
AB =>CD, AC =>BD, AD =>BC, BC =>AD,
BD =>AC, CD =>AB,

If |L| = k, then there are 2k – 2 candidate association
rules (ignoring L => ∅ and ∅ => L)
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Rule generation

How to efficiently generate rules from frequent itemsets?
In general, confidence does not have an antimonotone property
But confidence of rules generated from the same itemset has an
anti-monotone property
L = {A,B,C,D}:
c(ABC => D) ≥ c(AB => CD) ≥ c(A=>BCD)

Confidence is non-increasing as number of items in rule
consequent increases
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Apriori for rule generation

Candidate rule is generated by merging two rules
that share the same prefix in the rule consequent

join(CD=>AB, BD=>AC) would produce the candidate
rule D => ABC
Prune rule D=>ABC if its subset AD=>BC does not 
have high confidence
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How to Count Supports of 
Candidates?

Why counting supports of candidates a problem?
The total number of candidates can be very huge
One transaction may contain many candidates

Method:
Candidate itemsets are stored in a hash-tree
Leaf node of hash-tree contains a list of itemsets and counts
Interior node contains a hash table
Subset function: finds all the candidates contained in a transaction
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Hash tree

h(a) = a mod 3
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Insert a candidate to hash-tree

1 4 5

1 7 3

1 7 37 31

1 7 3

2 4 5

2 4 5 2 3 4
5 6 7

NULL

2 4 5
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BCP BCW

BFP
BFW

BPW CFP

CFW

CPW

FPWC F P
item2

hash-tree of candidateshash-tree of candidates

F P
item2

F P W
item3

B C F
item1

BCFBCF

Apriori Candidate evaluation: 
Finding candidates contained in transaction

counter associated with each leaf node

BCFWTID 300
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BCWBCF BCP

BFP
BFW

BPW CFP

CFW

CPW

FPWC F P
item2

hash-tree of candidateshash-tree of candidates

F P
item2

F P W
item3

counter associated with each leaf node

BCFWTID 300
B C F
item1

BCW

Apriori Candidate evaluation: 
Finding candidates contained in transaction
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BFW

Apriori Candidate evaluation
Finding candidates contained in transaction

BCF BCP BCW

BFP BPW CFP

CFW

CPW

FPWC F P
item2

hash-tree of candidateshash-tree of candidates

F P
item2

F P W
item3

counter associated with each leaf node

BCFWTID 300
B C F
item1

BFW
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CFW

Apriori Candidate evaluation
Finding candidates contained in transaction

BCF BCP BCW

BFP
BFW

BPW CFP CPW

FPWC F P
item2

hash-tree of candidateshash-tree of candidates

F P
item2

F P W
item3

counter associated with each leaf node

BCFWTID 300
B C F
item1

CFW
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Lecture plan

Association rules
Algorithm Apriori
Algorithm Apriori-Tid
FP-tree



Association rules 32

Observations

Apriori algorithm scans the whole database to determine
supports of candidates

Improvement: 
Using new data structure called counting_base to store only those
transactions which can support the actual list of candidates
Algorithm AprioriTid
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AprioriTid
Input: transaction data set D, min_sup – minimal support
Output: the set of all frequent itemset F
Variables: CBk- counting_base at kth iteration of the algorithm

1: F1 = {frequent 1-itemsets}
2: k = 2;
3: while (Fk-1 is not empty) do {
4:  Ck = Apriori_generate (Fk-1);

CBk = Counting_base_generate (Ck, CBk-1)
Support_count (Ck, CBk);

5: Fk = {c ∈ Ck | support(c) ≥ min_support};
}

6: F = sum of all Fk;
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AprioriTid: Counting_base_generate

Step 1: 
counting_base = {(ri, Si): ri is the ID and Si is the itemset of the ith
transaction}

Step i: 
counting_base = {(r, Si): Si is created as a joint of Si -1 with Si -1 as 
follows: 

IF {u1 u2 ... ui-2 a} and {u1 u2 ... ui-2 b} ∈ Si -1 THEN 
{u1 u2 ... ui -2 a b} ∈ Si

}
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AprioriTid: Example

D = {(1,acd), (2, bce), (3,abce), (4,be)}.
min_sup = 0.5
Step 1
counting_base ={(1,{a,c,d}), (2,{b,c,e}),                    F1 = {a, b, c, e}

(3,{a,b,c,e}), (4,{b, e}) } 

C2 = {ab, ac, ae, bc, be, ce}

Step 2
counting_base ={(1,{ac}), (2,{bc,be,ce}),                   F2 = {ac, bc, be, ce}

(3,{ab,ac,ae,bc,be,ce}), (4,{be})   }

C3 = {bce}

Step 3
counting_base = {(2,{bce}),(3,{bce})}                        F3  = {bce} 



Association rules 36

Is Apriori Fast Enough? — Performance 
Bottlenecks

The core of the Apriori algorithm:
Use frequent (k – 1)-itemsets to generate candidate frequent k-itemsets
Use database scan and pattern matching to collect counts for the candidate 
itemsets

The bottleneck of Apriori: candidate generation
Huge candidate sets:

104 frequent 1-itemset will generate 107 candidate 2-itemsets
To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100}, one 
needs to generate 2100 ≈ 1030 candidates.

Multiple scans of database: 
Needs (n +1 ) scans, n is the length of the longest pattern
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Algorithm AprioriHybrid

AprioriTid replaces pass over data by pass over TCk
effective when TCk becomes small compared to size of 
database

AprioriTid beats Apriori 
when TCk sets fit in memory
distribution of large itemsets has long tail

Hybrid algorithm AprioriHybrid
use Apriori in initial passes
switch to AprioriTid when TCk expected to fit in memory
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Algorithm AprioriHybrid
Heuristic used for switching

estimate size of TCk from Ck
size(TCk ) = Σ candidates c ∈ Ck support(c) + number of transactions

if TCk fits in memory and nr of candidates decreasing then 
switch to AprioriTid

AprioriHybrid outperforms Apriori and AprioriTid in 
almost all cases

little worse if switch pass is last one
cost of switching without benefits

AprioriHybrid up to 30% better than Apriori, up to 60% 
better than AprioriTid
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AprioriHybrid
Scale-up Experiment

name |MB|
T5.I2.D10M 239
T10.I4.D10M 439
T20.I6.D10M 838
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Lecture plan

Association rules
Algorithm Apriori
Algorithm Apriori-Tid
FP-tree
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Mining Frequent Patterns Without 
Candidate Generation

Compress a large database into a compact,  Frequent-Pattern 
tree (FP-tree) structure

highly condensed, but complete for frequent pattern mining
avoid costly database scans

Develop an efficient, FP-tree-based frequent pattern mining 
method

A divide-and-conquer methodology: decompose mining tasks into 
smaller ones
Avoid candidate generation: sub-database test only!
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Construct FP-tree from a Transaction DB

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 0.5
TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

Steps:

1. Scan DB once, find frequent 
1-itemset (single item 
pattern)

2. Order frequent items in 
frequency descending order

3. Scan DB again, construct 
FP-tree
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Benefits of the FP-tree Structure

Completeness: 
never breaks a long pattern of any transaction
preserves complete information for frequent pattern mining

Compactness
reduce irrelevant information—infrequent items are gone
frequency descending ordering: more frequent items are more likely to 
be shared
never be larger than the original database (if not count node-links and 
counts)
Example: For Connect-4 DB, compression ratio could be over 100
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Mining Frequent Patterns Using FP-tree

General idea (divide-and-conquer)
Recursively grow frequent pattern path using the FP-tree

Method 
For each item, construct its conditional pattern-base, and then its 
conditional FP-tree
Repeat the process on each newly created conditional FP-tree 
Until the resulting FP-tree is empty, or it contains only one path
(single path will generate all the combinations of its sub-paths, each of 
which is a frequent pattern)
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Major Steps to Mine FP-tree
1) Construct conditional pattern base for each node in the 

FP-tree

2) Construct conditional FP-tree from each conditional 
pattern-base

3) Recursively mine conditional FP-trees and grow frequent 
patterns obtained so far

If the conditional FP-tree contains a single path, simply 
enumerate all the patterns
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Step 1: From FP-tree to Conditional Pattern Base
Starting at the frequent header table in the FP-tree
Traverse the FP-tree by following the link of each frequent item
Accumulate all of transformed prefix paths of that item to form a conditional 
pattern base

Conditional pattern bases
item cond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3
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Properties of FP-tree for Conditional 
Pattern Base Construction

Node-link property
For any frequent item ai, all the possible frequent patterns 
that contain ai can be obtained by following ai's node-
links, starting from ai's head in the FP-tree header

Prefix path property
To calculate the frequent patterns for a node ai in a path 
P, only the prefix sub-path of ai in P need to be 
accumulated, and its frequency count should carry the 
same count as node ai.
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Step 2: Construct Conditional FP-tree
For each pattern-base

Accumulate the count for each item in the base
Construct the FP-tree for the frequent items of the pattern base

m-conditional pattern 
base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent patterns 
concerning m
m, 
fm, cm, am, 
fcm, fam, cam, 
fcam

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3
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Mining Frequent Patterns by Creating 
Conditional Pattern-Bases

EmptyEmptyf

{(f:3)}|c{(f:3)}c

{(f:3, c:3)}|a{(fc:3)}a

Empty{(fca:1), (f:1), (c:1)}b

{(f:3, c:3, a:3)}|m{(fca:2), (fcab:1)}m

{(c:3)}|p{(fcam:2), (cb:1)}p
Conditional FP-treeConditional pattern-baseItem
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Step 3: Recursively mine the 
conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3
am-conditional FP-tree

{}
Cond. pattern base of “cm”: (f:3)

f:3
cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3
cam-conditional FP-tree
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Single FP-tree Path Generation

Suppose an FP-tree T has a single path P

The complete set of frequent pattern of T can be generated 
by enumeration of all the combinations of the sub-paths of P

{}

f:3

c:3

a:3

m-conditional FP-tree

All frequent patterns 
concerning m
m, 
fm, cm, am, 
fcm, fam, cam, 
fcam
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Principles of Frequent Pattern Growth

Pattern growth property
Let α be a frequent itemset in DB, B be α's conditional pattern 
base, and β be an itemset in B.  Then α ∪ β is a frequent itemset 
in DB iff β is frequent in B.  

“abcdef ” is a frequent pattern, if and only if
“abcde ” is a frequent pattern, and

“f ” is frequent in the set of transactions containing “abcde ”



Association rules 53

Why Is Frequent Pattern Growth Fast?

Our performance study shows
FP-growth is an order of magnitude faster than Apriori, and is 
also faster than tree-projection

Reasoning
No candidate generation, no candidate test

Use compact data structure

Eliminate repeated database scan

Basic operation is counting and FP-tree building
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FP-growth vs. Apriori: Scalability With 
the Support Threshold
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FP-growth vs. Tree-Projection: Scalability 
with Support Threshold
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Some issues on association mining

Interestingness measures
Pattern visualization
Multi-level association rules
Discretization
Mining association rules with constrains
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Interestingness Measurements

Objective measures
Two popular measurements: 

support; and 
confidence

Subjective  measures (Silberschatz & Tuzhilin, 
KDD95)
A rule (pattern) is interesting if

it is unexpected (surprising to the user); and/or
actionable (the user can do something with it)
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Criticism to Support and Confidence

Example 1: (Aggarwal & Yu, PODS98)
Among 5000 students

3000 play basketball
3750 eat cereal
2000 both play basket ball and eat cereal

play basketball ⇒ eat cereal [40%, 66.7%]  is misleading because the overall 
percentage of students eating cereal is 75% which is higher than 66.7%.
play basketball ⇒ not eat cereal [20%, 33.3%] is far more accurate, although 
with lower support and confidence

basketball not basketball sum(row)
cereal 2000 1750 3750
not cereal 1000 250 1250
sum(col.) 3000 2000 5000
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Criticism to Support and Confidence 
(Cont.)
Example 2:

X and Y: positively correlated,
X and Z, negatively related
support and confidence of 
X=>Z dominates 

We need a measure of dependent 
or correlated events

P(B|A)/P(B) is also called the lift
of rule A => B

X 1 1 1 1 0 0 0 0
Y 1 1 0 0 0 0 0 0
Z 0 1 1 1 1 1 1 1

Rule Support Confidence
X=>Y 25% 50%
X=>Z 37.50% 75%)()(

)(
, BPAP

BAPcorr BA
∪

=
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Other Interestingness Measures: Interest
Interest (correlation, lift)

taking both P(A) and P(B) in consideration

P(A^B)=P(B)*P(A), if A and B are independent events

A and B negatively correlated, if the value is less than 1; otherwise A and 

B positively correlated

)()(
)(

BPAP
BAP ∧

X 1 1 1 1 0 0 0 0
Y 1 1 0 0 0 0 0 0
Z 0 1 1 1 1 1 1 1

Itemset Support Interest
X,Y 25% 2
X,Z 37.50% 0.9
Y,Z 12.50% 0.57
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