
Association rules 1

Transaction data analysis and
association rules
www.mimuw.edu.pl/~son/datamining

Nguyen Hung Son
This presentation was prepared on the basis of the following public materials:

1. Jiawei Han and Micheline Kamber, „Data mining, concept and techniques” http://www.cs.sfu.ca

2. Gregory Piatetsky-Shapiro, „kdnuggest”, http://www.kdnuggets.com/data_mining_course/

http://www.cs.sfu.ca/
http://www.kdnuggets.com/data_mining_course/

Association rules 2

Lecture plan

Association rules
Algorithm Apriori
Algorithm Apriori-Tid
FP-tree

Association rules 3

What Is Association Mining?

Association rule mining:
Finding frequent patterns, associations, correlations, or causal
structures among sets of items or objects in transaction databases,
relational databases, and other information repositories.

Applications:
Basket data analysis, cross-marketing, catalog design, loss-leader
analysis, clustering, classification, etc.

Examples.
Rule form: “Body => Ηead [support, confidence]”.
buys(x, “diapers”) => buys(x, “beers”) [0.5%, 60%]
major(x, “CS”) ^ takes(x, “DB”) => grade(x, “A”) [1%, 75%]

Association rules 4

Association Rule: Basic Concepts

Given: (1) database of transactions, (2) each transaction is a list of items
(purchased by a customer in a visit)
Find: all rules that correlate the presence of one set of items with that of
another set of items

E.g., 98% of people who purchase tires and auto accessories also get automotive services
done

Applications
* ⇒ Maintenance Agreement (What the store should do to boost Maintenance
Agreement sales)
Home Electronics ⇒ * (What other products should the store stocks up?)
Attached mailing in direct marketing
Detecting “ping-pong”ing of patients, faulty “collisions”

Association rules 5

Rule Measures: Support and Confidence
Find all the rules X & Y ⇒ Z with
minimum confidence and support

support, s, probability that a
transaction contains {X Y Z}
confidence, c, conditional probability
that a transaction having {X Y}
also contains Z

Transaction ID Items Bought
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Let minimum support 50%, and minimum
confidence 50%, we have

A ⇒ C (50%, 66.6%)
C ⇒ A (50%, 100%)

Customer
buys diaper

Customer
buys both

Customer
buys beer

Association rules 6

Association Rule Mining: A Road Map
Boolean vs. quantitative associations (Based on the types of values
handled)

buys(x, “SQLServer”) ^ buys(x, “DMBook”) => buys(x, “DBMiner”) [0.2%, 60%]
age(x, “30..39”) ^ income(x, “42..48K”) => buys(x, “PC”) [1%, 75%]

Single dimension vs. multiple dimensional associations (see ex. above)
Single level vs. multiple-level analysis

What brands of beers are associated with what brands of diapers?

Various extensions
Correlation, causality analysis

Association does not necessarily imply correlation or causality
Maxpatterns and closed itemsets
Constraints enforced

E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?

Association rules 7

Lecture plan

Association rules
Algorithm Apriori
Algorithm Apriori-Tid
FP-tree

Association rules 8

Mining Association Rules –
An Example

For rule A ⇒ C:
support = support({A C}) = 50%
confidence = support({A C})/support({A}) = 66.6%

The Apriori principle:
Any subset of a frequent itemset must be frequent

Transaction ID Items Bought
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Frequent Itemset Support
{A} 75%
{B} 50%
{C} 50%
{A,C} 50%

Min. support 50%
Min. confidence 50%

Association rules 9

Possible number of rules
Given d unique items
Total number of itemsets = 2d

Total number of possible association rules:

Association rules 10

How to Mine Association Rules?

Two step approach:
1. Generate all frequent itemsets (sets of items whose

support > minsup)
2. Generate high confidence association rules from each

frequent itemset
Each rule is a binary partition of a frequent itemset

Frequent itemset generation is more expensive
operation.
(There are 2d possible itemsets)

Association rules 11

Mining Frequent Itemsets: the Key Step

Find the frequent itemsets: the sets of items that have
minimum support

A subset of a frequent itemset must also be a frequent itemset
i.e., if {AB} is a frequent itemset, both {A} and {B} should be a
frequent itemset

Iteratively find frequent itemsets with cardinality from 1 to k (k-
itemset)

Use the frequent itemsets to generate association rules.

Association rules 12

Reducing Number of Candidates

Apriori principle:
– If an itemset is frequent, then all of its subsets must also be

frequent
Apriori principle holds due to the following property of the
support measure:

∀X ,Y : (X ⊆Y) => s (X) ≥ s(Y)
Support of an itemset never exceeds the support of any of its
subsets
This is known as the anti-monotone property of support

Association rules 13

Key observation

Association rules 14

The Apriori Algorithm
Join Step: Ck is generated by joining Lk-1with itself
Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a
frequent k-itemset
Pseudo-code:

Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1 that are contained in t
Lk+1 = candidates in Ck+1 with min_support

end
return ∪k Lk;

Association rules 15

An idea of Apriori algorithm

C1 = I

L1

SQL C2 =
AprGen(F1)

L2

SQL

Ck =
AprGen(Fk-1)

Lk

SQLLk-1

Computing in memory

Ck – a set of candidates
for k-frequent itemsets

Fk – A set of k-frequent
itemsets

Association rules 16

Apriori Algorithm — Example
TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2
Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Association rules 17

How to Generate Candidates?

Suppose the items in Lk-1 are listed in an order

Step 1: self-joining Lk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1

Step 2: pruning
forall itemsets c in Ck do

forall (k-1)-subsets s of c do
if (s is not in Lk-1) then delete c from Ck

Association rules 18

Example of Generating Candidates

L3={abc, abd, acd, ace, bcd}

Self-joining: L3*L3

abcd from abc and abd

acde from acd and ace

Pruning:

acde is removed because ade is

not in L3

C4={abcd}

L3={abc, abd, abe acd, ace, bcd}

Self-joining: L3*L3

abcd from abc and abd

abce

abde

acde from acd and ace

Association rules 19

Illustration of candidate generation

Association rules 20

Rule generation

Given a frequent itemset L, find all non-empty subsets f
⊆ L such that f => L – f satisfies the minimum
confidence requirement
If {A,B,C,D} is a frequent itemset, candidate rules:
ABC =>D, ABD =>C, ACD =>B, BCD =>A,
A =>BCD, B =>ACD, C =>ABD, D =>ABC
AB =>CD, AC =>BD, AD =>BC, BC =>AD,
BD =>AC, CD =>AB,

If |L| = k, then there are 2k – 2 candidate association
rules (ignoring L => ∅ and ∅ => L)

Association rules 21

Rule generation

How to efficiently generate rules from frequent itemsets?
In general, confidence does not have an antimonotone property
But confidence of rules generated from the same itemset has an
anti-monotone property
L = {A,B,C,D}:
c(ABC => D) ≥ c(AB => CD) ≥ c(A=>BCD)

Confidence is non-increasing as number of items in rule
consequent increases

Association rules 22

Association rules 23

Apriori for rule generation

Candidate rule is generated by merging two rules
that share the same prefix in the rule consequent

join(CD=>AB, BD=>AC) would produce the candidate
rule D => ABC
Prune rule D=>ABC if its subset AD=>BC does not
have high confidence

Association rules 24

How to Count Supports of
Candidates?

Why counting supports of candidates a problem?
The total number of candidates can be very huge
One transaction may contain many candidates

Method:
Candidate itemsets are stored in a hash-tree
Leaf node of hash-tree contains a list of itemsets and counts
Interior node contains a hash table
Subset function: finds all the candidates contained in a transaction

Association rules 25

Hash tree

h(a) = a mod 3

Association rules 26

Insert a candidate to hash-tree

1 4 5

1 7 3

1 7 37 31

1 7 3

2 4 5

2 4 5 2 3 4
5 6 7

NULL

2 4 5

Association rules 27

BCP BCW

BFP
BFW

BPW CFP

CFW

CPW

FPWC F P
item2

hash-tree of candidateshash-tree of candidates

F P
item2

F P W
item3

B C F
item1

BCFBCF

Apriori Candidate evaluation:
Finding candidates contained in transaction

counter associated with each leaf node

BCFWTID 300

Association rules 28

BCWBCF BCP

BFP
BFW

BPW CFP

CFW

CPW

FPWC F P
item2

hash-tree of candidateshash-tree of candidates

F P
item2

F P W
item3

counter associated with each leaf node

BCFWTID 300
B C F
item1

BCW

Apriori Candidate evaluation:
Finding candidates contained in transaction

Association rules 29

BFW

Apriori Candidate evaluation
Finding candidates contained in transaction

BCF BCP BCW

BFP BPW CFP

CFW

CPW

FPWC F P
item2

hash-tree of candidateshash-tree of candidates

F P
item2

F P W
item3

counter associated with each leaf node

BCFWTID 300
B C F
item1

BFW

Association rules 30

CFW

Apriori Candidate evaluation
Finding candidates contained in transaction

BCF BCP BCW

BFP
BFW

BPW CFP CPW

FPWC F P
item2

hash-tree of candidateshash-tree of candidates

F P
item2

F P W
item3

counter associated with each leaf node

BCFWTID 300
B C F
item1

CFW

Association rules 31

Lecture plan

Association rules
Algorithm Apriori
Algorithm Apriori-Tid
FP-tree

Association rules 32

Observations

Apriori algorithm scans the whole database to determine
supports of candidates

Improvement:
Using new data structure called counting_base to store only those
transactions which can support the actual list of candidates
Algorithm AprioriTid

Association rules 33

AprioriTid
Input: transaction data set D, min_sup – minimal support
Output: the set of all frequent itemset F
Variables: CBk- counting_base at kth iteration of the algorithm

1: F1 = {frequent 1-itemsets}
2: k = 2;
3: while (Fk-1 is not empty) do {
4: Ck = Apriori_generate (Fk-1);

CBk = Counting_base_generate (Ck, CBk-1)
Support_count (Ck, CBk);

5: Fk = {c ∈ Ck | support(c) ≥ min_support};
}

6: F = sum of all Fk;

Association rules 34

AprioriTid: Counting_base_generate

Step 1:
counting_base = {(ri, Si): ri is the ID and Si is the itemset of the ith
transaction}

Step i:
counting_base = {(r, Si): Si is created as a joint of Si -1 with Si -1 as
follows:

IF {u1 u2 ... ui-2 a} and {u1 u2 ... ui-2 b} ∈ Si -1 THEN
{u1 u2 ... ui -2 a b} ∈ Si

}

Association rules 35

AprioriTid: Example

D = {(1,acd), (2, bce), (3,abce), (4,be)}.
min_sup = 0.5
Step 1
counting_base ={(1,{a,c,d}), (2,{b,c,e}), F1 = {a, b, c, e}

(3,{a,b,c,e}), (4,{b, e}) }

C2 = {ab, ac, ae, bc, be, ce}

Step 2
counting_base ={(1,{ac}), (2,{bc,be,ce}), F2 = {ac, bc, be, ce}

(3,{ab,ac,ae,bc,be,ce}), (4,{be}) }

C3 = {bce}

Step 3
counting_base = {(2,{bce}),(3,{bce})} F3 = {bce}

Association rules 36

Is Apriori Fast Enough? — Performance
Bottlenecks

The core of the Apriori algorithm:
Use frequent (k – 1)-itemsets to generate candidate frequent k-itemsets
Use database scan and pattern matching to collect counts for the candidate
itemsets

The bottleneck of Apriori: candidate generation
Huge candidate sets:

104 frequent 1-itemset will generate 107 candidate 2-itemsets
To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100}, one
needs to generate 2100 ≈ 1030 candidates.

Multiple scans of database:
Needs (n +1) scans, n is the length of the longest pattern

Association rules 37

Algorithm AprioriHybrid

AprioriTid replaces pass over data by pass over TCk
effective when TCk becomes small compared to size of
database

AprioriTid beats Apriori
when TCk sets fit in memory
distribution of large itemsets has long tail

Hybrid algorithm AprioriHybrid
use Apriori in initial passes
switch to AprioriTid when TCk expected to fit in memory

Association rules 38

Algorithm AprioriHybrid
Heuristic used for switching

estimate size of TCk from Ck
size(TCk) = Σ candidates c ∈ Ck support(c) + number of transactions

if TCk fits in memory and nr of candidates decreasing then
switch to AprioriTid

AprioriHybrid outperforms Apriori and AprioriTid in
almost all cases

little worse if switch pass is last one
cost of switching without benefits

AprioriHybrid up to 30% better than Apriori, up to 60%
better than AprioriTid

Association rules 39

AprioriHybrid
Scale-up Experiment

name |MB|
T5.I2.D10M 239
T10.I4.D10M 439
T20.I6.D10M 838

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Nr of Transactions (in Millions)

R
el

at
iv

e
Ti

m
e

T20.I6

T10.I4

T5.I2

Association rules 40

Lecture plan

Association rules
Algorithm Apriori
Algorithm Apriori-Tid
FP-tree

Association rules 41

Mining Frequent Patterns Without
Candidate Generation

Compress a large database into a compact, Frequent-Pattern
tree (FP-tree) structure

highly condensed, but complete for frequent pattern mining
avoid costly database scans

Develop an efficient, FP-tree-based frequent pattern mining
method

A divide-and-conquer methodology: decompose mining tasks into
smaller ones
Avoid candidate generation: sub-database test only!

Association rules 42

Construct FP-tree from a Transaction DB

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 0.5
TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

Steps:

1. Scan DB once, find frequent
1-itemset (single item
pattern)

2. Order frequent items in
frequency descending order

3. Scan DB again, construct
FP-tree

Association rules 43

Benefits of the FP-tree Structure

Completeness:
never breaks a long pattern of any transaction
preserves complete information for frequent pattern mining

Compactness
reduce irrelevant information—infrequent items are gone
frequency descending ordering: more frequent items are more likely to
be shared
never be larger than the original database (if not count node-links and
counts)
Example: For Connect-4 DB, compression ratio could be over 100

Association rules 44

Mining Frequent Patterns Using FP-tree

General idea (divide-and-conquer)
Recursively grow frequent pattern path using the FP-tree

Method
For each item, construct its conditional pattern-base, and then its
conditional FP-tree
Repeat the process on each newly created conditional FP-tree
Until the resulting FP-tree is empty, or it contains only one path
(single path will generate all the combinations of its sub-paths, each of
which is a frequent pattern)

Association rules 45

Major Steps to Mine FP-tree
1) Construct conditional pattern base for each node in the

FP-tree

2) Construct conditional FP-tree from each conditional
pattern-base

3) Recursively mine conditional FP-trees and grow frequent
patterns obtained so far

If the conditional FP-tree contains a single path, simply
enumerate all the patterns

Association rules 46

Step 1: From FP-tree to Conditional Pattern Base
Starting at the frequent header table in the FP-tree
Traverse the FP-tree by following the link of each frequent item
Accumulate all of transformed prefix paths of that item to form a conditional
pattern base

Conditional pattern bases
item cond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

Association rules 47

Properties of FP-tree for Conditional
Pattern Base Construction

Node-link property
For any frequent item ai, all the possible frequent patterns
that contain ai can be obtained by following ai's node-
links, starting from ai's head in the FP-tree header

Prefix path property
To calculate the frequent patterns for a node ai in a path
P, only the prefix sub-path of ai in P need to be
accumulated, and its frequency count should carry the
same count as node ai.

Association rules 48

Step 2: Construct Conditional FP-tree
For each pattern-base

Accumulate the count for each item in the base
Construct the FP-tree for the frequent items of the pattern base

m-conditional pattern
base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent patterns
concerning m
m,
fm, cm, am,
fcm, fam, cam,
fcam

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

Association rules 49

Mining Frequent Patterns by Creating
Conditional Pattern-Bases

EmptyEmptyf

{(f:3)}|c{(f:3)}c

{(f:3, c:3)}|a{(fc:3)}a

Empty{(fca:1), (f:1), (c:1)}b

{(f:3, c:3, a:3)}|m{(fca:2), (fcab:1)}m

{(c:3)}|p{(fcam:2), (cb:1)}p
Conditional FP-treeConditional pattern-baseItem

Association rules 50

Step 3: Recursively mine the
conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3
am-conditional FP-tree

{}
Cond. pattern base of “cm”: (f:3)

f:3
cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3
cam-conditional FP-tree

Association rules 51

Single FP-tree Path Generation

Suppose an FP-tree T has a single path P

The complete set of frequent pattern of T can be generated
by enumeration of all the combinations of the sub-paths of P

{}

f:3

c:3

a:3

m-conditional FP-tree

All frequent patterns
concerning m
m,
fm, cm, am,
fcm, fam, cam,
fcam

Association rules 52

Principles of Frequent Pattern Growth

Pattern growth property
Let α be a frequent itemset in DB, B be α's conditional pattern
base, and β be an itemset in B. Then α ∪ β is a frequent itemset
in DB iff β is frequent in B.

“abcdef ” is a frequent pattern, if and only if
“abcde ” is a frequent pattern, and

“f ” is frequent in the set of transactions containing “abcde ”

Association rules 53

Why Is Frequent Pattern Growth Fast?

Our performance study shows
FP-growth is an order of magnitude faster than Apriori, and is
also faster than tree-projection

Reasoning
No candidate generation, no candidate test

Use compact data structure

Eliminate repeated database scan

Basic operation is counting and FP-tree building

Association rules 54

FP-growth vs. Apriori: Scalability With
the Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

R
un

 ti
m

e(
se

c.
)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

Association rules 55

FP-growth vs. Tree-Projection: Scalability
with Support Threshold

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

Support threshold (%)

Ru
nt

im
e

(s
ec

.)

D2 FP-growth
D2 TreeProjection

Data set T25I20D100K

Association rules 56

Some issues on association mining

Interestingness measures
Pattern visualization
Multi-level association rules
Discretization
Mining association rules with constrains

Association rules 57

Interestingness Measurements

Objective measures
Two popular measurements:

support; and
confidence

Subjective measures (Silberschatz & Tuzhilin,
KDD95)
A rule (pattern) is interesting if

it is unexpected (surprising to the user); and/or
actionable (the user can do something with it)

Association rules 58

Criticism to Support and Confidence

Example 1: (Aggarwal & Yu, PODS98)
Among 5000 students

3000 play basketball
3750 eat cereal
2000 both play basket ball and eat cereal

play basketball ⇒ eat cereal [40%, 66.7%] is misleading because the overall
percentage of students eating cereal is 75% which is higher than 66.7%.
play basketball ⇒ not eat cereal [20%, 33.3%] is far more accurate, although
with lower support and confidence

basketball not basketball sum(row)
cereal 2000 1750 3750
not cereal 1000 250 1250
sum(col.) 3000 2000 5000

Association rules 59

Criticism to Support and Confidence
(Cont.)
Example 2:

X and Y: positively correlated,
X and Z, negatively related
support and confidence of
X=>Z dominates

We need a measure of dependent
or correlated events

P(B|A)/P(B) is also called the lift
of rule A => B

X 1 1 1 1 0 0 0 0
Y 1 1 0 0 0 0 0 0
Z 0 1 1 1 1 1 1 1

Rule Support Confidence
X=>Y 25% 50%
X=>Z 37.50% 75%)()(

)(
, BPAP

BAPcorr BA
∪

=

Association rules 60

Other Interestingness Measures: Interest
Interest (correlation, lift)

taking both P(A) and P(B) in consideration

P(A^B)=P(B)*P(A), if A and B are independent events

A and B negatively correlated, if the value is less than 1; otherwise A and

B positively correlated

)()(
)(

BPAP
BAP ∧

X 1 1 1 1 0 0 0 0
Y 1 1 0 0 0 0 0 0
Z 0 1 1 1 1 1 1 1

Itemset Support Interest
X,Y 25% 2
X,Z 37.50% 0.9
Y,Z 12.50% 0.57

Association rules 61

References
R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent
itemsets. In Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining),
2000.
R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases.
SIGMOD'93, 207-216, Washington, D.C.
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94 487-499, Santiago, Chile.
R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95, 3-14, Taipei, Taiwan.
R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98, 85-93, Seattle, Washington.
S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations.
SIGMOD'97, 265-276, Tucson, Arizona.
S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market
basket analysis. SIGMOD'97, 255-264, Tucson, Arizona, May 1997.
K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. SIGMOD'99, 359-370,
Philadelphia, PA, June 1999.
D.W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered association rules in large databases:
An incremental updating technique. ICDE'96, 106-114, New Orleans, LA.
M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries
efficiently. VLDB'98, 299-310, New York, NY, Aug. 1998.

Association rules 62

References (2)
G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. ICDE'00, 512-521,
San Diego, CA, Feb. 2000.
Y. Fu and J. Han. Meta-rule-guided mining of association rules in relational databases. KDOOD'95, 39-46,
Singapore, Dec. 1995.
T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized
association rules: Scheme, algorithms, and visualization. SIGMOD'96, 13-23, Montreal, Canada.
E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. SIGMOD'97, 277-
288, Tucson, Arizona.
J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series database. ICDE'99,
Sydney, Australia.
J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95, 420-431,
Zurich, Switzerland.
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD'00, 1-12, Dallas,
TX, May 2000.
T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communications of ACM,
39:58-64, 1996.
M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided mining of multi-dimensional association rules using
data cubes. KDD'97, 207-210, Newport Beach, California.
M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Finding interesting rules from
large sets of discovered association rules. CIKM'94, 401-408, Gaithersburg, Maryland.

Association rules 63

References (3)
F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast, quantifiable data
mining. VLDB'98, 582-593, New York, NY.
B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97, 220-231, Birmingham, England.
H. Lu, J. Han, and L. Feng. Stock movement and n-dimensional inter-transaction association rules.
SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'98), 12:1-
12:7, Seattle, Washington.
H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules.
KDD'94, 181-192, Seattle, WA, July 1994.
H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery, 1:259-289, 1997.
R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. VLDB'96, 122-133,
Bombay, India.
R.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97, 452-461, Tucson, Arizona.
R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of
constrained associations rules. SIGMOD'98, 13-24, Seattle, Washington.
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules.
ICDT'99, 398-416, Jerusalem, Israel, Jan. 1999.

Association rules 64

References (4)
J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules.
SIGMOD'95, 175-186, San Jose, CA, May 1995.
J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets.
DMKD'00, Dallas, TX, 11-20, May 2000.
J. Pei and J. Han. Can We Push More Constraints into Frequent Pattern Mining? KDD'00. Boston, MA.
Aug. 2000.
G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In G. Piatetsky-Shapiro and W.
J. Frawley, editors, Knowledge Discovery in Databases, 229-238. AAAI/MIT Press, 1991.
B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98, 412-421, Orlando, FL.
J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules.
SIGMOD'95, 175-186, San Jose, CA.
S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of interesting patterns in association
rules. VLDB'98, 368-379, New York, NY..
S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database
systems: Alternatives and implications. SIGMOD'98, 343-354, Seattle, WA.
A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large
databases. VLDB'95, 432-443, Zurich, Switzerland.
A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large database of
customer transactions. ICDE'98, 494-502, Orlando, FL, Feb. 1998.

Association rules 65

References (5)
C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures.
VLDB'98, 594-605, New York, NY.
R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95, 407-419, Zurich,
Switzerland, Sept. 1995.
R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. SIGMOD'96,
1-12, Montreal, Canada.
R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97, 67-73,
Newport Beach, California.
H. Toivonen. Sampling large databases for association rules. VLDB'96, 134-145, Bombay, India, Sept.
1996.
D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query flocks: A
generalization of association-rule mining. SIGMOD'98, 1-12, Seattle, Washington.
K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing optimized rectilinear
regions for association rules. KDD'97, 96-103, Newport Beach, CA, Aug. 1997.
M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of association
rules. Data Mining and Knowledge Discovery, 1:343-374, 1997.
M. Zaki. Generating Non-Redundant Association Rules. KDD'00. Boston, MA. Aug. 2000.
O. R. Zaiane, J. Han, and H. Zhu. Mining Recurrent Items in Multimedia with Progressive Resolution
Refinement. ICDE'00, 461-470, San Diego, CA, Feb. 2000.

	Transaction data analysis and association rules�www.mimuw.edu.pl/~son/datamining
	Lecture plan
	What Is Association Mining?
	Association Rule: Basic Concepts
	Rule Measures: Support and Confidence
	Association Rule Mining: A Road Map
	Lecture plan
	Mining Association Rules – �An Example
	Possible number of rules
	How to Mine Association Rules?
	Mining Frequent Itemsets: the Key Step
	Reducing Number of Candidates
	Key observation
	The Apriori Algorithm
	An idea of Apriori algorithm
	Apriori Algorithm — Example
	How to Generate Candidates?
	Example of Generating Candidates
	Illustration of candidate generation
	Rule generation
	Rule generation
	Apriori for rule generation
	How to Count Supports of Candidates?
	Hash tree
	Insert a candidate to hash-tree
	Apriori Candidate evaluation: �Finding candidates contained in transaction
	Apriori Candidate evaluation: �Finding candidates contained in transaction
	Apriori Candidate evaluation�Finding candidates contained in transaction
	Apriori Candidate evaluation�Finding candidates contained in transaction
	Lecture plan
	Observations
	AprioriTid
	AprioriTid: Counting_base_generate
	AprioriTid: Example
	Is Apriori Fast Enough? — Performance Bottlenecks
	Algorithm AprioriHybrid
	Algorithm AprioriHybrid
	AprioriHybrid�Scale-up Experiment
	Lecture plan
	Mining Frequent Patterns Without Candidate Generation
	Construct FP-tree from a Transaction DB
	Benefits of the FP-tree Structure
	Mining Frequent Patterns Using FP-tree
	Major Steps to Mine FP-tree
	Step 1: From FP-tree to Conditional Pattern Base
	Properties of FP-tree for Conditional Pattern Base Construction
	Step 2: Construct Conditional FP-tree
	Mining Frequent Patterns by Creating Conditional Pattern-Bases
	Step 3: Recursively mine the conditional FP-tree
	Single FP-tree Path Generation
	Principles of Frequent Pattern Growth
	Why Is Frequent Pattern Growth Fast?
	FP-growth vs. Apriori: Scalability With the Support Threshold
	FP-growth vs. Tree-Projection: Scalability with Support Threshold
	Some issues on association mining
	Interestingness Measurements
	Criticism to Support and Confidence
	Criticism to Support and Confidence (Cont.)
	Other Interestingness Measures: Interest
	References
	References (2)
	References (3)
	References (4)
	References (5)

