

The Atomic Condition in varifold theory

Sławomir Kolasiński s.kolasinski@mimuw.edu.pl

(work in progress)

Pączki 2023 13-17 February 2023

$\Phi: \{\text{geometric objects}\} \to [0,\infty]$

<u>Goal</u>: Study critical points (in particular minima) of Φ .

$\Phi: \{\text{geometric objects}\} \to [0,\infty]$

<u>Goal</u>: Study critical points (in particular minima) of Φ .

Examples:

1 The Plateau problem

geometric objects – surfaces with a fixed boundary

 Φ – measure of the surface

$\Phi:\{\text{geometric objects}\}\to [0,\infty]$

<u>Goal</u>: Study critical points (in particular minima) of Φ .

Examples:

1 The Plateau problem

geometric objects – surfaces with a fixed boundary

 Φ – measure of the surface

2 The isoperimetric problem

- geometric objects open sets with fixed volume
 - Φ measure of the boundary

 $\mathbf{G}(n,k)$ *k*-dimensional subspaces of \mathbf{R}^n $F: \mathbf{G}(n,k) \to \mathbf{R}_+$ continuous integrand $\mathbf{G}(n,k)$ *k*-dimensional subspaces of \mathbf{R}^n $F: \mathbf{G}(n,k) \to \mathbf{R}_+$ continuous integrand

 $C = \{k \text{-rectifiable sets/currents/varifolds}\}$ competitors

 $\mathbf{G}(n,k)$ *k*-dimensional subspaces of \mathbf{R}^n $F: \mathbf{G}(n,k) \to \mathbf{R}_+$ continuous integrand

 $C = \{k \text{-rectifiable sets/currents/varifolds}\}$ competitors

$$\Phi_F : \mathcal{C} \to \mathbf{R} \cup \{+\infty\}$$
$$\Phi_F(M) = \int_M F(\operatorname{Tan}(M, x)) \, d\mathscr{H}^k(x) \quad \text{for } M \in \mathcal{C}$$

$$\mathbf{G}(n,k) = \operatorname{End}(\mathbf{R}^n) \cap \{P : P \circ P = P, P^{\top} = P, \operatorname{trace} P = k\}$$

$$\mathbf{G}(n,k) = \operatorname{End}(\mathbf{R}^n) \cap \{P : P \circ P = P, P^\top = P, \operatorname{trace} P = k\}$$
$$\phi : \mathbf{R}^n \to \mathbf{R} \quad \text{a norm}, \quad W = \mathbf{R}^n \cap \{x : \phi(x) \le 1\}$$

$$\mathbf{G}(n,k) = \operatorname{End}(\mathbf{R}^{n}) \cap \{P : P \circ P = P, P^{\top} = P, \operatorname{trace} P = k\}$$
$$\phi : \mathbf{R}^{n} \to \mathbf{R} \quad \text{a norm}, \quad W = \mathbf{R}^{n} \cap \{x : \phi(x) \le 1\}$$
$$F_{BH}(T) = \frac{\boldsymbol{\alpha}(k)}{\mathscr{H}^{k}(W \cap \operatorname{im} T)} \quad \text{Busemann-Hausdorff}$$

$$\mathbf{G}(n,k) = \operatorname{End}(\mathbf{R}^{n}) \cap \{P : P \circ P = P, P^{\top} = P, \operatorname{trace} P = k\}$$

$$\phi : \mathbf{R}^{n} \to \mathbf{R} \quad \text{a norm}, \quad W = \mathbf{R}^{n} \cap \{x : \phi(x) \le 1\}$$

$$F_{BH}(T) = \frac{\boldsymbol{\alpha}(k)}{\mathscr{H}^{k}(W \cap \operatorname{im} T)} \quad \text{Busemann-Hausdorff}$$

$$F_{HT}(T) = \frac{\mathscr{H}^{k}(T[W])}{\boldsymbol{\alpha}(k)} \quad \text{Holmes-Thompson}$$

$$\mathbf{G}(n,k) = \operatorname{End}(\mathbf{R}^{n}) \cap \{P : P \circ P = P, P^{\top} = P, \operatorname{trace} P = k$$

$$\phi : \mathbf{R}^{n} \to \mathbf{R} \quad \text{a norm}, \quad W = \mathbf{R}^{n} \cap \{x : \phi(x) \leq 1\}$$

$$F_{BH}(T) = \frac{\boldsymbol{\alpha}(k)}{\mathcal{H}^{k}(W \cap \operatorname{im} T)} \quad \text{Busemann-Hausdorff}$$

$$F_{HT}(T) = \frac{\mathcal{H}^{k}(T[W])}{\boldsymbol{\alpha}(k)} \quad \text{Holmes-Thompson}$$

$$\Phi_{BH}(M) = \mathcal{H}^{k}_{\phi}(M) \quad \text{for any } \mathcal{C}^{1}\text{-manifold } M \subseteq \mathbf{R}^{n}$$

$$\Phi_{HT} = \text{symplectic measure}$$

Theorem (Almgren, Ann. of Math., 1968)

Let $k \ge 3$ be either a positive integer or ∞ . Suppose F is a \mathscr{C}^k integrand (real analytic integrand) which is uniformly elliptic, B is a boundary, \mathcal{U} is an open covering of \mathbb{R}^n . If S is a surface which is F minimal with respect to B and \mathcal{U} , then S is \mathscr{C}^{k-1} regular almost everywhere (real analytic almost everywhere).

$\mathcal{P} \subseteq \mathcal{C} \times \mathcal{C}$ test pairs

$$\mathcal{P} \subseteq \mathcal{C} \times \mathcal{C}$$
 test pairs

$$F \in AUE(\mathcal{P})$$
 iff. $\Phi_F(S) - \Phi_F(D) \ge c \left(\mathscr{H}^k(S) - \mathscr{H}^k(D)\right)$
for some $c > 0$ and all $(S, D) \in \mathcal{P}$

$$\mathcal{P} \subseteq \mathcal{C} \times \mathcal{C}$$
 test pairs

 $F \in AUE(\mathcal{P})$ iff. $\Phi_F(S) - \Phi_F(D) \ge c \left(\mathscr{H}^k(S) - \mathscr{H}^k(D)\right)$ for some c > 0 and all $(S, D) \in \mathcal{P}$

 $F \in AE(\mathcal{P}) \quad \text{iff.} \quad \Phi_F(S) > \Phi_F(D)$ for $(S, D) \in \mathcal{P}$ with $\mathscr{H}^k(S) \neq \mathscr{H}^k(D)$

$$\mathcal{P} \subseteq \mathcal{C} \times \mathcal{C}$$
 test pairs

 $F \in AUE(\mathcal{P}) \quad \text{iff.} \quad \Phi_F(S) - \Phi_F(D) \ge c \left(\mathscr{H}^k(S) - \mathscr{H}^k(D) \right)$ for some c > 0 and all $(S, D) \in \mathcal{P}$

$$F \in AE(\mathcal{P})$$
 iff. $\Phi_F(S) > \Phi_F(D)$
for $(S, D) \in \mathcal{P}$ with $\mathscr{H}^k(S) \neq \mathscr{H}^k(D)$

 $F \in \text{semiAE}(\mathcal{P})$ iff. $\Phi_F(S) \ge \Phi_F(D)$ for $(S, D) \in \mathcal{P}$

$$\mathcal{P}_{\text{rect}} = \left\{ (S, D) : \frac{S, D \text{ compact } (\mathcal{H}^k, k) \text{-rectifiable,}}{D \text{ is a flat disc, } \partial D \text{ is not a retract of } S} \right\}$$

$$\mathcal{P}_{\text{rect}} = \left\{ (S, D) : \begin{array}{l} S, D \text{ compact } (\mathscr{H}^k, k) \text{-rectifiable,} \\ D \text{ is a flat disc, } \partial D \text{ is not a retract of } S \end{array} \right\}$$
$$\mathcal{P}_{\mathbf{Z}} = \left\{ (S, D) : \begin{array}{l} S, D \text{ k-dimensional integral currents,} \\ \text{spt } D \text{ is a flat disc, } \partial S = \partial D \end{array} \right\}$$

$$\mathcal{P}_{\text{rect}} = \left\{ (S, D) : \begin{array}{l} S, D \text{ compact } (\mathscr{H}^{k}, k) \text{-rectifiable,} \\ D \text{ is a flat disc, } \partial D \text{ is not a retract of } S \end{array} \right\}$$
$$\mathcal{P}_{\mathbf{Z}} = \left\{ (S, D) : \begin{array}{l} S, D \text{ k-dimensional integral currents,} \\ \text{spt } D \text{ is a flat disc, } \partial S = \partial D \end{array} \right\}$$
$$\mathcal{P}_{\mathbf{R}} = \left\{ (S, D) : \begin{array}{l} S, D \text{ k-dimensional normal currents,} \\ \text{spt } D \text{ is a flat disc, } \partial S = \partial D \end{array} \right\}$$

1

$$\mathcal{P}_{\text{rect}} = \left\{ (S, D) : \begin{array}{l} S, D \text{ compact } (\mathcal{H}^k, k) \text{-rectifiable,} \\ D \text{ is a flat disc, } \partial D \text{ is not a retract of } S \end{array} \right\}$$

$$\mathcal{P}_{\mathbf{Z}} = \left\{ (S, D) : \begin{array}{l} S, D \text{ } k \text{-dimensional integral currents,} \\ \text{spt} D \text{ is a flat disc, } \partial S = \partial D \end{array} \right.$$

 $\mathcal{P}_{\mathbf{R}} = \left\{ (S, D) : \frac{S, D \, k\text{-dimensional normal currents,}}{\operatorname{spt} D \text{ is a flat disc, } \partial S = \partial D} \right\}$

 $\mathcal{P}_{graph} = \left\{ (S, D) : \frac{D \, k \text{-dimensional flat disc, } S \text{ a graph over } D}{\text{of some Lipschitz function vanishing on } \partial D} \right\}$

Definition

An integrand f: Hom($\mathbf{R}^k, \mathbf{R}^{n-k}$) $\rightarrow \mathbf{R}$ is *quasi-convex* if

$$\int_{D} f(A + \mathrm{D}u(x)) \, \mathrm{d}\mathscr{L}^{k}(x) \ge \int_{D} f(A) \, \mathrm{d}\mathscr{L}^{k} = \mathscr{L}^{k}(D) f(A)$$

for any domain $D \subseteq \mathbf{R}^k$, $A \in \text{Hom}(\mathbf{R}^k, \mathbf{R}^{n-k})$, and any function $u \in \mathscr{C}^1(\mathbf{R}^k, \mathbf{R}^{n-k})$ supported in D.

Definition

An integrand f: Hom($\mathbf{R}^k, \mathbf{R}^{n-k}$) $\rightarrow \mathbf{R}$ is *quasi-convex* if

$$\int_{D} f(A + \mathrm{D}u(x)) \, \mathrm{d}\mathscr{L}^{k}(x) \ge \int_{D} f(A) \, \mathrm{d}\mathscr{L}^{k} = \mathscr{L}^{k}(D) f(A)$$

for any domain $D \subseteq \mathbf{R}^k$, $A \in \text{Hom}(\mathbf{R}^k, \mathbf{R}^{n-k})$, and any function $u \in \mathscr{C}^1(\mathbf{R}^k, \mathbf{R}^{n-k})$ supported in D.

Theorem (Morrey, Pacific J. Math., 1952)

The functional

$$I_f(u,D) = \int_D f(\mathrm{D}u) \,\mathrm{d}\mathscr{L}^k$$

is l.s.c. w.r.t. uniform convergence in $\operatorname{Lip}_{L}(D, \mathbb{R}^{n-k})$ for all possible domains $D \subseteq \mathbb{R}^{k}$ iff. f is quasi-convex.

Suppose

$F: \mathbf{G}(n,k) \to \mathbf{R} \text{ a geometric integrand ,}$ $j: \operatorname{Hom}(\mathbf{R}^k, \mathbf{R}^{n-k}) \to \operatorname{Hom}(\mathbf{R}^k, \mathbf{R}^n), \quad j(A)x = (x, Ax)$

Suppose

$$F : \mathbf{G}(n,k) \to \mathbf{R} \text{ a geometric integrand ,}$$

$$j : \operatorname{Hom}(\mathbf{R}^k, \mathbf{R}^{n-k}) \to \operatorname{Hom}(\mathbf{R}^k, \mathbf{R}^n) , \quad j(A)x = (x, Ax)$$

Define

$$f(A) = F(\operatorname{im} j(A)) \det(j(A)^{\top} \circ j(A))^{1/2}$$

Suppose

$$F: \mathbf{G}(n,k) \to \mathbf{R} \text{ a geometric integrand ,}$$

$$j: \operatorname{Hom}(\mathbf{R}^k, \mathbf{R}^{n-k}) \to \operatorname{Hom}(\mathbf{R}^k, \mathbf{R}^n), \quad j(A)x = (x, Ax)$$

Define

$$f(A) = F(\operatorname{im} j(A)) \det(j(A)^{\top} \circ j(A))^{1/2}$$

Then

$$\Phi_F(M)=I_f(u,D)$$

whenever

$$u \in \operatorname{Lip}(\mathbf{R}^k, \mathbf{R}^{n-k}), \quad D \text{ a domain in } \mathbf{R}^k, \quad M = \operatorname{graph} u | D$$

and
 $F \in \operatorname{AE}(\mathcal{P}_{\operatorname{graph}}) \implies f \in \operatorname{QC}$

cf. e.g. De Rosa and Tione, Invent. Math. 2022

$\mathbf{G}_0(n,k) = \bigwedge_k \mathbf{R}^n \cap \{\xi : \xi \text{ simple }, |\xi| = 1\}$ oriented *k*-planes

$$\mathbf{G}_0(n,k) = \bigwedge_k \mathbf{R}^n \cap \{\xi : \xi \text{ simple }, |\xi| = 1\} \text{ oriented } k \text{-planes}$$
$$\{F_0 : \mathbf{G}_0(n,k) \to \mathbf{R} : F_0(\xi) = F_0(-\xi)\} \simeq \{F : \mathbf{G}(n,k) \to \mathbf{R}\}$$

$$\mathbf{G}_0(n,k) = \bigwedge_k \mathbf{R}^n \cap \{ \boldsymbol{\xi} : \boldsymbol{\xi} \text{ simple }, |\boldsymbol{\xi}| = 1 \} \text{ oriented } k \text{-planes}$$
$$\{ F_0 : \mathbf{G}_0(n,k) \to \mathbf{R} : F_0(\boldsymbol{\xi}) = F_0(-\boldsymbol{\xi}) \} \simeq \{ F : \mathbf{G}(n,k) \to \mathbf{R} \}$$

Definition

 F_0 is called *extendibly (uniformly/strictly) convex* if there exists a (uniformly/strictly convex) norm Ψ on $\bigwedge_k \mathbf{R}^n$ such that

$$F_0 = \Psi | \mathbf{G}_0(n,k) \, .$$

(1) $F_0 \in AUE(\mathcal{P})$ iff. F_0 is extendibly uniformly convex only in case n - k = 1

(1) $F_0 \in AUE(\mathcal{P})$ iff. F_0 is extendibly uniformly convex only in case n - k = 1

(2) AUE(\mathcal{P}) is stable under \mathscr{C}^2 perturbations

- (1) $F_0 \in AUE(\mathcal{P})$ iff. F_0 is extendibly uniformly convex only in case n k = 1
- (2) AUE(\mathcal{P}) is stable under \mathscr{C}^2 perturbations
- (3) AUE(\mathcal{P}) is a convex cone

- (1) $F_0 \in AUE(\mathcal{P})$ iff. F_0 is extendibly uniformly convex only in case n k = 1
- (2) AUE(\mathcal{P}) is stable under \mathscr{C}^2 perturbations
- (3) AUE(\mathcal{P}) is a convex cone

- (1) $F_0 \in AUE(\mathcal{P})$ iff. F_0 is extendibly uniformly convex only in case n k = 1
- (2) AUE(\mathcal{P}) is stable under \mathscr{C}^2 perturbations
- (3) AUE(\mathcal{P}) is a convex cone
- (5) $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ a smooth diffeomorphism, $F \in AUE(\mathcal{P})$, then $\varphi^{\#}F \in AUE(\mathcal{P})$

- (1) $F_0 \in AUE(\mathcal{P})$ iff. F_0 is extendibly uniformly convex only in case n k = 1
- (2) AUE(\mathcal{P}) is stable under \mathscr{C}^2 perturbations
- (3) AUE(\mathcal{P}) is a convex cone
- (5) $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ a smooth diffeomorphism, $F \in AUE(\mathcal{P})$, then $\varphi^{\#}F \in AUE(\mathcal{P})$

- (1) $F_0 \in AUE(\mathcal{P})$ iff. F_0 is extendibly uniformly convex only in case n k = 1
- (2) AUE(\mathcal{P}) is stable under \mathscr{C}^2 perturbations
- $(\centcolor{3})$ AUE(\mathcal{P}) is a convex cone
- (5) $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ a smooth diffeomorphism, $F \in AUE(\mathcal{P})$, then $\varphi^{\#}F \in AUE(\mathcal{P})$

Federer's book 1969, §5.1.2

(6) if F_0 is extendibly uniformly convex, then $F_0 \in AUE(\mathcal{P}_Z)$ No counterpart for \mathcal{P}_{rect} in case n - k > 1

Almgren, Ann. of Math. 1968

- (1) $F_0 \in AUE(\mathcal{P})$ iff. F_0 is extendibly uniformly convex only in case n k = 1
- (2) AUE(\mathcal{P}) is stable under \mathscr{C}^2 perturbations
- $(\Im AUE(\mathcal{P})$ is a convex cone
- (5) $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ a smooth diffeomorphism, $F \in AUE(\mathcal{P})$, then $\varphi^{\#}F \in AUE(\mathcal{P})$

Federer's book 1969, §5.1.2

(6) if F_0 is extendibly uniformly convex, then $F_0 \in AUE(\mathcal{P}_Z)$

No counterpart for $\mathcal{P}_{\text{rect}}$ in case n - k > 1

Burago and Ivanov, GAFA 2004

⑦ F_0 ∈ semiAE($P_{\mathbf{R}}$) iff. F_0 is extendibly convex.

Almgren, Ann. of Math. 1968

- (1) $F_0 \in AUE(\mathcal{P})$ iff. F_0 is extendibly uniformly convex only in case n k = 1
- (2) AUE(\mathcal{P}) is stable under \mathscr{C}^2 perturbations
- $(\Im AUE(\mathcal{P})$ is a convex cone
- (5) $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ a smooth diffeomorphism, $F \in AUE(\mathcal{P})$, then $\varphi^{\#}F \in AUE(\mathcal{P})$

Federer's book 1969, §5.1.2

 \bigcirc if F_0 is extendibly uniformly convex, then $F_0 \in AUE(\mathcal{P}_{\mathbb{Z}})$

No counterpart for $\mathcal{P}_{\text{rect}}$ in case n - k > 1

Burago and Ivanov, GAFA 2004

⑦ F_0 ∈ semiAE($P_{\mathbf{R}}$) iff. F_0 is extendibly convex.

No counterpart for \mathcal{P}_Z

(1) F_{HT} may not be extendibly convex for some norms on \mathbb{R}^n [Busemann and Ewald and Shephard, Math. Ann. 1963]

(1) F_{HT} may not be extendibly convex for some norms on \mathbb{R}^n [Busemann and Ewald and Shephard, Math. Ann. 1963]

(2) F_{BH} is extendibly convex in case k = 2[Burago and Ivanov, GAFA 2012]

- (1) F_{HT} may not be extendibly convex for some norms on \mathbb{R}^n [Busemann and Ewald and Shephard, Math. Ann. 1963]
- (2) F_{BH} is extendibly convex in case k = 2[Burago and Ivanov, GAFA 2012]
- (3) F_{HT} ∈ semiAE($\mathcal{P}_{\text{immersed discs}}$) [Burago and Ivanov, Ann. of Math. 2002]

- (1) F_{HT} may not be extendibly convex for some norms on \mathbb{R}^n [Busemann and Ewald and Shephard, Math. Ann. 1963]
- (2) F_{BH} is extendibly convex in case k = 2[Burago and Ivanov, GAFA 2012]
- (3) F_{HT} ∈ semiAE($\mathcal{P}_{\text{immersed discs}}$) [Burago and Ivanov, Ann. of Math. 2002]
- (4) There exist a norm on \mathbb{R}^n , a 2-disc D, and a rational chain S (represented by an immersed disc) s.t. $\partial S = 10\partial D$ and $\Phi_{\mathrm{HT}}(S) < 10\Phi_{\mathrm{HT}}(D)$.

[Burago and Ivanov, Ann. of Math. 2002]

- (1) F_{HT} may not be extendibly convex for some norms on \mathbb{R}^n [Busemann and Ewald and Shephard, Math. Ann. 1963]
- (2) F_{BH} is extendibly convex in case k = 2[Burago and Ivanov, GAFA 2012]
- (3) F_{HT} ∈ semiAE($\mathcal{P}_{\text{immersed discs}}$) [Burago and Ivanov, Ann. of Math. 2002]
- (4) There exist a norm on \mathbb{R}^n , a 2-disc D, and a rational chain S (represented by an immersed disc) s.t. $\partial S = 10\partial D$ and $\Phi_{\mathrm{HT}}(S) < 10\Phi_{\mathrm{HT}}(D)$.

[Burago and Ivanov, Ann. of Math. 2002]

(5) There exist F : G₀(4, 2) → R₊ ∈ semiAE(P_Z) which is not extendibly convex.
 [Burago and Ivanov, GAFA 2004]

$\operatorname{End}(\mathbf{R}^n) = \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n), \quad \mathbf{G}(n,k) \subseteq \operatorname{End}(\mathbf{R}^n),$

 $\operatorname{End}(\mathbf{R}^n) = \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n), \quad \mathbf{G}(n, k) \subseteq \operatorname{End}(\mathbf{R}^n),$ $F : \operatorname{End}(\mathbf{R}^n) \to \mathbf{R} \quad \text{of class } \mathscr{C}^1, \quad F(\lambda A) = |\lambda|^k F(A) \text{ for } \lambda \in \mathbf{R},$ End(\mathbf{R}^n) = Hom(\mathbf{R}^n , \mathbf{R}^n), $\mathbf{G}(n,k) \subseteq$ End(\mathbf{R}^n), $F : \text{End}(\mathbf{R}^n) \to \mathbf{R}$ of class \mathscr{C}^1 , $F(\lambda A) = |\lambda|^k F(A)$ for $\lambda \in \mathbf{R}$, $\sigma(T)$ a projection onto Tan($\mathbf{R} \cdot \mathbf{G}(n,k), T$) \subseteq End(\mathbf{R}^n) $\operatorname{End}(\mathbf{R}^{n}) = \operatorname{Hom}(\mathbf{R}^{n}, \mathbf{R}^{n}), \quad \mathbf{G}(n, k) \subseteq \operatorname{End}(\mathbf{R}^{n}),$ $F : \operatorname{End}(\mathbf{R}^{n}) \to \mathbf{R} \quad \text{of class } \mathscr{C}^{1}, \quad F(\lambda A) = |\lambda|^{k} F(A) \text{ for } \lambda \in \mathbf{R},$ $\sigma(T) \text{ a projection onto } \operatorname{Tan}(\mathbf{R} \cdot \mathbf{G}(n, k), T) \subseteq \operatorname{End}(\mathbf{R}^{n})$ $B_{F}(T) = \sigma(T)^{\top} \operatorname{grad} F(T) \quad \text{for } T \in \mathbf{G}(n, k),$

$$\operatorname{End}(\mathbf{R}^{n}) = \operatorname{Hom}(\mathbf{R}^{n}, \mathbf{R}^{n}), \quad \mathbf{G}(n, k) \subseteq \operatorname{End}(\mathbf{R}^{n}),$$

$$F : \operatorname{End}(\mathbf{R}^{n}) \to \mathbf{R} \quad \text{of class } \mathscr{C}^{1}, \quad F(\lambda A) = |\lambda|^{k} F(A) \text{ for } \lambda \in \mathbf{R},$$

$$\sigma(T) \text{ a projection onto } \operatorname{Tan}(\mathbf{R} \cdot \mathbf{G}(n, k), T) \subseteq \operatorname{End}(\mathbf{R}^{n})$$

$$B_{F}(T) = \sigma(T)^{\top} \operatorname{grad} F(T) \quad \text{for } T \in \mathbf{G}(n, k),$$

$$P_{F}(T) = \frac{B_{F}(T)^{\top}}{F(T)}, \quad A_{F}(\mu) = \int P_{F} d\mu \in \operatorname{End}(\mathbf{R}^{n})$$

$$\operatorname{End}(\mathbf{R}^{n}) = \operatorname{Hom}(\mathbf{R}^{n}, \mathbf{R}^{n}), \quad \mathbf{G}(n, k) \subseteq \operatorname{End}(\mathbf{R}^{n}),$$

$$F : \operatorname{End}(\mathbf{R}^{n}) \to \mathbf{R} \quad \text{of class } \mathscr{C}^{1}, \quad F(\lambda A) = |\lambda|^{k} F(A) \text{ for } \lambda \in \mathbf{R},$$

$$\sigma(T) \text{ a projection onto } \operatorname{Tan}(\mathbf{R} \cdot \mathbf{G}(n, k), T) \subseteq \operatorname{End}(\mathbf{R}^{n})$$

$$B_{F}(T) = \sigma(T)^{\top} \operatorname{grad} F(T) \quad \text{for } T \in \mathbf{G}(n, k),$$

$$P_{F}(T) = \frac{B_{F}(T)^{\top}}{F(T)}, \quad A_{F}(\mu) = \int P_{F} d\mu \in \operatorname{End}(\mathbf{R}^{n})$$

De Philippis and De Rosa and Ghiraldin, CPAM 2018

$$F \in AC \quad \iff \quad \begin{array}{l} \forall \mu \in \operatorname{Prob}(\mathbf{G}(n,k)) \quad \dim \operatorname{im} A_F(\mu) \geq k \\ \text{and if } \dim \operatorname{im} A_F(\mu) = k, \text{ then } \mu \text{ is atomic} \end{array}$$

Theorem (De Philippis and De Rosa and Ghiraldin, CPAM 2018)

Let \mathcal{V} be the family of all k-dimensional varifolds in an open set $U \subseteq \mathbf{R}^n$ with positive lower density and total F-variation measure being Radon. Then $\mathcal{V} \subseteq \mathbf{RV}_k(U)$ iff. $F \in AC$.

In particular, all *F*-stationary *k*-varifold with positive density are rectifiable iff. $F \in AC$.

De Rosa and K., CPAM 2020

 $AC \subseteq AE(\mathcal{P}_{rect})$

De Rosa and K., CPAM 2020

$$AC \subseteq AE(\mathcal{P}_{rect})$$

De Philippis and De Rosa and Ghiraldin, CPAM 2018

In case n - k = 1, *F* is extendibly strictly convex iff. $F \in AC$

Def. *p* is an *extreme point* of *C* if *p* cannot be expressed as a non-trivial convex combination of other points of *C*.

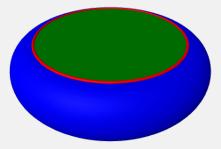
Def. *p* is an *extreme point* of *C* if *p* cannot be expressed as a non-trivial convex combination of other points of *C*.

Def. *p* is an *exposed point* of *C* if there exists a hyperplane $H \subseteq X$ such that $\{p\} = H \cap C$.

Def. *p* is an *extreme point* of *C* if *p* cannot be expressed as a non-trivial convex combination of other points of *C*.

Def. *p* is an *exposed point* of *C* if there exists a hyperplane $H \subseteq X$ such that $\{p\} = H \cap C$.

Fact. Exposed points form a dense subset of extreme points.



SŁAWEK KOLASIŃSKI "THE ATOMIC CONDITION IN VARIFOLD THEORY"

$\mathcal{G}_F = \operatorname{End}(\mathbf{R}^n) \cap \{P_F(T) : T \in \mathbf{G}(n,k)\}$ compact manifold

$$\mathcal{G}_F = \operatorname{End}(\mathbf{R}^n) \cap \{P_F(T) : T \in \mathbf{G}(n,k)\} \quad \text{compact manifold} \\ \operatorname{Rank}_{\leq}(k) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \dim \operatorname{im} A \leq k\}$$

Lemma. $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap Rank_{\leq}(k) = \mathcal{G}_F$.

$$\mathcal{G}_F = \operatorname{End}(\mathbf{R}^n) \cap \{P_F(T) : T \in \mathbf{G}(n,k)\} \quad \text{compact manifold} \\ \operatorname{Rank}_{\leq}(k) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \dim \operatorname{im} A \leq k\}$$

Lemma. $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap Rank_{\leq}(k) = \mathcal{G}_F$.

Proof. Note $\{A_F(\mu) : \mu \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F$.

Lemma. $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap Rank_{\leq}(k) = \mathcal{G}_F$.

Proof. Note $\{A_F(\mu) : \mu \in \text{Prob}(\mathbf{G}(n,k))\} = \text{conv } \mathcal{G}_F$. Let *E* be the set of extreme points of $C = \text{conv } \mathcal{G}_F$.

Lemma. $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap Rank_{\leq}(k) = \mathcal{G}_F$.

Proof. Note $\{A_F(\mu) : \mu \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F$. Let *E* be the set of extreme points of $C = \operatorname{conv} \mathcal{G}_F$. (\Rightarrow)

Lemma. $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap Rank_{\leq}(k) = \mathcal{G}_F$.

Proof. Note $\{A_F(\mu) : \mu \in \text{Prob}(\mathbf{G}(n,k))\} = \text{conv } \mathcal{G}_F$. Let *E* be the set of extreme points of $C = \text{conv } \mathcal{G}_F$.

(⇒) Assume *F* ∈ AC and for some *T* ∈ **G**(*n*,*k*) the map *P*_{*F*}(*T*) is a convex combination of some elements of \mathcal{G}_F .

Lemma. $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap Rank_{\leq}(k) = \mathcal{G}_F$.

Proof. Note $\{A_F(\mu) : \mu \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F$. Let *E* be the set of extreme points of $C = \operatorname{conv} \mathcal{G}_F$.

(⇒) Assume *F* ∈ AC and for some *T* ∈ **G**(*n*,*k*) the map *P*_{*F*}(*T*) is a convex combination of some elements of \mathcal{G}_F . Then there is $\mu \in \text{Prob}(\mathbf{G}(n,k))$ such that $P_F(T) = \int P_F d\mu$.

Lemma. $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap Rank_{\leq}(k) = \mathcal{G}_F$.

Proof. Note $\{A_F(\mu) : \mu \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F$. Let *E* be the set of extreme points of $C = \operatorname{conv} \mathcal{G}_F$.

(⇒) Assume *F* ∈ AC and for some *T* ∈ **G**(*n*,*k*) the map *P*_{*F*}(*T*) is a convex combination of some elements of \mathcal{G}_F . Then there is $\mu \in \operatorname{Prob}(\mathbf{G}(n,k))$ such that $P_F(T) = \int P_F d\mu$. Since dim im $P_F(T) = k$, AC ensures that $\mu = \operatorname{Dirac}(T)$.

Lemma. $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap Rank_{\leq}(k) = \mathcal{G}_F$.

Proof. Note $\{A_F(\mu) : \mu \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F$. Let *E* be the set of extreme points of $C = \operatorname{conv} \mathcal{G}_F$.

(⇒) Assume *F* ∈ AC and for some *T* ∈ **G**(*n*,*k*) the map *P_F*(*T*) is a convex combination of some elements of \mathcal{G}_F . Then there is $\mu \in \operatorname{Prob}(\mathbf{G}(n,k))$ such that $P_F(T) = \int P_F d\mu$. Since dim im $P_F(T) = k$, AC ensures that $\mu = \operatorname{Dirac}(T)$. Hence, $P_F(T)$ cannot be expressed as a non-trivial convex combination of other elements of \mathcal{G}_F and is an extreme point of *C*; thus, $\mathcal{G}_F \subseteq E$.

Lemma. $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap Rank_{\leq}(k) = \mathcal{G}_F$.

Proof. Note $\{A_F(\mu) : \mu \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F$. Let *E* be the set of extreme points of $C = \operatorname{conv} \mathcal{G}_F$.

(⇒) Assume $F \in AC$ and for some $T \in G(n,k)$ the map $P_F(T)$ is a convex combination of some elements of \mathcal{G}_F . Then there is $\mu \in \operatorname{Prob}(G(n,k))$ such that $P_F(T) = \int P_F d\mu$. Since dim im $P_F(T) = k$, AC ensures that $\mu = \operatorname{Dirac}(T)$. Hence, $P_F(T)$ cannot be expressed as a non-trivial convex combination of other elements of \mathcal{G}_F and is an extreme point of *C*; thus, $\mathcal{G}_F \subseteq E$. Clearly *C* is generated by \mathcal{G}_F and *E* is the smallest set of generators for *C* so $E \subseteq \mathcal{G}_F$.

Lemma. $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap Rank_{\leq}(k) = \mathcal{G}_F$.

Proof. Note $\{A_F(\mu) : \mu \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F$. Let *E* be the set of extreme points of $C = \operatorname{conv} \mathcal{G}_F$.

 (\Rightarrow) Assume $F \in AC$ and for some $T \in \mathbf{G}(n,k)$ the map $P_F(T)$ is a convex combination of some elements of \mathcal{G}_F . Then there is $\mu \in \operatorname{Prob}(\mathbf{G}(n,k))$ such that $P_F(T) = \int P_F d\mu$. Since dim im $P_F(T) = k$, AC ensures that $\mu = \text{Dirac}(T)$. Hence, $P_F(T)$ cannot be expressed as a non-trivial convex combination of other elements of \mathcal{G}_F and is an extreme point of *C*; thus, $\mathcal{G}_F \subseteq E$. Clearly *C* is generated by G_F and *E* is the smallest set of generators for *C* so $E \subseteq \mathcal{G}_F$. If $A \in C \cap \text{Rank}_{\leq}(k)$, then $A = A_F(\mu)$ for some $\mu \in \text{Prob}(\mathbf{G}(n, k))$ and AC yields $T \in \mathbf{G}(n,k)$ s.t. $\mu = \text{Dirac}(T)$; thus $A = P_F(T) \in \mathcal{G}_F$.

 $\mathcal{G}_F = \operatorname{End}(\mathbf{R}^n) \cap \{P_F(T) : T \in \mathbf{G}(n,k)\} \quad \text{compact manifold} \\ \operatorname{Rank}_{\leq}(k) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \dim \operatorname{im} A \leq k\} \\ \text{Lemma. } F \in \operatorname{AC} \text{ iff. } \mathcal{G}_F \text{ is the set of extreme points of conv } \mathcal{G}_F \\ \text{and conv } \mathcal{G}_F \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F. \\ \text{Proof. Note } \{A_F(\mu) : \mu \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F. \text{ Let } E \text{ be the set of extreme points of } C = \operatorname{conv} \mathcal{G}_F. \\ (\Leftarrow)$

 $\mathcal{G}_F = \operatorname{End}(\mathbf{R}^n) \cap \{P_F(T) : T \in \mathbf{G}(n,k)\} \text{ compact manifold} \\ \operatorname{Rank}_{\leq}(k) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \dim \operatorname{im} A \leq k\} \\ \text{Lemma. } F \in \operatorname{AC} \text{ iff. } \mathcal{G}_F \text{ is the set of extreme points of conv } \mathcal{G}_F \\ \text{and conv } \mathcal{G}_F \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F. \\ \text{Proof. Note } \{A_F(\mu) : \mu \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F. \text{ Let } E \text{ be the set of extreme points of } C = \operatorname{conv} \mathcal{G}_F. \\ (\Leftarrow) \text{ Assume } \mathcal{G}_F = E \text{ and } C \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F. \text{ Fix } \\ \mu \in \operatorname{Prob}(\mathbf{G}(n,k)). \end{cases}$

 $\mathcal{G}_F = \operatorname{End}(\mathbf{R}^n) \cap \{P_F(T) : T \in \mathbf{G}(n,k)\} \text{ compact manifold} \\ \operatorname{Rank}_{\leq}(k) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \dim \operatorname{im} A \leq k\} \\ \text{Lemma. } F \in \operatorname{AC} \text{ iff. } \mathcal{G}_F \text{ is the set of extreme points of conv } \mathcal{G}_F \\ \text{and conv } \mathcal{G}_F \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F. \\ \text{Proof. Note } \{A_F(\mu) : \mu \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F. \text{ Let } E \text{ be the set of extreme points of } C = \operatorname{conv} \mathcal{G}_F. \\ (\Leftarrow) \text{ Assume } \mathcal{G}_F = E \text{ and } C \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F. \text{ Fix } \\ \mu \in \operatorname{Prob}(\mathbf{G}(n,k)). \text{ Clearly } A_F(\mu) \in C. \end{cases}$

 $\mathcal{G}_F = \operatorname{End}(\mathbf{R}^n) \cap \{P_F(T) : T \in \mathbf{G}(n,k)\}$ compact manifold $\operatorname{Rank}_{<}(k) = \operatorname{End}(\mathbf{R}^{n}) \cap \{A : \dim \operatorname{im} A \leq k\}$ **Lemma.** $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap \operatorname{Rank}_{<}(k) = \mathcal{G}_F$. **Proof.** Note $\{A_F(u) : u \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F$. Let *E* be the set of extreme points of $C = \operatorname{conv} \mathcal{G}_F$. (\Leftarrow) Assume $\mathcal{G}_F = E$ and $C \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F$. Fix $\mu \in \operatorname{Prob}(\mathbf{G}(n,k))$. Clearly $A_F(\mu) \in C$. If dim im $A_F(\mu) < k$, then $A_F(\mu) \in \operatorname{Rank}_{\leq}(k) \cap C$; hence, $A_F(\mu) = P_F(T)$ for some $T \in \mathbf{G}(n,k).$

 $\mathcal{G}_F = \operatorname{End}(\mathbf{R}^n) \cap \{P_F(T) : T \in \mathbf{G}(n,k)\}$ compact manifold $\operatorname{Rank}_{<}(k) = \operatorname{End}(\mathbf{R}^{n}) \cap \{A : \dim \operatorname{im} A \leq k\}$ **Lemma.** $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and conv $\mathcal{G}_F \cap \operatorname{Rank}_{<}(k) = \mathcal{G}_F$. **Proof.** Note $\{A_F(u) : u \in \operatorname{Prob}(\mathbf{G}(n,k))\} = \operatorname{conv} \mathcal{G}_F$. Let *E* be the set of extreme points of $C = \operatorname{conv} \mathcal{G}_F$. (\Leftarrow) Assume $\mathcal{G}_F = E$ and $C \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F$. Fix $\mu \in \operatorname{Prob}(\mathbf{G}(n,k))$. Clearly $A_F(\mu) \in C$. If dim im $A_F(\mu) < k$, then $A_F(\mu) \in \text{Rank}_{<}(k) \cap C$; hence, $A_F(\mu) = P_F(T)$ for some $T \in \mathbf{G}(n,k)$. Since $P_F(T)$ is an extreme point of *C* we see that $\mu = \text{Dirac}(T).$

$$Q_F(T) = \mathrm{id}_{\mathbf{R}^n} - P_F(T)$$

De Rosa and Tione, Invent. Math. 2022

Def. $F \in SAC$ (scalar atomic condition) if

 $P_F(T) \bullet Q_F(S)^{\top} > 0$ for $S, T \in \mathbf{G}(n,k)$ with $S \neq T$

$$Q_F(T) = \mathrm{id}_{\mathbf{R}^n} - P_F(T)$$

De Rosa and Tione, Invent. Math. 2022

Def. $F \in SAC$ (scalar atomic condition) if

 $P_F(T) \bullet Q_F(S)^{\top} > 0$ for $S, T \in \mathbf{G}(n,k)$ with $S \neq T$

Def. $F \in$ USAC (*uniform scalar atomic condition*) if

$$P_F(T) \bullet Q_F(S)^{\top} \ge \Delta ||S - T||^2 \text{ for } S, T \in \mathbf{G}(n,k)$$

$$Q_F(T) = \mathrm{id}_{\mathbf{R}^n} - P_F(T)$$

De Rosa and Tione, Invent. Math. 2022

Def. $F \in SAC$ (*scalar atomic condition*) if

 $P_F(T) \bullet Q_F(S)^{\top} > 0$ for $S, T \in \mathbf{G}(n,k)$ with $S \neq T$

Def. $F \in$ USAC (*uniform scalar atomic condition*) if

$$P_F(T) \bullet Q_F(S)^{\top} \ge \Delta ||S - T||^2 \text{ for } S, T \in \mathbf{G}(n,k)$$

Note. $F \in SAC$ iff.

$$\mathcal{G}_F \subseteq H(S) = \operatorname{End}(\mathbf{R}^n) \cap \{A : A \bullet Q_F(S)^\top \ge 0\}$$

and $\partial H(S) \cap \mathcal{G}_F = \{P_F(S)\}$

In particular, $P_F(S)$ is an exposed point of conv G_F

$I(S) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \operatorname{im} A \subseteq \operatorname{im} S\} \text{ for } S \in \mathbf{G}(n,k)$

$$I(S) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \operatorname{im} A \subseteq \operatorname{im} S\} \quad \text{for } S \in \mathbf{G}(n,k)$$

 $F \in AC \iff \mathcal{G}_F$ is the set of extreme points of $\operatorname{conv} \mathcal{G}_F$ and $\operatorname{conv} \mathcal{G}_F \cap \operatorname{Rank}_<(k) = \mathcal{G}_F$.

$$I(S) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \operatorname{im} A \subseteq \operatorname{im} S\} \text{ for } S \in \mathbf{G}(n,k)$$

 $F \in AC \iff \mathcal{G}_F$ is the set of extreme points of $\operatorname{conv} \mathcal{G}_F$ and $\operatorname{conv} \mathcal{G}_F \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F$.

$$F \in \mathsf{mSAC} \iff \mathcal{G}_F \text{ is the set of exposed points of conv } \mathcal{G}_F \\ and \operatorname{conv} \mathcal{G}_F \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F.$$

$$\Rightarrow \quad \text{for each } S \in \mathbf{G}(n,k) \text{ there is } N(S) \in I(S)^{\perp}$$

s.t. $P_F(T) \bullet N(S) > 0 \text{ for } S \neq T \in \mathbf{G}(n,k)$

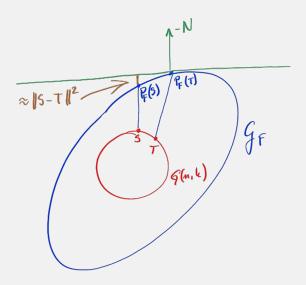
$$I(S) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \operatorname{im} A \subseteq \operatorname{im} S\} \quad \text{for } S \in \mathbf{G}(n,k)$$

 $F \in AC \iff \mathcal{G}_F$ is the set of extreme points of $\operatorname{conv} \mathcal{G}_F$ and $\operatorname{conv} \mathcal{G}_F \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F$.

$$F \in \mathsf{mSAC} \iff \mathcal{G}_F \text{ is the set of exposed points of conv } \mathcal{G}_F \\ and \operatorname{conv} \mathcal{G}_F \cap \operatorname{Rank}_{\leq}(k) = \mathcal{G}_F.$$

$$\iff \qquad \begin{array}{l} \text{for each } S \in \mathbf{G}(n,k) \text{ there is } N(S) \in I(S)^{\perp} \\ \text{s.t. } P_F(T) \bullet N(S) > 0 \text{ for } S \neq T \in \mathbf{G}(n,k) \end{array}$$

 $F \in mUSAC$ analogously



$$I(S) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \operatorname{im} A \subseteq \operatorname{im} S\} \quad \text{for } S \in \mathbf{G}(n,k)$$
$$H(A) = \operatorname{End}(\mathbf{R}^n) \cap \{B : B \bullet A \ge 0\} \quad \text{for } A \in \operatorname{End}(\mathbf{R}^n)$$

$$I(S) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \operatorname{im} A \subseteq \operatorname{im} S\} \quad \text{for } S \in \mathbf{G}(n,k)$$
$$H(A) = \operatorname{End}(\mathbf{R}^n) \cap \{B : B \bullet A \ge 0\} \quad \text{for } A \in \operatorname{End}(\mathbf{R}^n)$$

Def. $F \in \text{mSAC iff.}$ for each $S \in \mathbf{G}(n,k)$ there is $N(S) \in I(S)^{\perp}$ s.t. $P_F(T) \bullet N(S) > 0$ for $S \neq T \in \mathbf{G}(n,k)$.

$$I(S) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \operatorname{im} A \subseteq \operatorname{im} S\} \quad \text{for } S \in \mathbf{G}(n,k)$$
$$H(A) = \operatorname{End}(\mathbf{R}^n) \cap \{B : B \bullet A \ge 0\} \quad \text{for } A \in \operatorname{End}(\mathbf{R}^n)$$

Def. $F \in \text{mSAC}$ iff. for each $S \in \mathbf{G}(n,k)$ there is $N(S) \in I(S)^{\perp}$ s.t. $P_F(T) \bullet N(S) > 0$ for $S \neq T \in \mathbf{G}(n,k)$. **Def.** $F \in \text{SAC}$ iff. $N(S) = Q_F(S)^{\top} = \text{id}_{\mathbf{R}^n} - P_F(S)^{\top}$ for $S \neq T \in \mathbf{G}(n,k)$.

$$I(S) = \operatorname{End}(\mathbf{R}^n) \cap \{A : \operatorname{im} A \subseteq \operatorname{im} S\} \quad \text{for } S \in \mathbf{G}(n,k)$$
$$H(A) = \operatorname{End}(\mathbf{R}^n) \cap \{B : B \bullet A \ge 0\} \quad \text{for } A \in \operatorname{End}(\mathbf{R}^n)$$

Def. $F \in \text{mSAC}$ iff. for each $S \in \mathbf{G}(n,k)$ there is $N(S) \in I(S)^{\perp}$ s.t. $P_F(T) \bullet N(S) > 0$ for $S \neq T \in \mathbf{G}(n,k)$. **Def.** $F \in \text{SAC}$ iff. $N(S) = Q_F(S)^{\top} = \text{id}_{\mathbf{R}^n} - P_F(S)^{\top}$ for $S \neq T \in \mathbf{G}(n,k)$.

Note.

$$Q_F(S)^{\top} \in I(S)^{\perp}$$
$$K = \bigcap \{ H(N(S)) : S \in \mathbf{G}(n,k) \} = \operatorname{cone} \mathcal{G}_F$$
$$K^{\circ} = \operatorname{cone} \{ N(S) : S \in \mathbf{G}(n,k) \}$$

 $\mathcal{G} = \{ P(S) : S \in \mathbf{G}(n,k) \} \text{ and } \mathcal{G}^* = \{ N(S) : S \in \mathbf{G}(n,k) \}$

ensuring that

 $\mathcal{G} = \{ P(S) : S \in \mathbf{G}(n,k) \} \text{ and } \mathcal{G}^* = \{ N(S) : S \in \mathbf{G}(n,k) \}$

ensuring that

(1) \mathcal{G} is the set of extreme points of conv \mathcal{G}

 $\mathcal{G} = \{ P(S) : S \in \mathbf{G}(n,k) \}$ and $\mathcal{G}^* = \{ N(S) : S \in \mathbf{G}(n,k) \}$

ensuring that

(1) \mathcal{G} is the set of extreme points of conv \mathcal{G}

(2) \mathcal{G}^* is the set of extreme points of conv \mathcal{G}^*

 $\mathcal{G} = \{ P(S) : S \in \mathbf{G}(n,k) \}$ and $\mathcal{G}^* = \{ N(S) : S \in \mathbf{G}(n,k) \}$

ensuring that

(1) \mathcal{G} is the set of extreme points of conv \mathcal{G}

- (2) \mathcal{G}^* is the set of extreme points of conv \mathcal{G}^*
- (3) $K = \operatorname{cone} \mathcal{G}$ is polar to the cone $\mathcal{G}^* = K^\circ$

 $\mathcal{G} = \{ P(S) : S \in \mathbf{G}(n,k) \}$ and $\mathcal{G}^* = \{ N(S) : S \in \mathbf{G}(n,k) \}$

ensuring that

(1) \mathcal{G} is the set of extreme points of conv \mathcal{G}

(2) \mathcal{G}^* is the set of extreme points of conv \mathcal{G}^*

(3) $K = \operatorname{cone} \mathcal{G}$ is polar to the cone $\mathcal{G}^* = K^\circ$

(4) P(S) is a projection onto S

 $\mathcal{G} = \{ P(S) : S \in \mathbf{G}(n,k) \}$ and $\mathcal{G}^* = \{ N(S) : S \in \mathbf{G}(n,k) \}$

ensuring that

(1) G is the set of extreme points of conv G

(2) \mathcal{G}^* is the set of extreme points of conv \mathcal{G}^*

(3) $K = \operatorname{cone} \mathcal{G}$ is polar to the cone $\mathcal{G}^* = K^\circ$

(4)
$$P(S)$$
 is a projection onto S

$$(5) N(S) \perp I(S)$$

 $\mathcal{G} = \{ P(S) : S \in \mathbf{G}(n,k) \}$ and $\mathcal{G}^* = \{ N(S) : S \in \mathbf{G}(n,k) \}$

ensuring that

(1) G is the set of extreme points of conv G

(2) \mathcal{G}^* is the set of extreme points of conv \mathcal{G}^*

(3) $K = \operatorname{cone} \mathcal{G}$ is polar to the cone $\mathcal{G}^* = K^\circ$

(4)
$$P(S)$$
 is a projection onto S

$$(5) N(S) \perp I(S)$$

 $\mathcal{G} = \{ P(S) : S \in \mathbf{G}(n,k) \}$ and $\mathcal{G}^* = \{ N(S) : S \in \mathbf{G}(n,k) \}$

ensuring that

(1) G is the set of extreme points of conv G

(2) \mathcal{G}^* is the set of extreme points of conv \mathcal{G}^*

(3) $K = \operatorname{cone} \mathcal{G}$ is polar to the cone $\mathcal{G}^* = K^\circ$

(4)
$$P(S)$$
 is a projection onto S

$$\bigcirc$$
 N(S) $\perp I(S)$

After that

(6) Recover *F* such that $\mathcal{G} = \mathcal{G}_F$

Thank you.