## Topology from differentiable viewpoint. Excersises 2

## 13 marca 2014

**Definition.** Let  $f: S^r \longrightarrow M \setminus \partial M$  be an embedding of an r-dimensional sphere into an interior of a manifold with boundary  $(M, \partial M)$  of dimension n > r which extends to an embedding  $f: S^r \times D^{n-r}_{\epsilon} \longrightarrow M$ , where  $D^k_{\epsilon} \subset \mathbb{R}^k$  is a k-dimensional closed disc of diameter  $1 + \epsilon$  where  $\epsilon > 0$ . We construct a manifold  $M_f$  in the following way:

- a) Consider  $M' := M \setminus f(S^r \times \mathring{D}^{n-r}),$
- b) The boundary of  $M' := M \setminus f(S^r \times \mathring{D}^{n-r})$  is diffeomorphic via f to

$$\partial(S^r \times D^{n-r}) = S^r \times S^{n-r-1} = \partial(D^{r+1} \times S^{n-r-1}),$$

c)  $M_f := (D^{r+1} \times S^{n-r-1}) \cup_f M'$ .

Wa say that the manifold  $M_f$  is obtained from M by a surgery along f. (cf. Wiki Surgery Theory)

- **Zad. 1.** Check that  $M_f$  is a manifold and  $\partial M_f = \partial M$ .
- **Zad. 2.** Assume M is a manifold without boundary. Construct a bordism  $W_f$  between  $M_f$  a M (called *trace* of the surgery) which is homotopy equivalent to  $M \cup_f D^{r+1}$ . (Recall that a bordism between n-dimensional manifolds  $M_1, M_2$  is an n+1-dimensional manifold with boundary  $(W, \partial W)$  such that  $\partial W \simeq M_1 \coprod M_2$ .)
- **Zad. 3.** Prove that M can be obtained via a surgery from  $M_f$  and (if  $\partial M = \emptyset$ ) the trace of the surgery is  $W_f$ .
- **Zad. 4.** Consider examples of surgery in low dimensions.
- **Zad. 5.** Note that the connected sum of two n-dimensional manifolds  $M_1 \# M_2$  can be defined as a result of a surgery on the disjoint sum  $M_1 \sqcup M_2$ , thus  $M_1 \# M_2$  and  $M_1 \sqcup M_2$  are bordant.
- **Zad. 6.** Formulate and prove the Morse lemma. cf. J. Milnor "Morse Theory" and Brian Conrad Stanford handout
- Zad. 7. Solve problems 1,3, 5, 7 and 8 from 50 zadań z K-teorii (in English)
- **Zad. 8.** Prove that the tangent bundle to the Grassmann manifold  $G_k(\mathbb{R}^n)$  is isomorphic to the bundle  $\operatorname{Hom}(\gamma, \gamma^{\perp})$  where  $\gamma$  denotes the canonical bundle and  $\gamma \oplus \gamma^{\perp}$  is a trivial bundle of dimension n.