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Geometric variational problems

Φ : {geometric objects} → [0, ∞]

Goal: Study critical points (in particular minima) of Φ.

Examples:

1 The Plateau problem

geometric objects − surfaces with a fixed boundary
Φ − measure of the surface

2 The isoperimetric problem

geometric objects − open sets with fixed volume
Φ − measure of the boundary
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SŁAWEK KOLASIŃSKI “THE ATOMIC CONDITION IN VARIFOLD THEORY” 2/24



Energy functionals

G(n, k) k-dimensional subspaces of Rn

F : G(n, k) → R+ continuous integrand

C =
{

k-rectifiable sets/currents/varifolds
}

competitors

ΦF : C → R ∪ {+∞}

ΦF(M) =
∫

M
F(Tan(M, x))dH k(x) for M ∈ C

SŁAWEK KOLASIŃSKI “THE ATOMIC CONDITION IN VARIFOLD THEORY” 3/24



Energy functionals

G(n, k) k-dimensional subspaces of Rn

F : G(n, k) → R+ continuous integrand

C =
{

k-rectifiable sets/currents/varifolds
}

competitors

ΦF : C → R ∪ {+∞}

ΦF(M) =
∫

M
F(Tan(M, x))dH k(x) for M ∈ C
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Examples: k-dimensional area in normed space

G(n, k) = End(Rn) ∩
{

P : P ◦ P = P, P⊤ = P, trace P = k
}

ϕ : Rn → R a norm , W = Rn ∩
{

x : ϕ(x) ≤ 1
}

FBH(T) =
α(k)

H k(W ∩ im T)
Busemann-Hausdorff

FHT(T) =
H k(T[W])

α(k)
Holmes–Thompson

ΦBH(M) = H k
ϕ (M) for any C 1-manifold M ⊆ Rn

ΦHT = symplectic measure
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Regularity of minimisers

Theorem (Almgren, Ann. of Math., 1968)

Let k ≥ 3 be either a positive integer or ∞. Suppose F is a C k

integrand (real analytic integrand) which is uniformly elliptic, B is
a boundary, U is an open covering of Rn.
If S is a surface which is F minimal with respect to B and U , then S
is C k−1 regular almost everywhere (real analytic almost
everywhere).
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Almgren’s ellipticity

P ⊆ C × C test pairs

F ∈ AUE(P) iff. ΦF(S)− ΦF(D) ≥ c
(
H k(S)−H k(D)

)
for some c > 0 and all (S, D) ∈ P

F ∈ AE(P) iff. ΦF(S) > ΦF(D)

for (S, D) ∈ P with H k(S) ̸= H k(D)

F ∈ semiAE(P) iff. ΦF(S) ≥ ΦF(D)

for (S, D) ∈ P
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Test pairs

Prect =

{
(S, D) :

S, D compact (H k, k)-rectifiable,
D is a flat disc, ∂D is not a retract of S

}

PZ =

{
(S, D) :

S, D k-dimensional integral currents,
spt D is a flat disc, ∂S = ∂D

}

PR =

{
(S, D) :

S, D k-dimensional normal currents,
spt D is a flat disc, ∂S = ∂D

}

Pgraph =

{
(S, D) :

D k-dimensional flat disc, S a graph over D
of some Lipschitz function vanishing on ∂D

}
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SŁAWEK KOLASIŃSKI “THE ATOMIC CONDITION IN VARIFOLD THEORY” 7/24



Test pairs

Prect =

{
(S, D) :

S, D compact (H k, k)-rectifiable,
D is a flat disc, ∂D is not a retract of S

}

PZ =

{
(S, D) :

S, D k-dimensional integral currents,
spt D is a flat disc, ∂S = ∂D

}

PR =

{
(S, D) :

S, D k-dimensional normal currents,
spt D is a flat disc, ∂S = ∂D

}

Pgraph =

{
(S, D) :

D k-dimensional flat disc, S a graph over D
of some Lipschitz function vanishing on ∂D

}
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Morrey’s quasi-convexity

Definition

An integrand f : Hom(Rk, Rn−k) → R is quasi-convex if∫
D

f (A + Du(x))dL k(x) ≥
∫

D
f (A)dL k = L k(D)f (A)

for any domain D ⊆ Rk, A ∈ Hom(Rk, Rn−k), and any
function u ∈ C 1(Rk, Rn−k) supported in D.

Theorem (Morrey, Pacific J. Math., 1952)

The functional

If (u, D) =
∫

D
f (Du)dL k

is l.s.c. w.r.t. uniform convergence in LipL(D, Rn−k) for all possible
domains D ⊆ Rk iff. f is quasi-convex.
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AE =⇒ QC

Suppose

F : G(n, k) → R a geometric integrand ,

j : Hom(Rk, Rn−k) → Hom(Rk, Rn) , j(A)x = (x, Ax)

Define
f (A) = F(im j(A))det(j(A)⊤ ◦ j(A))1/2

Then
ΦF(M) = If (u, D)

whenever

u ∈ Lip(Rk, Rn−k) , D a domain in Rk , M = graph u|D

and
F ∈ AE(Pgraph) =⇒ f ∈ QC

cf. e.g. De Rosa and Tione, Invent. Math. 2022
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Convexity of the integrand

G0(n, k) =
∧

kRn ∩
{

ξ : ξ simple , |ξ| = 1
}

oriented k-planes

{
F0 : G0(n, k) → R : F0(ξ) = F0(−ξ)

}
≃

{
F : G(n, k) → R

}
Definition
F0 is called extendibly (uniformly/strictly) convex if there exists
a (uniformly/strictly convex) norm Ψ on

∧
kRn such that

F0 = Ψ|G0(n, k) .
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Properties of AUE

Almgren, Ann. of Math. 1968

1 F0 ∈ AUE(P) iff. F0 is extendibly uniformly convex
only in case n − k = 1

2 AUE(P) is stable under C 2 perturbations
3 AUE(P) is a convex cone
4 F ≡ 1 ∈ AUE(P)

5 φ : Rn → Rn a smooth diffeomorphism, F ∈ AUE(P), then
φ#F ∈ AUE(P)

Federer’s book 1969, §5.1.2

6 if F0 is extendibly uniformly convex, then F0 ∈ AUE(PZ)

No counterpart for Prect in case n − k > 1
Burago and Ivanov, GAFA 2004

7 F0 ∈ semiAE(PR) iff. F0 is extendibly convex.
No counterpart for PZ
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Classical integrands

1 FHT may not be extendibly convex for some norms on Rn

[Busemann and Ewald and Shephard, Math. Ann. 1963]

2 FBH is extendibly convex in case k = 2
[Burago and Ivanov, GAFA 2012]

3 FHT ∈ semiAE(Pimmersed discs)
[Burago and Ivanov, Ann. of Math. 2002]

4 There exist a norm on Rn, a 2-disc D, and a rational chain S
(represented by an immersed disc) s.t. ∂S = 10∂D and
ΦHT(S) < 10ΦHT(D).
[Burago and Ivanov, Ann. of Math. 2002]

5 There exist F : G0(4, 2) → R+ ∈ semiAE(PZ) which is not
extendibly convex.
[Burago and Ivanov, GAFA 2004]
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The Atomic Condition

End(Rn) = Hom(Rn, Rn) , G(n, k) ⊆ End(Rn) ,

F : End(Rn) → R of class C 1 , F(λA) = |λ|kF(A) for λ ∈ R ,

σ(T) a projection onto Tan(R · G(n, k), T) ⊆ End(Rn)

BF(T) = σ(T)⊤ grad F(T) for T ∈ G(n, k) ,

PF(T) =
BF(T)⊤

F(T)
, AF(µ) =

∫
PF dµ ∈ End(Rn)

De Philippis and De Rosa and Ghiraldin, CPAM 2018

F ∈ AC ⇐⇒
∀µ ∈ Prob(G(n, k)) dim im AF(µ) ≥ k
and if dim im AF(µ) = k, then µ is atomic
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The Atomic Condition

Theorem (De Philippis and De Rosa and Ghiraldin, CPAM 2018)

Let V be the family of all k-dimensional varifolds in an open set
U ⊆ Rn with positive lower density and total F-variation measure
being Radon. Then V ⊆ RVk(U) iff. F ∈ AC.

In particular, all F-stationary k-varifold with positive density are
rectifiable iff. F ∈ AC.
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The Atomic Condition

De Rosa and K., CPAM 2020

AC ⊆ AE(Prect)

De Philippis and De Rosa and Ghiraldin, CPAM 2018

In case n − k = 1, F is extendibly strictly convex iff. F ∈ AC
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Extreme and exposed points

X vectorspace , C ⊆ X convex , p ∈ C

Def. p is an extreme point of C if p cannot be expressed as
a non-trivial convex combination of other points of C.

Def. p is an exposed point of C if there exists a hyperplane H ⊆ X
such that {p} = H ∩ C.

Fact. Exposed points form a dense subset of extreme points.

SŁAWEK KOLASIŃSKI “THE ATOMIC CONDITION IN VARIFOLD THEORY” 16/24



Extreme and exposed points

X vectorspace , C ⊆ X convex , p ∈ C

Def. p is an extreme point of C if p cannot be expressed as
a non-trivial convex combination of other points of C.

Def. p is an exposed point of C if there exists a hyperplane H ⊆ X
such that {p} = H ∩ C.

Fact. Exposed points form a dense subset of extreme points.
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SŁAWEK KOLASIŃSKI “THE ATOMIC CONDITION IN VARIFOLD THEORY” 16/24



Extreme and exposed points

X vectorspace , C ⊆ X convex , p ∈ C

Def. p is an extreme point of C if p cannot be expressed as
a non-trivial convex combination of other points of C.

Def. p is an exposed point of C if there exists a hyperplane H ⊆ X
such that {p} = H ∩ C.

Fact. Exposed points form a dense subset of extreme points.
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AC reformulated

GF = End(Rn) ∩
{

PF(T) : T ∈ G(n, k)
}

compact manifold

Rank≤(k) = End(Rn) ∩
{

A : dim im A ≤ k
}

Lemma. F ∈ AC iff. GF is the set of extreme points of convGF
and convGF ∩ Rank≤(k) = GF.

Proof. Note {AF(µ) : µ ∈ Prob(G(n, k))} = convGF. Let E be
the set of extreme points of C = convGF.
(⇒) Assume F ∈ AC and for some T ∈ G(n, k) the map PF(T)
is a convex combination of some elements of GF. Then there is
µ ∈ Prob(G(n, k)) such that PF(T) =

∫
PF dµ. Since

dim im PF(T) = k, AC ensures that µ = Dirac(T). Hence, PF(T)
cannot be expressed as a non-trivial convex combination of
other elements of GF and is an extreme point of C; thus, GF ⊆ E.
Clearly C is generated by GF and E is the smallest set of
generators for C so E ⊆ GF. If A ∈ C ∩ Rank≤(k), then
A = AF(µ) for some µ ∈ Prob(G(n, k)) and AC yields
T ∈ G(n, k) s.t. µ = Dirac(T); thus A = PF(T) ∈ GF.
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SŁAWEK KOLASIŃSKI “THE ATOMIC CONDITION IN VARIFOLD THEORY” 17/24



AC reformulated

GF = End(Rn) ∩
{

PF(T) : T ∈ G(n, k)
}

compact manifold
Rank≤(k) = End(Rn) ∩

{
A : dim im A ≤ k

}
Lemma. F ∈ AC iff. GF is the set of extreme points of convGF
and convGF ∩ Rank≤(k) = GF.

Proof. Note {AF(µ) : µ ∈ Prob(G(n, k))} = convGF. Let E be
the set of extreme points of C = convGF.
(⇒) Assume F ∈ AC and for some T ∈ G(n, k) the map PF(T)
is a convex combination of some elements of GF. Then there is
µ ∈ Prob(G(n, k)) such that PF(T) =

∫
PF dµ. Since

dim im PF(T) = k, AC ensures that µ = Dirac(T). Hence, PF(T)
cannot be expressed as a non-trivial convex combination of
other elements of GF and is an extreme point of C; thus, GF ⊆ E.
Clearly C is generated by GF and E is the smallest set of
generators for C so E ⊆ GF.

If A ∈ C ∩ Rank≤(k), then
A = AF(µ) for some µ ∈ Prob(G(n, k)) and AC yields
T ∈ G(n, k) s.t. µ = Dirac(T); thus A = PF(T) ∈ GF.
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AC reformulated

GF = End(Rn) ∩
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then AF(µ) ∈ Rank≤(k) ∩ C; hence, AF(µ) = PF(T) for some
T ∈ G(n, k). Since PF(T) is an extreme point of C we see that
µ = Dirac(T).
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SŁAWEK KOLASIŃSKI “THE ATOMIC CONDITION IN VARIFOLD THEORY” 18/24



Conditions stronger than AC

QF(T) = idRn − PF(T)

De Rosa and Tione, Invent. Math. 2022

Def. F ∈ SAC (scalar atomic condition) if

PF(T) • QF(S)⊤ > 0 for S, T ∈ G(n, k) with S ̸= T

Def. F ∈ USAC (uniform scalar atomic condition) if

PF(T) • QF(S)⊤ ≥ ∆∥S − T∥2 for S, T ∈ G(n, k)

Note. F ∈ SAC iff.

GF ⊆ H(S) = End(Rn) ∩
{

A : A • QF(S)⊤ ≥ 0
}

and ∂H(S) ∩ GF = {PF(S)}

In particular, PF(S) is an exposed point of convGF
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Modified SAC

I(S) = End(Rn) ∩
{

A : im A ⊆ im S
}

for S ∈ G(n, k)

F ∈ AC ⇐⇒
GF is the set of extreme points of convGF

and convGF ∩ Rank≤(k) = GF.

F ∈ mSAC ⇐⇒
GF is the set of exposed points of convGF

and convGF ∩ Rank≤(k) = GF.

⇐⇒
for each S ∈ G(n, k) there is N(S) ∈ I(S)⊥

s.t. PF(T) • N(S) > 0 for S ̸= T ∈ G(n, k)

F ∈ mUSAC analogously
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mUSAC explained
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Why modify SAC?

I(S) = End(Rn) ∩
{

A : im A ⊆ im S
}

for S ∈ G(n, k)

H(A) = End(Rn) ∩
{

B : B • A ≥ 0
}

for A ∈ End(Rn)

Def. F ∈ mSAC iff. for each S ∈ G(n, k) there is N(S) ∈ I(S)⊥

s.t. PF(T) • N(S) > 0 for S ̸= T ∈ G(n, k).
Def. F ∈ SAC iff. N(S) = QF(S)⊤ = idRn − PF(S)⊤ for
S ̸= T ∈ G(n, k).
Note.

QF(S)⊤ ∈ I(S)⊥

K =
⋂{

H(N(S)) : S ∈ G(n, k)
}
= coneGF

K◦ = cone
{

N(S) : S ∈ G(n, k)
}

SŁAWEK KOLASIŃSKI “THE ATOMIC CONDITION IN VARIFOLD THEORY” 22/24



Why modify SAC?

I(S) = End(Rn) ∩
{

A : im A ⊆ im S
}

for S ∈ G(n, k)

H(A) = End(Rn) ∩
{

B : B • A ≥ 0
}

for A ∈ End(Rn)

Def. F ∈ mSAC iff. for each S ∈ G(n, k) there is N(S) ∈ I(S)⊥

s.t. PF(T) • N(S) > 0 for S ̸= T ∈ G(n, k).

Def. F ∈ SAC iff. N(S) = QF(S)⊤ = idRn − PF(S)⊤ for
S ̸= T ∈ G(n, k).
Note.

QF(S)⊤ ∈ I(S)⊥

K =
⋂{

H(N(S)) : S ∈ G(n, k)
}
= coneGF

K◦ = cone
{

N(S) : S ∈ G(n, k)
}
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Strategy for construction (work in progress)

Construct two subsets of End(Rn)

G =
{

P(S) : S ∈ G(n, k)
}

and G∗ =
{

N(S) : S ∈ G(n, k)
}

ensuring that

1 G is the set of extreme points of convG
2 G∗ is the set of extreme points of convG∗

3 K = coneG is polar to the coneG∗ = K◦

4 P(S) is a projection onto S
5 N(S) ⊥ I(S)

After that

6 Recover F such that G = GF
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Thank you.
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