Topology from differentiable viewpoint. Exercises 6

SJ

22 maja 2014

- **Zad. 1** (BJ 9.6.1). Let M be a connected manifold with $\dim(M) > 1$. Let $\{x_1, \ldots x_k\}$ be distinct points of M, and let $\{y_1, \ldots y_k\}$ also be distinct points of M. Show that there exists a diffeomorphism (with compact support) $\phi \colon M \to M$ such that $\phi(x_i) = y_i$ for $i = 1, \ldots k$.
- **Zad. 2** (BJ 9.6.2). Let $M \subset N$ be a submanifold of the connected manifold N such that dim N dim $M \geqslant 2$, and $p,q \in N \setminus M$. Show that there exists a diffeomorphism $h \colon N \to N = \text{such that } h(p) = q$ and h|N = id.
- **Zad. 3** (BJ 10.11.1). Let M be an oriented connected manifold, $p,q \in M$ and $\phi: TM_p \to TM_q$ an orientation preserving isomorphism. Show that there exists a diffeomorphism $f: M \to M$ such that f(p) = q and $Df_p = \phi$.
- **Zad. 4.** Prove that a smooth manifold is orientable if and only if the normal bundle to any immersion (embedding) $f: S^1 \to M$ is trivial.
- **Zad. 5.** Let $p: E \to M$ be a smooth vector bundle. Prove that the zero section $s_0: M \to E$ is an embedding and the normal bundle $\nu(M, E)$ is isomorphic to $p: E \to M$.
- **Zad. 6** (BJ 11.7.1,2). Let $p: E \to M$ be a smooth vector bundle and $Dp: TE \to TM$ be its derivative. We identify $M = s_0(M)$. Prove that $(Dp)|M: (TE)|M \to TM$ is an epimorphism of vector bundles and $\ker(Dp)|M$ is isomorphic to the bundle $p: E \to M$.
- **Zad.** 7 (BJ 11.7.2). Let $p: E \to M$ be a smooth vector bundle. Prove that $TE \simeq p^*(E \oplus TM)$.
- **Zad. 8.** Prove that any vector bundle over the real line \mathbb{R} (or more general \mathbb{R}^n) is trivial.
- **Zad. 9.** Prove that for any manifold M the normal bundle to the diagonal $\Delta_M \subset M \times M$ is isomorphic to the tangent bundle $TM \to M$.
- **Zad. 10.** Prove that if M is a connected non-compact manifold then there exists an embedding $j : \mathbb{R} \to M$ such that $j(\mathbb{R})$ is a closed subset.