
SIE – Intelligent Web Proxy Framework

Grzegorz Andruszkiewicz
g.andruszkiewicz@

students.mimuw.edu.pl

Marcin Gozdalik
m.gozdalik@

students.mimuw.edu.pl

Cezary Kaliszyk
c.kaliszyk@

students.mimuw.edu.pl

Mateusz Srebrny
m.srebrny@

students.mimuw.edu.pl
Institute of Informatics

Warsaw University
Banacha 2, 02-097 Warsaw, Poland

ABSTRACT
In this paper we would like to present and describeSIE, a transpar-
ent, intelligent Web proxy framework. Its aim is to provide efficient
and robust platform for implementing various ideas in broad area
of Web Mining. It enables the programmer to easily and quickly
write modules that improve pages on that site according to personal
characteristics of the particular user.SIEprovides many features in-
cluding user identification, logging of users’ sessions, handling all
necessary protocols, etc.SIE is implemented in OCaml – a func-
tional programming language – and has been released on GPL.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information Storage and Retrieval—
On-line Information Services

General Terms
Intelligent Web proxy framework

Keywords
SIE, Adaptive Web, WWW, proxy

1. INTRODUCTION
We live in the era of information. The rapid development of com-

puter and communication technologies enabled people to quickly
exchange data at a low cost. Probably the most popular source of
information is the Internet, and the most commonly used service
is WWW. HTML pages are a universal way of publicizing knowl-
edge, but it is very difficult to find the exact piece of information
we are looking for.

In our paper we would like to focus on one given Web site, con-
taining various pages. The webmaster always tries to optimize the
structure of the service in order to help users navigate. But differ-
ent users have different preferences. When reading a page one user
may next want to see page X, another one page Y, etc. When typing
a keyword into the search engine, e.g. “chaos”, one user wants to
read about mythology, another one about fractals, and so on. Some-
times a user does not know which page exactly she is looking for,

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, NY USA.
ACM xxx.xxx.

because she had not visited it yet. One static structure will not fully
satisfy all users’ needs.

That is whydynamic page personalizationis so important. It
is often possible to predict the interests of the user, analyzing for
example the history of her choices. In this case it would probably
be helpful for the user if she was provided, on the page she is cur-
rently using, with the most important links. It may be even more
useful if she had some links to pages similar to the current page to
minimize time spent on searching. Of course the better the algo-
rithms topredict interestsand tofind similar pagesthe better the
page personalization process.

The main problem with algorithms which try to understand hu-
man behavior and predict users’ actions is that it is extremely dif-
ficult to develop them only theoretically. Humans are often irra-
tional and their language is ambiguous. On many pages consid-
erable amount of information is not only in written words but in
pictures, animations or even sounds and these are still nearly im-
possible to analyze automatically. That is why most algorithms are
heuristics based on empirical experiments and developed through
testing. To advance the level of research in this field, scientists
need to have possibility to test their algorithms and to tune their
parameters quickly and cheaply.

Having made this observation we have decided to create a sim-
ple, yet powerful framework for constructing intelligent Web prox-
ies. We called itSIE– Site Improving Engineand we wanted it not
to be limited to personalizing alone – hence “Improving” and not
“Personalizing”.SIErelieves module writers from re-implementing
user identification, network protocols handling, collection of statis-
tics, etc. SIE gives users the opportunity to focus on the concept
alone and enables them to quickly and comfortably write a new
testing module.

In addition we include a few interesting modules showing the
variety ofSIE features.

It is worth mentioning thatSIE and the modules are written ex-
clusively in OCaml functional language. It gives the program-
mer many interesting possibilities characteristic for functional lan-
guages and provides very good performance.SIEhas been released
on GPL. Sources can be found athttp://sie.mimuw.edu.
pl .

2. SOLUTION
We would like to present a framework supporting programmers

http://sie.mimuw.edu.pl
http://sie.mimuw.edu.pl


in creating, changing, testing and fine-tuning intelligent Web prox-
ies – including Adaptive Web systems. Our system –SIE– imple-
ments basic features, crucial for intelligent Web proxy to function
properly. In this section we will mention all these features and in
the next one we will present related work. Further we will discuss
the architecture of the system. Then we will present already imple-
mented modules, their functionality, some theoretical analysis and
the way they are integrated with theSIE framework. In the last two
sections we will discuss possibilities of further development and
summarize the paper.

SIEis implemented as a proxy server, transparent to the end user.
It intercepts all HTTP messages that are sent to the server (requests)
and its responses to the user. Our system interprets these messages
and identifies the user. The identification process consists of two
stages: when the user first sends HTTP request, the system finds
out if she already has special cookie set, containing a unique ID
value. If she does,SIE can identify and associate current session
with the stored history. If she does not the system provides her
with a new ID number. In the second stage, when the user fetches
WWW pages,SIEdoes not employ the cookie mechanism. Instead
it changes all the links pointing to the server, which are on the pages
sent to the user, in such a way that they are unique and identify the
user. With this method we can identify the user throughout each
session, even if her web browser does not support (or has disabled)
the cookie mechanism.

When the HTTP message contains a HTML documentSIE inter-
prets it and constructs a parse tree, which is a very convenient form
for further analysis and modifications.

The core of the whole system is constituted by modules. A mod-
ule usually consists of two parts: offline and online. Online parts
of every module is invoked whenever a request or response is pro-
cessed bySIE. They are provided with all the data they need in an
appropriate form:

• HTTP parameters

• parsed HTML contents (when appriopriate)

• user identification

• current trail in the traversal tree of current user1

• module specific data

Figure 1: Example traversal tree representing user session.
Solid lines are regular clicks. Dotted lines represent pushing
“Back” button in the browser

The module can modify HTML tree using received information
(e.g. choose an appriopriate model of user behavior basing on the
1Formally this would be defined as the shortest path from the root
to the current node in the tree (e.g. in Figure 2 when user visited
“C” current trail would be given as list: A→ B→ C)

user’s ID, find out which pages may potentially be useful for the
user and insert appriopriate links into HTML tree). At the endSIE
deparses HTML back to plain text and passes this new version of
the document to the original destination.

Before processing the request all important properties of the HTTP
request are logged. Apart from the fields found in CLF2, there are
two fields which together make up the strength ofSIE. These are:

• user ID

• previous node in the traversal tree

Both of these fields are taken from the rewritten link (described
above), which allows any module written forSIE to easily obtain
a tree similar to the one presented in Figure 2. Constructing trees
from logs is usually done by module’s periodically executed part3,
which can prepare aggregated data for the online part. A traversal
tree is a natural representation of behavior of a user visiting a Web
site. Many papers dedicate whole chapters to techniques of ex-
tracting information about “user sessions”4 and “episodes”5 from
a CLF-compliant log (e.g. Apache accesslog). Users ofSIE are
relieved from reimplementing those algorithms and can focus on
their modules alone.

We are fully aware that sometimes CLF logs are the only source
of information available but we also feel that widespread use of
systems likeSIEcan quickly change this situation. DeployingSIE
in front of a Web site – without any additional modules – can gather
information useful for analyzing the site and testing new algorithms
on it. The next step would be implementing a module which would
use data collected previously.

SIE can be easily scaled thanks to its cluster architecture. It is
able to distribute the servicing of different clients to separate com-
puters in the cluster. It enables the administrator to increase perfor-
mance with the growth of a Web site.

Unfortunately, due to organizational and financial constraints no
“real” tests ofSIEhave been performed. Such tests should be done
on a large Web site, and should include some kind of opinion poll
in order to estimate the effectiveness of our ideas. We hope we will
manage to realize large-scale tests shortly.

3. SIMILAR SYSTEMS
An impressive review of implementations of Web Usage Mining

systems has been given by Robert Cooley in his PhD thesis [9]. It
includes a systematic classification of reviewed systems into five
categories:

1. Personalization

2. System Improvement

3. Site Modification

4. Business Intelligence

5. Usage Characterization

SIE with its current suite of modules (Adapterand SEE), would
probably fit into “Personalization” and “Site Modification”. Adding
other modules (as described in section 6) could spreadSIEalso to
other categories.
2Common Log Format,de factologging standard in WWW servers
3We call these partsoffline analyzers
4Defined in [17] as “a delimited set of user clicks across one or
more Web servers”
5Defined in [17] as “a subset of related user clicks that occur within
a user session”



In [7] authors present system called WebCANVAS which an-
alyzes Web server’s logs and displays visualization of navigation
patterns on a Web site. It is accomplished by automatic clustering
of users and manual clustering of pages on the Web site into cat-
egories. For every cluster of users, navigational patterns between
categories are shown. These patterns represent habits of Web site’s
users and can be used for improving high-level structure of the site.

In [13] the author has presented IndexFinder – a tool which as-
sists webmasters in adding so-called “index pages” to the site. An
index page consists of links to similar pages. IndexFinder employs
conceptual cluster miningto cluster pages not only visited together,
but also having similar content. Proposed index pages are presented
to the Webmaster which chooses if they should be added to the site.

Corin Anderson in his PhD thesis ([4]) described two systems:
PROTEUSand MONTAGE. The former is used to adapt Web pages
to the needs of electronic devices with small displays, such as PDAs
or modern mobile phones. MONTAGE, on the other hand, does not
modify content. Instead, it builds personalized web portals, consist-
ing of content and links from sites the user had visited previously.

IBM has created its own framework for creating Web proxies
called WBI – Web Browser Intermediaries6. Currently WBI is part
of the WebSphere Transcoding Publisher and the Development Kit
is no longer available for download. [5] introduces concept of in-
termediaries as “computational elements that lie along the path of
a web transaction”. This paper also describes WBI as a framework
for building and running intermediaries. WBI supports five type
of intermediaries: request editors, generators, document editors,
monitors and autonomous. WBI, being a framework for creating
intelligent proxies is, in many aspects, similar toSIE . The main
difference between them is the placement of the system between
user and the Web server. As described in [6] WBI is placed be-
tween the user and the Internet (all servers), whereasSIEhas been
thought as a proxy between the Web site and the Internet (mean-
ing here users visiting the site). Additionally,SIE includes several
features (briefly mentioned in Section 2 and described in more de-
tails in following sections) which would have to be implemented as
modules in WBI.

4. ARCHITECTURE

Figure 2: SIE architecture.

6previously Web Browser Intelligence

As mentioned before,SIE is divided into two parts with different
functionality:

online - this part serves the client directly, analyzes the informa-
tion flow between client and server, updates the log file and
invokes online parts of modules.

offline - this part is active only periodically – it performs some
time-consuming analyses for the online part.

SIE is just a framework to run special modules, which constitute
the core of an intelligent Web proxy. Usually every module con-
sists of anonline part7, which is executed for every request, and
anoffline part– theanalyzer.

4.1 The online part
To makeSIE as robust as possible, it is crucial to have the low-

est possible overhead in request processing and achieve maximum
throughoutput. That is why it is very important to make as many
calculations as possible in the offline part, and to use only the com-
puted results online.

Figure 3: Processes in online part. Arrows indicate information
flow (data, document, message, etc.)

When a request is received bySIEit is processed byRequest Bro-
ker, which chooses aBoxand forwards the request to it. There may
be many concurrently running Boxes, each of them on a different
computer in the network. We have implemented a cluster architec-
ture, which means the workload is divided among several comput-
ers functioning in parallel, all of them performing the same task.
Performancewise, it is crucial to send all requests from a particu-
lar user to the same Box during one session. Otherwise computers
in the cluster would have to utilize some kind of a shared memory
which would hold all information about sessions. This could eas-
ily became a bottleneck of the whole system. Therefore we have
decided that Boxes should run completely separate, and logs they

7Sometimes we will use the termmodule– when we do, it will be
clear from the context what we are referring to.



generate should then be combined into one big log periodically by
Gatherer(e.g. via NFS).

Gatherer is an external program, which reads logs generated by
different Boxes and outputs a combined log. All concurrency is-
sues emerging from accessing one shared log file in Boxes (lock
contention, network issues originating from the use of a distributed
file system, etc.) are thus avoided.

On the other hand, there has to be centralized configuration so
that every module that runs inside Box uses the same model and pa-
rameters. This task is fulfilled byOverseer– a simple in-memory
database. Analyzers insert models, needed by online parts, into the
Overseer. Some modules may query Overseer about specific infor-
mation they need on demand and some read the current version of
the model contained in Overseer when Boxes are starting up. Later,
when new models are calculated by offline analyzers, a special sig-
nal is generated, which informs all Boxes that objects in Overseer
have been changed. Upon receival of that signal modules can up-
date local copy of the model. As a result all Boxes have up-to-date
versions of model.

At the beginning of the processing of every message, the Box
logs appropriate properties of request (as described in Section 2).
Then the request is passed to registered modules, which may mod-
ify it or even generate response without involving the WWW server.
SEE8 (a personalized search engine andSIE control center) takes
advantage of this functionality. SEE checks whether the request
refers to Web site’s search engine. When it does – a response is
produced and returned to user. Otherwise request is forwarded to
the WWW server. Similarly, the check if the request is for theSIE
control page is conducted. Control page is a place where user can
modify individual parameters for different modules. For example,
she can set how many links will be added by BM to every page or
set the favored criterion described in section 5.2.

When response arrives from the WWW server, the same Box
which processed the request modifies all the links found in the
HTML document sent in the response, so they uniquely identify
user and her session. Additionally a parse tree of the HTML page
is constructed. The tree is then passed to all active modules. In cur-
rent implementation, only module calledBetterMaker9 uses this
functionality and adds personalized links to every page. Better-
Maker uses data prepared byeXPerimenter, an offline analyzer de-
scribed below.

4.2 The offline part
Offline parts are run periodically (e.g. using standard UNIX

cron daemon) during low system load or on a computer dedicated
to this task. The main idea is to perform some calculations using
a log produced by Gatherer, which would be impossible or too ex-
pensive to do online. In additionSIE provides the modules with
the current, analyzed content of the web server. A special program
calledRobot is responsible for preparing this data. Currently the
Robot is implemented as abash script, which executeswget pro-
gram, although if a more thorough analysis of the web pages is
needed, a new program will have to be created from scratch.

Offline parts should analyze the log and information about all the
pages on the site in order to produce data, which would be useful
for their respective online parts. For example, running an analyzer
which would generate a model of Web site users’ behavior every
night would make the site truly adaptive, as the model would be
adapted daily.

Currently there are two analyzers implemented:

8Details concerning the example modules can be found in the next
section.
9See next section for more information.

Figure 4: Offline part as a support for online part. Arrows
indicate information flow.

eXPerimenter - analyzes traversal trees generated by Web site
users. Then it generates a model for BetterMaker (the on-
line counterpart), which uses this model online to personalize
pages (by adding potentially interesting links to them).

A-SEE - analyzes features of pages which have been visited by all
users. E-SEE (the online counterpart) uses generated model
to personalize search results for users by appropriately re-
ordering links returned by search engine.

A more detailed description of the example modules can be found
in the next section.

5. MODULES

5.1 Adapter
Adapter consists of two parts

• eXPerimenter (XP) – offline analyzer

• Better Maker (BM) – online module

The most visible to the end user is a little table with links pre-
dicted to be most useful to her. To generate this table, BM uses
a model prepared periodically (e.g. daily) by XP. The number of
links generated by system can be controlled by the user through
a special control panel. In current implementation, the number of
links chosen by the user is not stored in any persistent storage, so it
is lost upon restart ofSIE.

To effectively render such table two problems had to be solved.
First, basing on previous traversal patterns of users of the Web site,
given current user’s trail, the algorithm has to predict which pages
the user might visit next and with what probability. We chose
for that task error-pruned Selective Markov Models described in
[10]. The model containsk distinct Markov models, wherek is the
maximum episode length taken into account.k-th Markov model
contains probabilities of visiting pagej, having previously visited
pagesi1, i2, . . . , ik. Fork = 0 the model reduces to unconditional



probability10 of visiting given page in the Web site. With the growth
of k, the model would grow enormously, sopruningtechnique had
to be applied. Currently, it is done using a subset of logs, which is
not used for calculating Markov models. For details on the exact
method ofoverall error pruningplease refer to [10].

Predicting web pages and attributing them with probabilities is
of course not enough. Some pages may be buried down in the
site’s structure (i.e. to reach them user has to click on many links)
whereas some others may be easily accessible using already ex-
isting links. To compensate this, BM ranks links using expected
number of saved clicks, i.e. the product of predicted probability of
visiting the page the link points to and number of clicks that would
be saved if the had the link been put on the current page. To esti-
mate this value, BM uses MINPATH – a simple recursive algorithm
given in [2].

Currently, Adapter does not distinguish between users, and the
same model is used for every user visiting Web site. Of course this
approach may cause poor personalization on large sites with many
different types of users. In such situation, a more sophisticated
model needs to be used. We discuss possible improvements in the
next section.

5.2 SEE
Another module is SEE – a search engine which aims at person-

alize search results. To be exact, even though all searching users
receive the same list of links, they get them in a different order.
The order is set by SEE’s knowledge about a specific user. To il-
lustrate this, let us refer back to the example mentioned in the in-
troduction. Assume that that the user is concerned about “chaos”
meaning a mythological phenomenon. Therefore she should find
pages on ancient gods before those concerning fractals.

How can this be done? It is possible thanks toSIE. First theSEE
analyzer(A-SEE) indexes Web site’s resources rating each page
according to criteria (e.g. amount of text and pictures, number of
links, etc.), which indicate what this page is like.SIE is then em-
ployed to provide the history of user’s searches. Not only does
SEE focus on the keywords the user is searching for, but, more im-
portantly, it takes into account which pages she chooses from the
results suggested. This analysis shows which criteria are important
for this particular user when he is looking for this particular key-
word. The analyzer’s task ends here. SEE comes back into action
when the user searches the Web again. The resulting list of pages is
sorted according to criteria earlier identified as the ones preferred
by theSIEuser. The more the user searches the wider SEE’s knowl-
edge about her and, thus, the more accurate search results the user
receives.

To provide the user with more control over her searches, SEE
allows her to choose one criterion to be used individually. Should
the user employ this feature, her lists of links will always begin
with pages favored by the criterion.

6. POSSIBLE IMPROVEMENTS
SIE is in an early development stage and there are many features

still to be added. For us, it is most important to developSIEitself as
a platform for building intelligent Web proxies. However, we have
also a few ideas for the improvement of the already implemented
modules and adding of new, equally interesting ones.

6.1 SIE itself

10To be exact instead of probability we use frequency – the maxi-
mum likelihood estimator.

SIE is a framework created to aid the programmers. This is why
it is crucial to develop additional technical documentation, tuto-
rials, easy and well-commented example modules, etc. to make
learningSIE as easy as possible. In the future, we are planning
to create a graphical system to automatize basic tasks or to enable
them to be performed by mouse drag-and-drop operations.

On the other hand every computer system should be easy to in-
stall and maintain. That is why we would like to add an automatic
installer as well as create ready-to-use compiled packages for MS
Windows and popular Linux distributions. In addition, a graphi-
cal user interface is needed for administrative purposes. It would
be also very useful to enable the administrator to load/unload the
modules without restarting the whole system. To accomplish this
the usage of Overseer has to be enhanced. It can be used to provide
communication between central administration console and Boxes.
The infrastructure is present and working (i.e. the Overseer itself)
but there is no code in Box that would allow for remote admin-
istration and feedback (e.g. sending of warnings and system logs
describing error conditions).

In order to makeSIE used in practice, we must improve the
graphical aspect of our system. Elements added by our modules
are readable, but they are behind the aesthetic standards imposed
by modern HTML documents.

6.2 Modules

6.2.1 New modules
We hope to extendSIEby writing new modules ourselves and to

encourage others to contribute their ideas as new modules as well.
Currently, we see immediate need to add two modules which would
show:

1. Topk most popular pages

2. k most recently added pages

We are also developing a module to record and save user session
(as in a sequence of user clicks) as a program inWTL. WTL is a
new script language, developed by us specially for describing user
behavior on a web page. Such a program can be executed later,
simulating user actions. This simulation could be used as a test,
resembling real scenarios of Web site usage allowing to measure
Web server’s performance or find broken links. It can be also used
to automatize some routine tasks done using a HTML interface.

6.2.2 Adapter
As mentioned in section 5.1 is a fairly simple module, which was

implemented rather as proof of a theoretical concept than a mod-
ule intended to be used in reality. Many features can be, however,
improved or added.

First of all, BM constructs – and XP uses – only one model. For
large Web sites it is obvious that no single model could be appropri-
ate for all users. Therefore, basing on clustering of users, Adapter
has to use many models, one for every user cluster. Possible ap-
proaches to user clustering are described e.g. in [7] and [12].

Another technique, which could prove useful for Adapter, ispage
clustering. Basing on words (terms) contained in the documents
from the Web site, the module could group those documents into
clusters of pages with similar content. Alternatively such classifi-
cation could be done manually or semi-automatically (with the help
of someone, who would provide keywords for every page). Espe-
cially appealing in this context seems to be the algorithm called
Concept Indexing(described in [11]). For every page, it devises
a list of terms (calledconcepts), which best describe the page’s



content. Having concepts attributed to every page, it is possible to
create, for each user, a list of concepts she (or cluster of users) is
interested in. Such information can be valuable from the marketing
point of view (directing advertisements or communication to the
user) and can also help resolve the problem of new pages – when
a new page is added to the Web site it is not added to as a suggested
link by BM because it is not yet seen in logs. With the help of con-
cepts, BM can find all users potentially interested in reading the
new page, and include link to the page on pages viewed by them.

Additionally, concepts could allow for creating models on a higher
level of abstraction than URLs – namely clusters of pages. Such
models could be used for visualization of user access patterns (as
in [7]) or, as noted in [3], to predict Web page entries on a different
Web site but with similar structure.

6.2.3 SEE
The way we developed SEE imposed on us the assumption that,

before everything else, the general mechanism was needed. Now,
when the module sorts links individually for each user, the lack
of strong criteria has proved to be its main flaw. The criteria we
have implemented only indicate how powerful SEE could be. They
mainly test the percentage, on each rated page, of certain HTML
tags, inside which are the keywords. The concept of semantics-
driven criteria has accompanied the whole process of developing
SEE. In other words, SEE could immensely benefit from clustering
pages which cover the same topics.

Another issue which SEE should deal with is the size of the
model. SEE attempts to store information in pairs: the user and
a given keyword. Hence the need for grouping users sharing com-
mon interests (in terms of criteria). SEE could also do with a way
of clustering keywords that the users perceive as similar.

7. CONCLUSION
Adaptive web and personalizing Web servers are relatively young

fields of computer science. In spiteSIE is still an immature system,
we hope it will help the scientists to test their ideas and develop
new modules. Such a framework could prove very useful in social
sciences, or in fields that include interaction with humans, as it is
impossible to model their behavior in absolutely abstract way.

We were not able to find any similar framework freely available
on the Internet. We hopeSIE will fill this gap and make future
research easier.

8. ACKNOWLEDGMENTS
First of all we would like to thank Krzysztof Ciebiera, who had

the main idea of the project. Without his irreplaceable help as our
tutor the project would probably not succeed.SIE itself was devel-
oped by many authors. Detailed list can be found at
http://sie.mimuw.edu.pl .

9. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

Association Rules between Sets of Items in Large Databases.
In Proceedings of SIGMOD-93, pages 207–216, 1993.

[2] C. Anderson, P. Domingos, and D. Weld. Adaptive web
navigation for wireless devices, 2001.

[3] C. Anderson, P. Domingos, and D. Weld. Relational markov
models and their application to adaptive web navigation,
2002.

[4] C. R. Anderson.A Machine Learning Approach to Web
Personalization. PhD thesis, University of Washington, 2002.

[5] R. Barrett and P. P. Maglio. Intermediaries: New places for
producing and manipulating web content. InWorld Wide
Web, 1999.

[6] R. Barrett, P. P. Maglio, and D. C. Kellem. How to
personalize the web. InProceedings of the Conference on
Human Factors in Computing Systems CHI’97, 1997.

[7] I. V. Cadez, D. Heckerman, C. Meek, P. Smyth, and
S. White. Visualization of navigation patterns on a web site
using model-based clustering. InKnowledge Discovery and
Data Mining, pages 280–284, 2000.

[8] S. Chakrabarti.Mining the Web. Morgan Kaufmann
Publishers, San Francisco, 2003.

[9] R. Cooley.Web Usage Mining: Discovery and Application of
Interesting Patterns from Web Data. PhD thesis, University
of Minnesota, 2000.

[10] M. Deshpande and G. Karypis. Selective Markov Models for
Predicting Web-Page Accesses, 2001.

[11] G. Karypis and E.-H. Han. Concept indexing: A fast
dimensionality reduction algorithm with applications to
document retrieval and categorization. Technical report
tr-00-0016, University of Minnesota, 2000.

[12] B. Mobasher, H. Dai, and M. Tao. Discovery and evaluation
of aggregate usage profiles for web personalization, 2002.

[13] M. Perkowitz.Adaptive Web Sites: Cluster Mining and
Conceptual Clustering for Index Page Synthesis. PhD thesis,
University of Washington, 2001.

[14] M. Perkowitz and O. Etzioni. Adaptive Web Sites: an AI
Challenge. InIJCAI (1), pages 16–23, 1997.

[15] M. Perkowitz and O. Etzioni. Towards adaptive Web sites:
conceptual framework and case study.Computer Networks
(Amsterdam, Netherlands: 1999), 31(11–16):1245–1258,
1999.

[16] P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s ear:
Extracting usable structures from the web. InCHI-96,
Vancouver, 1996.

[17] W3C. Web characterization activity.
http://www.w3.org/WCA.

http://sie.mimuw.edu.pl

	Introduction
	Solution
	Similar systems
	Architecture
	The online part
	The offline part

	Modules
	Adapter
	SEE

	Possible improvements
	SIE itself
	Modules
	New modules
	Adapter
	SEE


	Conclusion
	Acknowledgments
	REFERENCES -9pt 

