Topology from differentiable viewpoint. Exercises 4

SJ

9 kwietnia 2014

- **Zad. 1** (1300F, Ass. 2). Let K, K' be transverse submanifolds of codimension k, k' in the n-manifold M. Prove that each point $p \in K \cap K'$ has a neighbourhood $U \subset M$ and a diffeomorphism from U to a neighbourhood of the origin in \mathbb{R}^n which takes K and K' to the coordinate planes $V(x_1, \ldots, x_k)$ and $V(x_{n-k'+1}, \ldots, x_n)$, respectively. It is useful to use the algebraic geometry notation $V(x^1, \ldots, x^k)$ to mean the "vanishing" subspace $x^1 = \cdots = x^k = 0$.
- **Zad. 2** (1300F, Ass. 3). Let K, L be submanifolds of a manifold M, and suppose that their intersection $K \cap L$ is also a submanifold. Then K, L are said to have *clean* intersection when, for each $p \in K \cap L$, we have $T_p(K \cap L) = T_pK \cap T_pL$. Show that there are coordinates near $p \in K \cap L$ such that K, L, and $K \cap L$ are given by linear subspaces of \mathbb{R}^n of the form $V(x^{i_1}, \ldots, x^{i_k})$ for some subset of the coordinates. Also, can the intersection of submanifolds be transverse but not clean? Can it be clean but not transverse? Give examples or proofs as necessary.
- **Zad. 3.** For a smooth map $f: M \to N$ we define its graph $\Gamma(f) := \{(x, f(x)) \in M \times N \mid x \in M\}$. Prove that $\Gamma(f)$ is a submanifold and its tangent space $T\Gamma_{(x,f(x))} \subset T(M_x \times N_{f(x)}) = TM_x \times TN_{f(x)}$ coincides with the graph of the derivative Df_x .
- **Zad. 4.** A smooth manifold is called *paralelizable* iff its tangent bundle is trivial. Prove that any Lie group is a paralelizable manifold.
- **Zad. 5.** For any vector bundle $p: E \to B$ define its orientation bundle $p_{or}: E_{or} \to B$ such that $p_{or}^{-1}(b) = \{\text{orientations of } p^{-1}(b)\}$. Define a topology in E_{or} such that p_{or} is a double covering and its sections correspond to orientations of the bundle $p: E \to B$. (In particular p is orientable iff the covering p is trivial.)
- **Zad. 6.** Prove that a smooth submanifold $M^{m-1} \subset \mathbb{R}^m$ of codimension 1 is orientable if and only if it admits a non vanishing normal vector field i.e. there exists a map $\mathfrak{n}: M \to \mathbb{R}^{n-1}$ such that for all $x \in M$, $\mathfrak{n}(x) \neq 0$ and $\mathfrak{n}(x) \perp TM_x$. Deduce that the (generalized) Möbius band, real projective space of even dimension, Klein bottle are not orientable. Identify their orientation bundles as covering spaces.
- **Zad. 7.** Let $E(\gamma_n^1) \to \mathbb{R}P(n)$ will be the canonical bundle over the projective space. Prove that the one point compactification of its total space $E(\gamma_n^1)^+$ is homeomorphic to $\mathbb{R}P(n+1)$.
- **Zad. 8.** For a smooth submanifold $M^m \subset \mathbb{R}^n$ define $E_{\nu}(M) := \{(x, \mathbf{v}) \in M \times \mathbb{R}^n \mid \mathbf{v} \perp TM_x\}$ and the map $p(x, \mathbf{v}) = x$. Prove that $p : E_{\nu}(M) \to M$ is a locally trivial n m-dimensional vector bundle (called a normal bundle) and $TM \oplus E_{\nu}(M)$ is a trivial bundle.
- **Zad. 9.** For a smooth submanifold $M^m \subset \mathbb{R}^n$ define a map $E_{\nu}(M) \ni (x, \mathbf{v}) \mapsto x + \mathbf{v} \in \mathbb{R}^n$. Prove that if M is compact then there exists $\delta > 0$ such that the map is a diffeomorphism for $||\mathbf{v}|| < \delta$. (Image of $E_{\nu}(M)_{\delta}$ is called a tubular neighborhood of M in \mathbb{R}^n .)
- **Zad. 10.** If $(M, \partial M)$ is a submanifold with boundary of \mathbb{R}^n then there exists a non-vanishing vector field normal to the boundary i.e. $\mathfrak{n} \colon \partial M \to \mathbb{R}^n$ such that for all $x \in \partial M$, $\mathfrak{n}(x) \neq 0$ and $\mathfrak{n}(x) \perp T \partial M_x$. Deduce that ∂M possesses a collar neighborhood i.e. diffeomorphic to $\partial M \times \mathbb{R}^n_{>0}$.