Topology from differentiable viewpoint. Exercises 3

21 marca 2014

- **Zad. 1** (BJ¹ 1.11.4 Generalized. Cf also MG² Oct.3). Let M be a differentiable manifold and a discrete group G acts on M via diffeorphisms. Furthermore assume that the projection to the orbit space $p \colon M \to M/G$ is a covering space. Prove that M/G possesses a structure of a smooth manifold such that p is a local homemomorphism.
- **Zad. 2** (BJ 1.11.15). Let $\mathbb{K} := \mathbb{R}, \mathbb{C}, \mathbb{H}$. The points of the projective space $\mathbb{K}P(n)$ are described by the homogeneous coordinates $x = [x_0; \dots, x_n]$. Show that the mapping $f : \mathbb{K}P(n) \times \mathbb{K}P(m) \to \mathbb{K}P(mn + m+n)$, $f([x_0; \dots, x_n], [y_0; \dots, y_n]) := [x_0y_0; x_0, y_1, \dots; x_iy_j, \dots; x_ny_n]$ is a smooth embedding. (It is known in algebraic geometry and the Veronese embedding).
- **Zad. 3** (BJ 1.11.16). Let \mathbf{V}, \mathbf{W} be finite dimensional vector spaces over a field $\mathbb{K} := \mathbb{R}, \mathbb{C}, \mathbb{H}$ and $\operatorname{Hom}_{\mathbb{K}}(\mathbf{V}, \mathbf{W})$ denote the space of homomorphisms. Prove that for a given natural number $r \leq \min\{\dim \mathbf{V}, \dim \mathbf{W}\}$ the subset $\operatorname{Hom}_{\mathbb{K}}^r(\mathbf{V}, \mathbf{W}) \subset \operatorname{Hom}_{\mathbb{K}}(\mathbf{V}, \mathbf{W})$ consisting of all operators of rank r is a submanifold. Compute its dimension. Note that if $r = \dim \mathbf{V}$ then $\operatorname{Hom}_{\mathbb{K}}^r(\mathbf{V}, \mathbf{W})$ is the non-compact Stiefel manifold.
- **Zad. 4** (BJ 3.23.2). Let $\pi \colon E \to X$ be a vector bundle over a connected space and $f \colon E \to E$ a bundle homomorphism such that $f^2 = f$ (i.e. a projection on each fiber) Show that f has a constant rank. (Thus im f and ker f are sub bundles such that $E := \operatorname{im} f \oplus \ker f$.)
- **Zad. 5** (BJ 3.23.3). Let $\pi: E \to X$ be a vector bundle and $f: E \to E$ a bundle homomorphism such that $f^2 = id$ (i.e. group \mathbb{Z}_2 acts on E). Show that restriction of p to the fixed point set $\operatorname{Fix}(f) := \{e \in E \mid f(e) = e\} \subset E$ is a subbundle of $p: E \to X$. (Generalize the statement to an arbitrary group action on $p: E \to X$.)
- **Zad. 6** (BJ 5.14.4). Let A be a symmetric $(n \times n)$ -matrix, and $0 \neq b \in \mathbb{R}$. Show that the quadric $M := \{x \in \mathbb{R}^n \mid {}^t X A x = b\}$ is an n-1-dimensional submaniold of \mathbb{R}^n .
- $\mathbf{Zad.}$ 7 (BJ 5.14.5). Brieskorn manifold
- Zad. 8 (BJ 5.14.6). Milnor manifolds
- Zad. 9 (BJ 5.14.10). Local form of a smooth retraction.

¹Th. Bröcker, K. Jäinch "Introduction to differential topology".

²M. Gualtieri "Geometry and Topology 1300Y"